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In this paper, the influence of disorder on 1D periodic lattice of resonant scatterers is inspected.
These latter have multiple resonance frequencies which produce band gaps in the transmission
spectrum. One peculiarity of the presented system is that it is chosen with a nearly perfect overlap
between the Bragg and the second hybridization band gaps. In the case of a perfectly ordered
lattice, and around this overlap, this produces a narrow transparency band within a large second
bandgap. As expected, the effect of the disorder is generally to increase the width of the band gaps.
Nevertheless, the transparency band appears to be robust with respect to an increase in the disorder.
In this paper, we study this effect by means of experimental investigations and numerical
simulations. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914184]

I. INTRODUCTION

Phononic crystals have experienced an increasing inter-
est in recent years because of their potential applications to
acoustic filters,' the control of vibration isolation,2 noise sup-
pression, and the possibility of building new transducers;”
for a review, see Ref. 4. It is thus of interest to understand
which properties of such structures are sensitive to inherent
imperfections in their design and which are not. Besides, one
can also address the question of whether or not the disorder
can make new interesting properties appear.

It is usual to characterize a random medium in terms of
an effective-homogeneous-medium. For random perturbation
of homogeneous free space, one finds that the dispersion
relation K(w) departs from the dispersion relation k(w) in
free space without disorder, and the imaginary part of the
effective wavenumber K indicates how much the opacity due
to disorder is important.” In the case of photonic or phononic
crystals, the band structure of the unperturbed medium is
more complicated, with the wavenumber Q of the Bloch
Floquet mode being either purely real (pass band) or com-
plex (stop band). The addition of disorder modifies the band
structures of these periodic-on-average systems,’ "% and gen-
erally, produces an increase in the band gap width.'> Among
periodic media, the case of periodic arrays of resonant scat-
terers is very attractive since the resonances inherent to the
individual scatterers produce strong modifications of the
wave propagation; these modifications in the wave properties
may help in the design of materials with unusual properties.
Such arrays present band gaps around the resonance frequen-
cies of an individual scatterer. Because the scatterers are
periodically located, Bragg resonances are also produced,
resulting in a complex band gap structure.

Overlapping two types of gaps, a resonant scatterer gap
and a Bragg gap have been shown to produce interesting
phenomena (see Ref. 14 in optics and Ref. 15 in acoustics).
In the case of exact overlap, a super wide and strongly
attenuating band gap is predicted theoretically and shown
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experimentally (firstly studied in acoustics,'®'” for elastic
waves,'® and for microwave propagation'”). When the over-
lap is not exact (the frequencies characterizing the different
gaps are not equal) and with a small detuning, a narrow prop-
agating band appears characterizing a slow wave feature. In
recent years, this phenomenon, studied in different branches
of physics, has known a revival of interest for sound isolation
and slow wave application (see Ref. 20 for a review).

In this paper, we consider the propagation of an acoustic
wave in a periodic array of Helmholtz resonators connected
to a duct in the plane wave regime (low frequency regime
with one propagating mode in the duct). The corresponding
model describes the 1D propagation of the pressure field p(x)
through  resonant point scatterers  (Kronig-Penney
system)21 22

P+ p = S V050 — id)p () M
J

where k = w/cy (the time dependence e~ is omitted, w is
the angular frequency, and ¢y the sound velocity in free
space). d is the periodicity of the array and V;(k) encapsu-
lates the effect of the jth resonator. The disorder is intro-
duced by varying the volume of the Helmholtz resonators
and thus V;. When an overlap between a Bragg gap and a res-
onant band gap is produced, a narrow transparency band
appears within the resulting large band gap. Unexpectedly,
we found that this transparency band is robust with respect
to the disorder. Indeed, first, for small disorder, the transmis-
sion decreases; but increasing the disorder further induces an
increase in the transmission. We have carried out experi-
ments whose results show qualitatively this behavior. To get
further information, with a broader range of the disorder pa-
rameter, numerical calculations are shown, and they confirm
the transparency induced by disorder. The paper is organized
as follows: in Sec. II, the 1D model and the Coherent
Potential Approximation (CPA) results for the randomly per-
turbed system are discussed. The experimental results are

© 2015 AIP Publishing LLC
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presented in Sec. III, and this is completed by numerical cal-
culations, in Sec. IV. Finally, a discussion is proposed in
Sec. V. Technical calculations are collected in Appendixes.

