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We show how a simple electronic parametric oscillator can be used to exhibit both supercritical and
subcritical bifurcations to a subharmonic oscillatory state as the pump frequency is varied, and study
the scaling behavior of the oscillation amplitude in the vicinity of the tricritical point. ©2002

American Association of Physics Teachers.
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I. INTRODUCTION

Parametric amplifiers and oscillators have been wid
studied in electronics and optics. For instance, parame
amplification has been used to achieve low-noise amplifi
tion in electronic systems.1 Many other applications, from
particle traps to the stability of a floating body,2 show the
great importance of parametric resonance as was pointed
by Brillouin at the end of the 19th century.3 More recently,
the frequency and phase selectivity of parametric resona
has been used to implement noise-squeezing devices.4 Ca-
nonical examples of parametric resonance are the stabi
tion of an inverted pendulum and the first resonance of
Melde string.2,5,6Another example leading to parametric o
cillations is the swing on which most people have played.
pointed out by Case,7,8 a pumped swing is both a drive
oscillator and a parametric oscillator. In the playground,
commonly chosen motion corresponds to the driven osc
tor. Nevertheless, parametric pumping is also possible
can occur for large oscillation angles.7 Such oscillations can
be easily studied experimentally using a simple pendu
with an oscillating support.5,9,10

Parametric instability also occurs when a tank containin
liquid is vertically vibrated: one then observes stand
waves on the free surface.11 This parametric instability is
called the Faraday instability. The physical situation is m
complex because of the great number of degrees of free
in the system leading to the generation of complex patte
on the surface.12 The study of parametric surface waves h
led to a large number of theoretical and experimen
studies.13–16 In the simple case of an incompressible, irro
tional, and inviscid fluid, Benjamin and Ursell17 showed that,
in the linear approximation, each modezk ~of wave vectork!
of the surface deformation is governed by a Mathieu eq
tion,

z̈k1v0
2~k!@11F sin~vet !#zk50, ~1!

where the dot indicates differentiation with respect to
time t, ve is the external forcing pulsation, andF is directly
related to the amplitude of the vibration acceleration relat
to the acceleration of gravity. The presence of a small v
cous dissipation can be taken into account by includin
phenomenological damping term 2lż in Eq. ~1!, leading to

z̈k12lżk1v0
2~k!@11F sin~vet !#zk50. ~2!

Other terms due to viscous dissipation are present in gen
Recently, Pritchett and Kim proposed a simple system

observe Faraday instabilities.18 We propose here an alterna
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tive way to study parametric instabilities by doing an ana
experiment that models the Mathieu equation in Eq.~2!. As
mentioned in Ref. 19, our proposed experiment is easy
understand conceptually and has several advantages, in
ing fast data acquisition. It also allows students to expl
the behavior of a driven oscillator and to understand the c
cepts of supercritical and subcritical bifurcations.

The experiments involve two control parameters: the fo
ing amplitudeF and the forcing pulsationve . Varying these
two parameters allows us to study the threshold of the in
bility for different driving frequencies and to explore th
Mathieu tongue of the bifurcation. We also study the nonl
ear dependence of the oscillation amplitude onF.

After a brief review of the theoretical results for the par
metric oscillator, we present our analog electronic system
Sec. III. Section IV discusses our results and the significa
of our system for studying parametric resonance. In Sec
we discuss future applications of our experiment to the st
of noise-induced phase transitions.

II. PARAMETRIC RESONANCE

A system is subjected to a parametric forcing if one of
parameters is temporally modulated. We consider a sim
pendulum of lengthl subject to a linear damping force and
the acceleration of gravityg. Its support oscillates vertically
with a frequencyf e and a forcing amplitudeF. As men-
tioned in Sec. I, this system leads to a canonical exampl
a parametric instability.9,10,20The evolution of the pendulum
angle u with respect to the vertical is governed by th
Mathieu equation~2! with a nonlinear term,

d2u

dt2
12l8

du

dt
1v0

2@11F sin~vet !#sinu50 ~3!

with l8.0, v0
25g/ l , andve52p f e .

In the undamped case (l850), whenF→0, the paramet-
ric resonance occurs whenve /v052/p, wherep is an inte-
ger. The most unstable oscillation corresponds top51, that
is, ve52v0 .20 In the following, we investigate only this
case.

