An analog experiment of the parametric instability

R. Berthet,® A. Petrosyan,” and B. Roman®
Laboratoire de Physique, UMR CNRS 5672pk Normale Supe&ure de Lyon, 46 Alle d'ltalie,
69364 Lyon Cedex 07, France

(Received 11 February 2000; accepted 7 March 2002

We show how a simple electronic parametric oscillator can be used to exhibit both supercritical and
subcritical bifurcations to a subharmonic oscillatory state as the pump frequency is varied, and study
the scaling behavior of the oscillation amplitude in the vicinity of the tricritical point2de2
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[. INTRODUCTION tive way to study parametric instabilities by doing an analog
experiment that models the Mathieu equation in &j. As
Parametric amplifiers and oscillators have been widelymentioned in Ref. 19, our proposed experiment is easy to
studied in electronics and optics. For instance, parametrianderstand conceptually and has several advantages, includ-
amplification has been used to achieve low-noise amplificaing fast data acquisition. It also allows students to explore
tion in electronic systemsMany other applications, from the behavior of a driven oscillator and to understand the con-
particle traps to the stability of a floating botlghow the  cepts of supercritical and subcritical bifurcations.
great importance of parametric resonance as was pointed outThe experiments involve two control parameters: the forc-
by Brillouin at the end of the 19th centutyMore recently, ing amplitudeF and the forcing pulsatiom, . Varying these
the frequency and phase selectivity of parametric resonana@o parameters allows us to study the threshold of the insta-
has been used to implement noise-squeezing detiGzs. bility for different driving frequencies and to explore the
nonical examples of parametric resonance are the stabilizagathieu tongue of the bifurcation. We also study the nonlin-
tion of an inverted pendulum and the first resonance of thegy dependence of the oscillation amplitudeFon
Melde string”® Another example leading to parametric oS- After a brief review of the theoretical results for the para-
cillations is the SW'”%E?” which most people have played. Aspetric oscillator, we present our analog electronic system in
pointed out by Case; a pumped swing is both a driven gec_ |J|, Section IV discusses our results and the significance
oscillator and a parametric oscillator. In the playground, theyf oyr system for studying parametric resonance. In Sec. V

commonly chosen motion corresponds to the driven oscillagye giscuss future applications of our experiment to the study
tor. Nevertheless, parametric pumping is also possible angf nojse-induced phase transitions.

can occur for large oscillation anglesuch oscillations can
be easily studied experimentally using a simple pendulum
with an oscillating support®*° Il. PARAMETRIC RESONANCE

Parametric instability also occurs when a tank containing a A svstem | biected t tric forcing if it
liquid is vertically vibrated: one then observes standing *'SYS!€M IS SUDJECIEC 10 & parametric Torcing It one of Its

waves on the free surface.This parametric instability is Parameters is temporally modulated. We consider a simple
called the Faraday instability. The physical situation is morgP€ndulum of length subject to a linear damping force and to
complex because of the great number of degrees of freedofi€ acceleration of gravity. Its support oscillates vertically

in the system leading to the generation of complex pattern®ith a frequencyf, and a forcing amplitudd=. As men-

on the surfacé? The study of parametric surface waves hastioned in Sec. I, this system leads to a canonical example of
led to a large number of theoretical and experimentaR parametric instability:">*°The evolution of the pendulum
studiest®*18n the simple case of an incompressible, irrota-angle 6 with respect to the vertical is governed by the
tional, and inviscid fluid, Benjamin and UrsElshowed that, Mathieu equatior{2) with a nonlinear term,

in the linear approximation, each modgie(of wave vectok) d2e

6
of the surface deformation is governed by a Mathieu equa- W””E”g“” sin(wet) [sinf=0 3
tion,

S, . B with \'>0, wg=g/l, andwe=2mf,.
Gt og(K[1HF sin(wet) 16=0, @ In the undamped case (=0), whenF—0, the paramet-

where the dot indicates differentiation with respect to theric resonance occurs whe#./wqy=2/p, wherep is an inte-
timet, w, is the external forcing pulsation, afdis directly ~ ger. The most unstable oscillation correspondg tol, that
related to the amplitude of the vibration acceleration relativéis, w,=2w.2° In the following, we investigate only this
to the acceleration of gravity. The presence of a small viscase.