Il. PROPAGATION IN 1D PERIODIC AND PERTURBED
HR ARRAY

At low frequencies, when only one mode can propagate
in the duct, the propagation of acoustic waves in an array of
Helmbholtz resonators periodically located with spacing d
(Fig. 1) can be described by Eq. (1). The potential V;(k)
describing the effect of the jth resonator is (details are given
in Appendix A)

K sin k,{ cos k.L; + o.cos k€ sin k.L;

Vik) = ——k, . . , (2
(k) Sw " cosk,lcosk.L; — osink,lsink.L; &

with o = Sk./(sk,), where S,,,S and s are the areas of the
main waveguide of the cavity and the neck, respectively. ¢
and L; denote the lengths of the neck and of the cavity of the
Jjth resonator, respectively (see Fig. 1(b)). The wavenumbers
are k,, = k[1 + /R,,], with m=w, ¢, n (waveguide, cavity,
and neck respectively) and R,, the corresponding radius, with
B =1+ (y—1)Pr "?](1 4+ i)/+/2, where Pr is the Prandtl
number at atmospheric pressure and y=1.4 is the heat
capacity ratio of air. § = \/v/w is the viscous boundary
layer depth (v the kinematic viscosity of air). The term pro-
portional to f in the wavenumber £ is a good model for the
viscous and thermal attenuation of sound in the duct. We
notice that with s < S,,, the strength of the Helmholtz scat-
terer is small except at resonances.

Setting L as the cavity length of the ordered case,
approximating k, and k. by k, and thus omitting the attenua-
tion, these cavity resonances correspond to a vanishing term

FIG. 1. (a) Picture of the experimental set up. (b) Schematic of the experi-
mental setup.
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D(k) = cosklcoskL —osink{sinkL, and they are of two
types: (i) the typical Helmholtz resonance occurring at low
frequency, say for k¢ — 0 close to ky = 1/ ValL and (ii) the
resonances in the cavity (hereafter referred as volume
resonances), near kL =qgn with integer ¢. For instance, for
q=1,

1

kyL = _.
v T otan(nl/L)

3

For a single resonator, these resonances produce a vanishing
transmission. When the resonators are organized in a per-
fectly periodic array, band gaps are created around the reso-
nance frequencies, according to Bloch Floquet wavenumber
0 becoming purely imaginary, Q being given by

%
cos Qd = cos kd + % sin kd, )

where V = V;(L; = L). When disorder is introduced in the
volume cavity by changing the length L; of the jth cavity,
L; = L(1 +¢;) with L the mean value of the cavity length
and €; € [—€/2;¢/2], it is possible to predict the new Bloch
Floquet wavenumber K using the CPA approach'? (see
Appendix B for details)

cos Kd = cos kd + %sin kd, %)

where (.) denotes the ensemble average for all realizations
of the {¢;};-values. For a lattice of N cells, the resulting
transmission coefficient is

N eikd _ Bzeflkd

Ty=e (6)

oikd—iKNd _ 32 o—ikd-+iKNd ’

where we have written p(x > Nd) = Tye**~% (the incident

wave is ") and with
olk—K)d _ |

1 — o ik+K)d"

B

)

Obviously, the above results obtained from CPA recover the
perfectly periodic case when € =0.

In the following, we present the experimental set-up to
realize the lattice of Helmholtz resonators. Comparisons
between the measured transmission and the above CPA
result, Eq. (6), are presented.

lll. EXPERIMENTAL RESULTS
A. Experimental set-up

The experimental set-up (Fig. 1) consists of a 8 m long
cylindrical waveguide with an inner area S,,=2 x 10> m?
and a 0.5 cm thick wall. This waveguide is connected to an
array of N=60 Helmholtz resonators periodically distrib-
uted, with inter resonator distance d = 0.1 m. Each resonator
is composed of a neck (cylindrical tube with an inner area
§=7.85x10"> m” and a length /=2cm) and by a cavity
with variable length. The cavity is a cylindrical tube with an
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inner area S=14x10"° m?
Loy =16.5cm, see Fig. 1(b).