For small oscillations, Eq.~3! can be reduced to

d2u

dt2 12l
du

dt
1F114m sinS ve

v0
t D G~u2gu3!.0, ~4!

wheret5v0t, l5l8/v0 , m5F/4, andg51/6 for a pendu-
lum. Whenl, m, and the detuning parametern52(v0

2/ve
2

21/4) have the same order of magnitude« ~«!1!, we can
744p/ © 2002 American Association of Physics Teachers
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use the method of multiple time scales to analyze Eq.~4!. We
use two time scales,t andT5«t, and expand the angleu as

u~t!5A«@u0~t,T!1A«u1~t,T!1«u2~t,T!1¯#. ~5!

After substituting this expansion in Eq.~4! and collecting
terms of the same order in«, we obtain to zeroth order,

d2u0

dt2 1u050, ~6!

which has the solution

u05X~T!eiv0t1complex conjugate, ~7!

where the amplitudeX(T) is a complex function ofT. The
first-order equation has the same form and its solution o
modifiesX(T). The second-order equation is

d2u2

dt2 1u25GFu0 ,mu0 sinS ve

v0
t D G . ~8!

To avoid a secular growth ofu2 , the source termG of Eq.
~8! must not include terms proportional to expi(v0)t. If we
use the zeroth-order solution~7!, and the relationve /v0

5224n, this condition yields

dX

dT
5~2l1 in!X1mX̄e24inT2 i

3g

2
uXu2X, ~9!

whereX̄ is the complex conjugate ofX. Equation~9! can be
expressed in a frame of reference rotating with freque
f e/2 as21

dA

dT
5~2l1 in!A1mĀ2 i

3g

2
uAu2A, ~10!

where we have letX5Ae22inT. The first term on the right-
hand side of Eq.~10! is simply related to the damping o
the pendulum. The two contributions with purely imagina
coefficients, i (n23guAu2/2)A, involve a rotation ofA in
the complex plane, and thus a detuning. This detuning
pends in a nonlinear way on the oscillation amplitudeuAu.
The third term is proportional toĀ and represents the para
metric forcing.

We can study both the linear and nonlinear stability of
equilibrium solutionu50. If we let A5(x1 iy)eht, we find
that the solutionA50 is linearly stable forh,0; otherwise,
it is unstable. If we drop the nonlinear termuAu2A in Eq.
~10!, the solutionu50 is found to be linearly stable whenm
is smaller thanmc , where

mc5Al21n2. ~11!

The nonlinear analysis shows that form.mc (F.Fc), os-
cillations of frequencyf e/2 appear to grow in amplitude unt
dA/dT50. When this steady state is reached, the amplit
uAu can be obtained from Eq.~10! by settingdA/dT50 and
writing A5Reiu. By setting the real and imaginary parts
Eq. ~10! equal to zero and using cos2(2u)1sin2(2u)51, uAu
5R is determined by the relation

uAu25
2

3g
~n7Am22l2!. ~12!

We can discuss the nature of the solutions in terms
bifurcations~see also Fig. 1!.21,22
745 Am. J. Phys., Vol. 70, No. 7, July 2002
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~1! For n.0 ( f e,2 f 0), the bifurcation is subcritical. There
are two solutions such thatuAuÞ0 for l<m<mc , and
one solutionuAuÞ0 for m.mc .

~2! For n,0 ( f e.2 f 0), the bifurcation is supercritical, an
there is only one solution,uAuÞ0, with two opposite
phases. Near the thresholdmc , Eq. ~12! leads to the
scalinguAu}(m2mc)

1/2 and uAu2}(m2mc).
~3! For n50, there is a tricritical point~the bifurcation

is subcritical for n*0 and supercritical forn&0!. We
find that uAu}(m2mc)

1/4 and uAu4}(m2mc) near the
threshold.

We see that we expect a crossover between the two ty
of behavior whenn&0. This point will be discussed in deta
in Sec. IV.