cous dissipation can be taken into account by including a For small oscillations, Eq3) can be reduced to

phenomenological damping term 2 in Eq. (1), leading to d20+2)\ N (we (6 70 “
- : - sin — - =0,
Gt 2Nt w3 (K[ 1+ F sin(we) 1£¢=0. ) dr? " “dr R PR N

Other terms due to viscous dissipation are present in genera¥Nere7=wot, A=\"/wo, u=F/4, andy=1/6 for a Pg”dy'
Recently, Pritchett and Kim proposed a simple system tdum. When\, u, and the detuning parameter=2(wg/ wg
observe Faraday instabilitié$We propose here an alterna- —1/4) have the same order of magnitudés<1), we can
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use the method of multiple time scales to analyze(Eg.We v<0
use two time scales;andT=e¢ 7, and expand the anglkas 02— '

0(7)= e[ Oo(7.T)+\eby(7.T)+eby(7,T)+---]. (5)

0.15¢
After substituting this expansion in Eg4) and collecting
terms of the same order 1 we obtain to zeroth order, . /
< 017
0o 0o=0 6 -
a2 T 0=0, (6)
0.05}
which has the solution
0o=X(T)e “o'+ complex conjugate, (7) 0
0 p-p 005 0.1
where the amplitud&(T) is a complex function off. The ¢
first-order equation has the same form and its solution only 05 v=0
modifiesX(T). The second-order equation is : ‘ ‘ ‘
d’6, [ we 0.4
W+02—G 00,,(L908In(w—07' . (8
0.3

To avoid a secular growth of,, the source tern@ of Eq.
(8) must not include terms proportional to exXpg)t. If we 0ol //
use the zeroth-order solutiofY), and the relationwe/wq '
=2—4v, this condition yields

Al

0.1t
X — 3
—=(=A+iv)X+uXe HT—j —7|x|2x, 9 0 ‘
dTt 2 0 005,_,01 015 02
J— [
whereX is the complex conjugate of. Equation(9) can be
expressed in a frame of reference rotating with frequency | ‘ v>0
fJ/2 ast
O s+ imA+ A= Y |a2A 10 “
G = (A FinA+RA= T |AIZA, (10
. 0.6
where we have leX=Ae 2T, The first term on the right- G

hand side of Eq(10) is simply related to the damping of 0.4-
the pendulum. The two contributions with purely imaginary
coefficients,i(v—3y|A|?/2)A, involve a rotation ofA in

; : . 0.2 |

the complex plane, and thus a detuning. This detuning de- oo

pends in a nonlinear way on the oscillation amplitUég. s ‘

The third term is proportional té& and represents the para- 0.95 u:; T, LI p-p 12

metric forcing.
We can study both the linear and nonlinear stability of theFig. 1. Bifurcation diagrams for the parametric oscillator: supercritical case

equi”brium solutiong=0. If we IetA=(x+iy)e’7t, we find (v<0), tricritical case ¢=0), and subcritical casev{>0). The arrows

that the solutiomPA=0 is linearly stable fory<0; otherwise indicate the pendulum amplitude evolution when the forcing amplitude is

o . o '’ increasing or decreasing.

it is unstable. If we drop the nonlinear terfA|°A in Eq.

(10), the solutioné=0 is found to be linearly stable when

is smaller thanu., where ) o N
(1) Forv>0 (f.<2fy), the bifurcation is subcritical. There

He= VNH V7 11 are two solutions such th&a|#0 for \<u<u., and
The nonlinear analysis shows that fae> . (F>F.), os- one solutionfA|#0 for u> .

cillations of frequencyf /2 appear to grow in amplitude until (2) For »<0 (fe>2fo), the bifurcation is supercritical, and
dA/dT=0. When this steady state is reached, the amplitude there is only one solution|A|#0, with two opposite
|A| can be obtained from E§10) by settingd A/dT=0 and phases. Near the t?/gesho}dc,z Eq. (12 leads to the
writing A=Ré’. By setting the real and imaginary parts of _ SC&IING|A[e (= ue) ™ and|A[%oc(u = pu).