The sound source is connected to the input of the main
tube. The source is embedded in an impedance sensor,24 allow-
ing the measurement of the input impedance of the lattice Z,
defined as the ratio of the acoustic pressure p and the acoustic
flow u (the product of the velocity by the area cross section) at
the entrance of the lattice, as described in Refs. 20 and 25.

This permits determination of the reflection coefficient
R defined as p= (1 +R)p" owing to u=u"4+u" with
ut =p*/Z,, u” =—p~/Z,, where the index + and —
denote the parts of the quantity associated with right- and
left-going waves

and a maximum length

Z-Z,
T Z+4+7Z,

8)

At the output, an anechoic termination made of a 10 m
long waveguide partially filled with porous plastic foam
suppresses the back-propagating waves. This ensures the out-
put impedance to be close to the characteristic impedance
Z,, = pc/S,,. Finally, a microphone is used to measure the
pressure p, at the end of the lattice.

Using line matrix theory, (p, ) and (p,, u.) are linked by
the transfer matrix through

p A B\ (pe

()-Eo)E) o
with p =Zu (Z being measured) and u, = p,/Z,, (the acoustic
flow is deduced from p, because of the anechoic termina-
tion). Then, the transmission coefficient 7 defined as p, =
Tp™ is calculated using that u = (1 + R)p™/Z by definition
of R and from above, u = [C +D/Z,|p. = |C +D/Z,]Tp™,
from which

2z
S Z+Z,)

(10)

where Z, = [C+D/Z,]”" is deduced from the measured
(pe,u)-values.

When considered, the disorder in the lattice is intro-
duced through the variable lengths L;, j=0, ..., N of the cav-
ities, and L; = L(1 + ¢;) is used with a normal distribution of
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¢; being chosen for each realization and for each resonator
cavity, with ¢; € [—€/2;€/2], resulting in a variable scatter-
ing strength, V; in Eq. (2). The transmission coefficients are
measured for 10 different distributions with same standard
deviation, and the mean value (7)) is taken.

B. Experimental observations

The transmission coefficient 7 in the perfect periodic
case is presented in Fig. 2 for a cavity length L =0.165m.
Four band gaps are visible: The first (labeled a) at low fre-
quency is associated with the Helmholtz resonance (k) for
kd/m € [0.15; 0.25], corresponding to frequency in [300;
450] Hz. Two other band gaps (labeled b and d) are associ-
ated with the two first volume resonances (kL close to 7w and
2m); these are for kd/m in [0.64; 0.68], [1.22; 1.24] (corre-
sponding frequency ranges [1110; 1170] Hz, and [2100;
2150] Hz). These three band gaps associated with resonances
of the scatterers are often referred as hybridization band
gaps.'> Finally, the band gap labeled c is associated with the
Bragg resonance, for kd/m € [1; 1.03], (frequency range
[1700; 1800] Hz). This band structure has been described in
detail, including non linear aspects, in Refs. 21-23. The com-
parison between the experimental result (blue line) and the an-
alytical expression (red line), Eq. (6), shows a good agreement.
The discrepancy in the low frequency regime may be attribut-
able to the bad quality of the source in this frequency range.

Finally, the strong peaks appearing in the experimental
measurements are due to the imperfection in the anechoic
termination, resulting in interferences between forward and
backward waves in the main tube.

Fig. 3(a) shows the transmission in the perfectly periodic
case for L=0.1m. With L=d, the volume resonance ky,
with ky ~ n/L, and the Bragg frequency kg = m/d are very
close, resulting in an almost perfect overlap (the perfect
overlap is defined by ky = kp) of the two corresponding band
gaps, previously labeled b and c, visible here in the range
kd/m € [0.98; 1.12] (frequency range [1600; 1800] Hz). The
first band gap, associated with the Helmholtz resonance &y is
almost unaffected by the change in L while the volume reso-
nance with kyL ~ 27 (previously labeled d) is sent to higher
frequency (not visible in our plot). A noticeable feature is
the existence of a small transparency band inside the large