Fig. 1. Bifurcation diagrams for the parametric oscillator: supercritical c
(n,0), tricritical case (n50), and subcritical case (n.0). The arrows
indicate the pendulum amplitude evolution when the forcing amplitude
increasing or decreasing.
745Berthet, Petrosyan, and Roman
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III. THE ANALOG MODEL

A. Experimental setup

As mentioned in Sec. I, we will develop an analog mod
of the parametric instability. In fact, the Mathieu equatio
Eq. ~3!, leads to the amplitude in Eq.~12!, which is analo-
gous to the one derived in the Faraday problem in the li
of small viscosity.23 Our electronic device is shown in Figs.
and 3.M is an AD633 multiplier; its output voltage,s, is
proportional to the product of the two input voltages,e1 and
e2 : s5ke13e2 . C is a capacitor with a voltage-depende
capacity made with variable capacitance diodes~varicaps!
BB909A. As mentioned in Ref. 5, these diodes introdu
some nonlinearities in contrast to the circuit proposed in R
24 where no nonlinear component is present. To avoid e
tromagnetic perturbations, the electronic oscillator is
closed in a metallic container which serves as a Fara
cage.

Fig. 2. Electronic analog of the Mathieu equation.

Fig. 3. Details of the electronic system inside the dashed box in Fig
between pointsA and B. Operational amplifiersA1 , A2 , A3 , and A4 are
compacted using two dipole OPAs TL082, but can be compacted usi
quadrupole OPA TL084. A single OPA TL081 can also be used.A1 andA2

are used in building followers~Ref. 27!; A3 andA4 are used for the gyrator
filter.
746 Am. J. Phys., Vol. 70, No. 7, July 2002
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The electronic system is forced by a periodic volta
ue(t)5u0 sin(vet). We can use Kirchhoff’s voltage law1 and
the property of the multiplier to find that the chargeq of the
capacitanceC is governed by~see Fig. 2!

d2q

dt2
1

R

L

dq

dt
1

q

LC
@11ku0 sin~vet !#50, ~13!

wherek is the gain of the multiplier~k5 1
10 V in our case!.

The capacitanceC depends on the chargeq, but the use of a
pair of oppositely polarized varicaps leads to the symme
q→2q of the functionC(q). Hence, we can write5,25

C.C0~11gq2! ~g.0! ~14!

and Eq.~13! becomes

q̈12l8q̇1v0
2@11F sin~vet !#~q2gq3!.0, ~15!

with 2l85R/L, v0
251/LC0 , and F5ku0 . If we use the

dimensionless variablest5v0t, l5l8/v0 , and m5F/4,
we can write Eq.~15! as

d2q

dt2 12l
dq

dt
1F114m sinS ve

v0
t D G~q2gq3!.0. ~16!

Equation~16! is identical to Eq.~3! and we can expect ex
perimental results for the charge amplitude similar to tho
described in Sec. II for the pendulum amplitude.

We used a 1-H inductance, and measured the reson
frequency of the RLC circuit to bef 0.6.812 kHz so that
C0.546 pF. Forve52v0 , the threshold is simply deter
mined by the relationmc5l5R/(2Lv0). Thus, the global
resistance of the circuit isR.555 V, and the quality factor
of the RLC circuit isQ5Lv0 /R.77. As mentioned below
we are interested in the evolution of the voltageU.q/C0 ,
the analog of the pendulum angleu in Sec. II. We thus utilize
a digital synthesizer HP8904A and a signal analy
HP35670A~see Fig. 2! to calculate, via a real-time average
fast Fourier transform, the voltage amplitudeuAu, defined by

U~ t !5Aeivet/21complex conjugate. ~17!

After interfacing the experimental setup usingLABVIEW , we
can directly record the control parametersu0 and f e , and the
voltage amplitudeuAu.

B. Technical comments

Despite the simplicity of our electronic scheme, two tec
nical points must be stressed. First, the 1-H inductanc
realized using a gyrator filter,26 which gives a large induc-
tance value independent of the frequency with no resista
and a small scale size.

The other point is linked to the purpose of the experime
In an educational context, the circuit can be used as we h
discussed because highly reproducible results are not a
lutely essential, and the most important objective is that s
dents understand the physical concepts of nonlinearity
parametric resonance. However, for quantitative exp
ments, highly reproducible results are necessary. Thus, e
with good quality electronic components~low noise and
great precision!, temperature effects should not be under
timated because diurnal temperature variations can cha
the instability threshold by a factor of 2 or so. We have add
a thermal regulation system~the container is in contact with
circulating water at fixed temperature! to control the tem-

,

a
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perature of the system and ensure reproducibility of our
sults. Our tests show that with this regulation system,
measurements are reproducible by65%. For all the results
presented in Sec. IV, the measurement errors are less
1% for u0 and f e and within 5% foruAu.