Eq. (1 | ; +sirk(20)=1. |A (3) For v=0, there is a tricritical point(the bifurcation
:qR (isozieetglrjriir:gdzgg/otr?: erelljastlig?] cgae) +si'(26)=1, |A| is subcritical forv=0 and supercritical fon=0). We

find that |A]s(u— u)Y* and |A|*c(u—u) near the
2 threshold.
|A|2=3—(v1\/,u2—)\2). (12
Y We see that we expect a crossover between the two types
We can discuss the nature of the solutions in terms obf behavior wherv=0. This point will be discussed in detail

bifurcations(see also Fig. 12 in Sec. IV.
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CT TR T L ' The electronic system is forced by a periodic voltage
Ue(t) = U sin(wgt). We can use Kirchhoff's voltage ldvand
the property of the multiplier to find that the chargef the
capacitanceC is governed by(see Fig. 2

d’g Rdgq q

a2 L dt ' Lc

oscillator response :U(t)
I

[14Kug Sin(wet)]=0, (13)

EREEEEE e B ! wherek is the gain of the multiplietk= %V in our casg

HP 8904A The capacitanc€ depends on the chargg but the use of a
pair of oppositely polarized varicaps leads to the symmetry
g— —q of the functionC(q). Hence, we can wri

Forcing signal

Fig. 2. Electronic analog of the Mathieu equation. CZCO(l-I- 7q2) (y>0) (14)
and Eq.(13) becomes
Ill. THE ANALOG MODEL q+2)\’q+wg[l+|: sin(wgt)](q— 9% =0, (15)
A. Experimental setup with 2\'=R/L, w3=1/LCy, and F=ku,. If we use the

As mentioned in Sec. I, we will develop an analog modeldimensionless variables=wot, A=\"/wo, and u="F/4,
of the parametric instability. In fact, the Mathieu equation,We can write Eq(15) as

Eq. (3), leads to the amplitude in E412), which is analo- d%q dq w
gous to the one derived in the Faraday problem in the limit ——+2\—+|1+4u sin(—er) (q—y9%)=0. (16
of small viscosity?> Our electronic device is shown in Figs. 2 T dr @Wo

and 3.M is an AD633 multiplier; its output voltages, is  Equation(16) is identical to Eg.(3) and we can expect ex-
proportional to the product of the two input voltageg,and  perimental results for the charge amplitude similar to those
e, s=ke;Xe,. C is a capacitor with a voltage-dependent described in Sec. Il for the pendulum amplitude.

capacity made with variable capacitance diodesricap3 We used a 1-H inductance, and measured the resonance
BB909A. As mentioned in Ref. 5, these diodes introducefrequency of the RLC circuit to bé,=6.812 kHz so that
some nonlinearities in contrast to the circuit proposed in RefCy=546 pF. Forw.=2wq, the threshold is simply deter-
24 where no nonlinear component is present. To avoid eleamined by the relationu.=\=R/(2Lw,). Thus, the global
tromagnetic perturbations, the electronic oscillator is enresistance of the circuit iR=555 (), and the quality factor
closed in a metallic container which serves as a Faradays the RLC circuit iSQ=Lwy/R=77. As mentioned below,
cage. we are interested in the evolution of the voltdge=q/C,,

the analog of the pendulum anglén Sec. Il. We thus utilize

a digital synthesizer HP8904A and a signal analyzer
HP35670A(see Fig. 2to calculate, via a real-time averaged
fast Fourier transform, the voltage amplituad, defined by

U(t)=A€ "2+ complex conjugate. 17)

After interfacing the experimental setup usibgBVIEW, we
can directly record the control parametegsandf,, and the
+ AD 633

Az, multiplier voltage amplitudeA.

B. Technical comments

T
Al

Despite the simplicity of our electronic scheme, two tech-
nical points must be stressed. First, the 1-H inductance is
realized using a gyrator filtéf, which gives a large induc-

""""""""""""""""""""""" tance value independent of the frequency with no resistance
,ﬂ‘ and a small scale size.
-15V In+ In- Out The other point is linked to the purpose of the experiment.
nnonn In an educational context, the circuit can be used as we have

discussed because highly reproducible results are not abso-

Al, A2, A3 and A4 are compacted in 2 OPAs TLOSZ: T 082 lutely essential, and the most important objective is that stu-
EpEEEEE dents understand the physical concepts of nonlinearity and

[n+ In- Que15V parametric resonance. However, for quantitative experi-
AO#2 ments, highly reproducible results are necessary. Thus, even