1
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0.7]
E(0.6
0.5
0.4
0.3

0.2

0.1

FIG. 2. Transmission coefficient for an
ordered lattice with a cavity length
L=0.165m and lattice spacing
d=0.1m. Blue line corresponds to the
experimental measurement and red
line corresponds to the analytical pre-
diction, Eq. (6).
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FIG. 3. (a) Transmission coefficient of
an ordered lattice for a cavity length
L=0.Im and lattice  spacing
d=0.1m. (b) Mean value of the trans-
mission coefficient for a disordered lat-
tice with € = 0.08. (c) Mean value of

the transmission coefficient for a disor-

dered lattice with ¢ = 0.1. (¢) Mean
value of the transmission coefficient
for a disordered lattice with € = 0.18.
The blue line corresponds to the exper-
imental case obtained with 10 averages
and the red line corresponds to our an-
alytical prediction with 100 averages
(except for (a) without disorder).
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stop band near kd =, a feature already observed in other
systems where such overlapping is realized.'®'”° This fea-
ture, in addition to the main behavior of 7, is accurately cap-
tured by our analytical expression, Eq. (6), in the perfectly
periodic case, thus with constant unperturbed potential V
(and K= Q).

We now consider several amplitudes € of disorder in the
scattering strength of the resonators with a mean value of
the cavity length L=0.1m, as previously described. The
measured transmission coefficients |(T')| are reported in Figs.
3(b)-3(d) for, respectively, ¢ = 0.08, ¢ = 0.1, and ¢ = 0.18.

As expected, the more visible effects of the disorder are
(i) to strengthen the opacity in the pass band and (ii) to
enlarge the band gap width. This is associated with the fact
that the wavenumber K of the effective Bloch mode acquires
an imaginary part due to the disorder (in addition to the
attenuation) in the pass bands of the perfectly ordered case.
In counterpart, in the stop bands of the perfectly ordered
case, the imaginary part of the wavenumber decreases,
resulting in an increase in the transmission.°

In the second stop band, an interesting behavior can be
noticed, although very qualitative at this stage: inside the sec-
ond band gap, around kd/m =1, the small transparency band
remains visible (marked by arrow in Figs. 3(b)-3(d)), since we
observe a peak of transmission robust to disorder. This trend is
confirmed by the analytical model (red curves on Fig. 3).

In Sec. IV, we use numerical calculations to get further
insights on this induced transparency near kd/m = 1.

IV. NUMERICAL INTERPRETATION OF THE INDUCED
TRANSPARENCY

We now present results from numerical experiments of
the propagation in the array of Helmholtz resonators. This is
done by solving Eq. (1), with various V; values. The disorder
is introduced by using L; = L(1 + ¢;) in Eq. (2). To calculate
p(x), we implement a method based on the impedance, as
described in Ref. 9. For each frequency, N, = 10* realiza-
tions of the disorder with same amplitude e are performed.
The effective transmission (T') is calculated by averaging the

transmission coefficients (T) = 1/N, > T,, where the T, is
the transmission coefficient for each realization.

The main result is presented in Fig. 4. In Fig. 4(a), |(T)]
is shown in a 2D plot as a function of kd/m € [0.7;1.3]
(around the Bragg frequency) and e € [0;0.3]. Fig. 4(b)
shows several transmission curves for given e-values (e =

disorde €

<T>

<T>

kd/m

FIG. 4. (a) Full numerical simulation of the mean value of the transmission
coefficient as a function of the disorder. (b) Full numerical simulation of the
mean value of the transmission coefficient for e = 0.08 (blue), ¢ = 0.1 (red),
e = 0.18 (black), and € = 0.3 (green). (c) Analytical prediction of the mean
value of the transmission coefficient for ¢ = 0.08 (blue), ¢ = 0.1 (red), € =
0.18 (black), and € = 0.3 (green).
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0.08, 0.1, 0.18, 0.3) computed numerically. We have veri-
fied that the number of realizations is sufficient to get a con-
verged average value of transmission. Fig. 4(c) presents
averaged transmission data for the same e-values obtained
by analytical CPA method (in this case, the average of V (Eq.
(2)) obtained with a number of realizations N, = 107). The
transparency robust to disorder is quantitatively confirmed:
For the largest values of disorder, results from the full numeri-
cal simulation and analytical CPA method show clearly that
the transmission near kd/m = 1 increases with the disorder.