IV. RESULTS AND DISCUSSION

Our first observations consist of choosing a frequencyf e
@that is, fixingn in Eq. ~10!# and varying the forcing ampli-
tudeu0 @m in Eq. ~10!#. Thus, we can study the evolution o
the chargeq, or in a similar way, the evolution of the voltag
U5q/C.q/C0 , and look for the threshold of the parametr
instability.

In Figs. 4–7, we present the evolution ofuAu to some
power withu0 so that we can make a direct comparison w
the theoretical results presented in Sec. II:u0 is the analog of
m in Eq. ~10!. We immediately observe that the experimen
results are difficult to interpret in terms of bifurcation. T

Fig. 4. Dependence of the pendulum amplitudeuAu on the driving voltage
u0(}m) for f e513.700 kHz (n.2237 s21). ~s! corresponds to the ex
perimental data foruAu2 and~3! to the linear fit to the data near the thres
old of the parametric instability.

Fig. 5. Dependence of the pendulum amplitudeuAu on the driving voltage
u0(}m) for f e513.625 kHz.2 f 0 (n.23 s21). ~s! corresponds to the
experimental data foruAu4 and ~3! to the linear fit of the data near th
threshold of the instability.
747 Am. J. Phys., Vol. 70, No. 7, July 2002
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help our understanding, we have made some fits of the
perimental data near the threshold of the instability for th
values of the detuning parametern.

~1! For n,0 ~Fig. 4!, we see that increasing the pum
voltage u0 starting from below the thresholduc @mc

5Al21n2 in Eq. ~12!# or decreasingu0 starting from above
the threshold leads to the same value ofuAu. Figure 4 shows
good agreement between the theoretical predictions and
data near the threshold:uAu2 scales like (u02uc). For the
largest forcing amplitudes, we are far from the threshold a
the oscillator enters the crossover region mentioned in Se
~see details below and Fig. 6! as long as no other nonlinea
effects occur.

~2! For n.0 ~Fig. 5!, our results are also in good agre
ment with the predictions, that is,uAu4 scales like
(u02uc), except for values of the forcing amplitude ne
uc . In this region, the oscillator is very sensitive to bo
amplitude and detuning perturbations of the pump. The
fore, we can expect a lack of accuracy in the measuremen
the amplitude. The data presented in Fig. 6 show a typ
example of the crossover region mentioned at the end of S
II. Near the threshold, the system is very sensitive to
detuning. Thus, the oscillator’s amplitude has the same

Fig. 6. Dependence of the pendulum amplitudeuAu on the driving voltage
u0(}m) for f e513.675 kHz (n.2159 s21). ~s! corresponds to the ex-
perimental data foruAu2, ~3! to the linear fit to the data near the threshold
the instability, and~1! to the linear fit ofuAu4 with u0 far from the threshold
to illustrate the crossover phenomenon.

Fig. 7. Dependence ofuAu2 on the driving voltageu0(}m) for f e

513.500 kHz (n.395 s21): ~n! for increasingu0 and ~,! for decreasing
u0 .
747Berthet, Petrosyan, and Roman
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havior as for a supercritical bifurcation,uAu}(u02uc)
1/2.

When the pump amplitude increases, the system is less
sitive to the detuning and acts as in the case of zero detun
So, as long as no other nonlinearities occur,uAu}(u0

2uc)
1/4. We can also observe by comparing Figs. 4 an

that the bigger the detuning, the larger the supercritical tr
sition region, in agreement with the explanation given abo

~3! For n.0 corresponding to a subcritical transition, i
creasingu0 starting from below the threshold or decreasi
u0 starting above the threshold leads to two different evo
tions of the amplitudeuAu with u0 , as shown in Fig. 7. This
behavior is typical of a subcritical bifurcation. It is importa
to notice that the forcing amplitude should be decrea
keeping the phase locked with that of the oscillator. If th
phase lock-in is not realized, the system jumps to the sta
state (uAu50) for l<u0<uc . This phase lock-in is realized
by changing the amplitude with a potential divider~full re-
sistanceR510 kV! between the synthesizer and the circ
input ~point A in Fig. 2!, instead of directly varying the syn
thesizer output voltage starting fromu0i.uc . This lock-in
ensures the stability of the phase during the decreasing
of the measurements.