! ) ) o . _with good quality electronic componenttow noise and
Fig. 3. Deta_||s of the eIectronl(_: system |_n_S|de the dashed box in Fig. Zgreat precisio)) temperature effects should not be underes-
between pointsA and B. Operational amplifieré\,;, A,, A;, andA, are f . L
compacted using two dipole OPAs TL082, but can be compacted using Ima_‘ted b_e_cause diurnal temperature variations can change
quadrupole OPA TL084. A single OPA TLO81 can also be uggdandA,  the instability threshold by a factor of 2 or so. We have added
are used in building followeréRef. 27; A; andA, are used for the gyrator & thermal regulation systefthe container is in contact with
filter. circulating water at fixed temperatyréo control the tem-
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Fig. 6. Dependence of the pendulum amplitidé¢ on the driving voltage
Ug( p) for £,=13.675 kHz @=—159 s'%). (O) corresponds to the ex-
perimental data fofA|2, (X) to the linear fit to the data near the threshold of
the instability, and+) to the linear fit off A|* with u, far from the threshold
to illustrate the crossover phenomenon.

Fig. 4. Dependence of the pendulum amplitydé on the driving voltage
Ug(*u) for f,=13.700 kHz ¢=—237 s'). (O) corresponds to the ex-
perimental data fofA|? and(X) to the linear fit to the data near the thresh-
old of the parametric instability.

perature of the system and ensure reproduc;ibility of our rehelp our understanding, we have made some fits of the ex-
sults. Our tests show that W'th this regulation system, OuE:)erimental data near the threshold of the instability for three
measurements are reproducible b %. For all the results | ,1,es of the detuning parameter

presented in Sec. IV, the measurement errors are less than(1) For <0 (Fig. 4), we see that increasing the pump
1% for uy andf, and within 5% for|A|. voltage u, starting from below the thresholdi, [u.

=\?+ 12 in Eq. (12)] or decreasingi, starting from above

the threshold leads to the same valugAff. Figure 4 shows

good agreement between the theoretical predictions and our
Our first observations consist of choosing a frequeficy data near the thresholdiA|? scales like (o—uc). For the

[that is, fixing» in Eq. (10)] and varying the forcing ampli- largest forcing amplitudes, we are far from the threshold and

tudeug [ in Eq. (10)]. Thus, we can study the evolution of the oscillator enters the crossover region mentioned in Sec. |l

the chargeg, or in a similar way, the evolution of the voltage (see details below and Fig) @&s long as no other nonlinear

U=q/C=q/C,, and look for the threshold of the parametric effects occur.
instability. (2) For v=0 (Fig. 5), our results are also in good agree-
In F|gs 4-7, we present the evolution bﬂ to some ment with the predictions, that ISJA|4 scales like
power withu, so that we can make a direct comparison with(Uo—Uc), except for values of the forcing amplitude near
the theoretical results presented in Secujlis the analog of Uc. In this region, the oscillator is very sensitive to both
win Eq. (10). We immediately observe that the experimentalamplitude and detuning perturbations of the pump. There-
results are difficult to interpret in terms of bifurcation. To fore, we can expect a lack of accuracy in the measurement of
the amplitude. The data presented in Fig. 6 show a typical
example of the crossover region mentioned at the end of Sec.
Il. Near the threshold, the system is very sensitive to the

V. RESULTS AND DISCUSSION

detuning. Thus, the oscillator’s amplitude has the same be-
2e+10
2e+05 T r
AN AAT AT
~ le+10 _____ v_-—,-A’&AA__A__A;ﬁ-»
> v '
£ ~ a7 ;
= E ¥ |
5e+09 = 105 u v>0
=< : '
Oe+00 soet—— - : i 5
250 300 350 400 0400 L s s aaath .
290 340 390 440 490 540

u, (mV)

Fig. 5. Dependence of the pendulum amplityéé¢ on the driving voltage
Uo(ec ) for f,=13.625 kHz=2 f, (v=—3s1). (O) corresponds to the Fig. 7. Dependence ofA|?> on the driving voltageug(<u) for f,
experimental data fofA|* and (X) to the linear fit of the data near the =13.500 kHz ¢=395 s'1): (A) for increasingu, and (V) for decreasing

threshold of the instability. Ug-
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Fig. 8. Experimental tongue for the parametric instabiliti) for increas-  Fig. 9. Comparison of the theoretical tongte) with our results(A) for
ing up(ecp) and(V) for decreasingl, . increasingug(> ) and (V) for decreasingi,.

havior as for a supercritical bifurcatiohA|s (ug—ug)*2 _ _ _
When the pump amplitude increases, the system is less sefi@MpPing term and the inaccuracy in the measurements when
sitive to the detuning and acts as in the case of zero detunin§?€ forcing amplitude decreases fir<2 fo. _
So, as long as no other nonlinearities occle(u, In our experiments, the amplitude equation has the form in
—u.)™. We can also observe by comparing Figs. 4 and ¢=9- (10 with the parameters of Eq16):
that the bigger the detuning, the larger the supercritical tran- dA _ — 3y
sition region, in agreement with the explanation given above. —==(—\N+iv)A+uA—i—-|A]?A, (18

X e o O dT 2

(3) For v>0 corresponding to a subcritical transition, in-

creasingu, starting from below the threshold or decreasingwith A =R/(2L wg) and w=ugy/40. So, the linear stability of
Ug starting above the threshold leads to two different evoluthe solution is(ug in V)
tions of the amplitudé¢A| with ug, as shown in Fig. 7. This
behavior is typical of a subcritical bifurcation. It is important
to notice that the forcing amplitude should be decreased %" wg 2L
Eﬁigg?oglfinp?saﬁgtI?ggﬁ;eévlttmeth:;s?érilh?urcr)ig"t%tct);{elfsigloslg We can directly compare our system with the parametric
state (A|=0) for \=uy=u,. This phase lock-in is realized ystem studied in Sec. Il. Figure 9 shows quite good agree-

by chanai h litude with il divicéall ment between our system and an ideal parametric
y changing the amplitude with a potential dividéull re-  nonqylum—the errors are less than 10%. We believe that the

sistanceR=10 K1) between the synthesizer and the circuit higgest part of this error is due to an inaccuracy in the de-
input (point A in Fig. 2), instead of directly varying the syn- termination of the RLC resonance frequerfgy

40 (R 2

57| togre.

thesizer output voltage starting from; >u.. This lock-in Finally, we present a measurement to determine the non-
ensures the stability of the phase during the decreasing pafhear coefficienty. We use the relatiofiL2) in the supercriti-
of the measurements. cal casev<0:

We see that our measurements are in good agreement with

the theoretical prediction of the bifurcation diagrams of the 2 s

parametric osciFI)Iator. We now change both th(g forcing am- |A|2=§(V+ M=) (19)
plitude uy and the pump frequendy, in order to explore the )

(fe,Ug) plane. The corresponding Mathieu tongtiee criti- Near the threshold, we can derive, for0,

cal forcing amplitudeu,. versus the forcing frequengys — 24

presented in Fig. 8 for the entire domain of the measure- |Al*= 3yv (= pe), (20
ments. The {¢,up) plane is divided into three regions. For _

(fo,up) above all the curves, the oscillator is unstable; forwhich for our system is

(fe,Ug) below all the curves, the oscillator is stable, and — 1o @ 212

between the two curves the oscillator is bistable. In the latter |A|2:( = ) Ugt 5—. (22)
region, the system can change between two states, oscilla- 60yv Syv

tions or steady statpA|=0, for finite amplitude perturba- The value ofyis thus determined by choosing a large detun-

tions, in contrast with the two other regions of the graph. ing value(see Fig. 1Dto ensure a scaling behavior jA|?
For comparison with the theoretical predictiop, *(Up—Ug). A linear fit of the data givey=3.81x10 2C 2

=\Z+v%, we have shown in Fig. 9 the tongue in the re-using the slope ang~3.53x10 2C "2 using the intersec-

gion where A~v~u, which in terms of frequencies is tion with they axis. Hence, we estimatg=1/27C~2, and
13.500 kHz=f,=13.750 kHz. We first remark that the bor- Eq. (16) for the oscillator takes the final form

der of the bistable region is not a horizontal line, which is . ) _ 3

probably due to the presence of a nonlinear component in the 8+ 2Ag+ wg[ 1+F sin(wet) ](q—q°/27)=0. (22
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