We see that our measurements are in good agreement
the theoretical prediction of the bifurcation diagrams of t
parametric oscillator. We now change both the forcing a
plitudeu0 and the pump frequencyf e in order to explore the
( f e ,u0) plane. The corresponding Mathieu tongue~the criti-
cal forcing amplitudeuc versus the forcing frequency! is
presented in Fig. 8 for the entire domain of the measu
ments. The (f e ,u0) plane is divided into three regions. Fo
( f e ,u0) above all the curves, the oscillator is unstable;
( f e ,u0) below all the curves, the oscillator is stable, a
between the two curves the oscillator is bistable. In the la
region, the system can change between two states, os
tions or steady stateuAu50, for finite amplitude perturba
tions, in contrast with the two other regions of the graph

For comparison with the theoretical predictionmc

5Al21n2, we have shown in Fig. 9 the tongue in the r
gion where l;n;m, which in terms of frequencies i
13.500 kHz& f e&13.750 kHz. We first remark that the bo
der of the bistable region is not a horizontal line, which
probably due to the presence of a nonlinear component in

Fig. 8. Experimental tongue for the parametric instability:~n! for increas-
ing u0(}m) and ~,! for decreasingu0 .
748 Am. J. Phys., Vol. 70, No. 7, July 2002
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damping term and the inaccuracy in the measurements w
the forcing amplitude decreases forf e,2 f 0 .

In our experiments, the amplitude equation has the form
Eq. ~10! with the parameters of Eq.~16!:

dA

dT
5~2l1 in!A1mĀ2 i

3g

2
uAu2A, ~18!

with l5R/(2Lv0) andm5u0/40. So, the linear stability of
the solution is~u0 in V!

u05
40

v0
AS R

2L D 2

1v0
2n2.

We can directly compare our system with the parame
system studied in Sec. II. Figure 9 shows quite good ag
ment between our system and an ideal parame
pendulum—the errors are less than 10%. We believe that
biggest part of this error is due to an inaccuracy in the
termination of the RLC resonance frequencyf 0 .

Finally, we present a measurement to determine the n
linear coefficientg. We use the relation~12! in the supercriti-
cal casen,0:

uAu25
2

3g
~n1Am22l2!. ~19!

Near the threshold, we can derive, forn,0,

uAu25
22mc

3gn
~m2mc!, ~20!

which for our system is

uAu25S 2mc v0

60gn D u01
2mc

2

3gn
. ~21!

The value ofg is thus determined by choosing a large detu
ing value~see Fig. 10! to ensure a scaling behavior inuAu2

}(u02uc). A linear fit of the data givesg.3.8131022 C22

using the slope andg.3.5331022 C22 using the intersec-
tion with the y axis. Hence, we estimateg.1/27C22, and
Eq. ~16! for the oscillator takes the final form

q̈12lq̇1v0
2@11F sin~vet !#~q2q3/27!.0. ~22!

Fig. 9. Comparison of the theoretical tongue~L! with our results:~n! for
increasingu0(}m) and ~,! for decreasingu0 .
748Berthet, Petrosyan, and Roman
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Starting from Eq.~22!, we note that scalingq allows us to
find the parametric pendulum Eq.~4!. That is, if we letq
5a u, we find

ü12lu̇1v0
2@11F sin~vet !#~u2~a2/27!u3!.0, ~23!

which is exactly Eq.~4! for a5A27/6.

V. CONCLUSION

We have presented an experimental study of parame
resonance, which can be used to describe various nonli
phenomena qualitatively and to obtain the bifurcation d
grams quantitatively. It is based on an electronic circuit a
is easy to use. We have shown that it is a good simulatio
parametric phenomena, and our results are in good ag
ment with theoretical predictions. In particular, it may
used to study the influence of pump noise on the instabili
threshold and amplitude.
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Fig. 10. Dependence ofuAu2 on the driving voltageu0(}m) for f e

513.750 kHz (n.2390 s21): the linear fit is made on the linear part o
the curve (490 mV<u0<600 mV) to avoid crossover effects.~s! corre-
sponds to the experimental data and~3! to the linear fit.
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