V. DISCUSSION

The robustness of transparency to disorder could appear
counterintuitive with regards to the usual influence of disor-
der in wave propagation. Indeed, on average, the presence of
disorder is known to be unfavorable for the wave propaga-
tion and to decrease the transmission. In this study, the
robustness of transparency is the result of the mixing of two
different physical phenomena: (1) the non-exact overlap of
the Bragg and hybridization band gaps which generates, in
the periodic case, a narrow passband located inside a band
gap and (2) the presence of disorder on potential which pre-
vents the wave propagation inside the media.

In the periodic case, one of the edges of the narrow
transparency band due to overlap is located at kd/m =1
which corresponds to the Bragg frequency.'®?® With disor-
der, the physical understanding of the band gap modification
in case of overlap remains currently an open question. It
appears that the lower edge of the transparency band is the
least affected by the disorder. Indeed, in Fig. 4, we observe
that the transparency band disappears except in the vicinity
of its lower edge near kd/m = 17. Moreover, the transmis-
sion in this region increases with the disorder strength.

VI. CONCLUSION

In this paper, we report an experimental and numerical
characterizations of a periodic-on-average disordered sys-
tem. The usual widening of the band gaps of disordered
arrays is observed. On the other hand, when nearly perfect
overlap between the Bragg and the scatterer resonance fre-
quencies is realized, evidence of robust transparency has
been shown.

ACKNOWLEDGMENTS

This study has been supported by the Agence Nationale
de la Recherche through the grant ANR ProCoMedia,
Project No. ANR-10-INTB-0914. V.P. thanks the support of
Agence Nationale de la Recherche through the grant ANR
Platon, Project No. ANR-12-BS09-0003-03.

APPENDIX A: DERIVATION OF THE POTENTIAL V

We consider a small control volume in the tube (grey
part in Fig. 5). Since the wavelength is much larger than the
control volume, we have continuity of the pressure p™ = p~
= p (Ref. 26) (and also p-=p). To obtain the value of [p’]
(and p’ = 9,p), we get, by continuity of the flux

J. Appl. Phys. 117, 104902 (2015)
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FIG. 5. Geometry of the Helmholtz resonator connected to the central wave-
guide at C. The control volume is in grey.

axp+ —O0p = _S/Sw apr7 (A1)

and we have to find O,p¢ as a function of p, at the point C.
The wave equation inside the cavity with hard walls implies
that

Oypa/pa = ktan(kcL), (A2)

where L is the length of the cavity (Fig. 5). Then, conservation
of the pressure and flow rate between points A and B give

s Oypg/ps = S Oypa/pa- (A3)

The wave propagation inside the neck gives (by transfer
matrix for instance)

ky sin(k,£) + cos(kat) O,ps /pp

WPelPe = costhut) —sinth) kupnfps” Y
so that Oypc/p =Y with
Y-k sky, sin(k,)cos(k.L) + c?s(knE)SkC s?n(kCL) (A%
sk, cos(k,€)cos(k.L) — sin(k,£)Sk. sin(k.L)
Eventually, Eq. (A1) becomes
Op" — 0w~ = —s/Su¥p, (A6)

and the wave equation in the waveguide can be written as

P+ kp =Vé(x)p(x), (A7)

Sy sk, sk, sin(k,€)cos(k.L)+cos(k,£)Sk.sin(k.L)
Sy S, skycos(k,)cos(k.L)—sin(k,¢)Sk.sin(k.L)’
(A8)

APPENDIX B: CPA CALCULATION

In this Appendix, we adapt the results of Ref. 12 to the pres-
ent situation to obtain Eqgs. (5)—(7). The main differences concern
a different definition of the potential (by a factor 2 k) and the fact
that the potential without disorder in Ref. 12 corresponds to the
averaged potential, which is not the case in the present study.

First, we report the equations in Ref. 12 that are needed
(all the terms coming from Ref. 12 are written with the sym-
bol tilde). The dispersion relation is derived
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AfterEq. [12](1), V;=V(1+¢), with (&) =0,

from [12]{ Egs. [12)(14),

Eq. [12](20),

In the third equation of (B1), & = <fi> /12, and we have
used in Eq. (20) in Ref. 12 that ¢: = O(&%); see the expres-
sion of f¢ after Eq. (25) in Ref. 12. Then, the transmission
coefficient is derived; we report below the result in the case
of disorder in the strength of the scattering £ without disorder
in the potential (e =0),

Transmission coefficient, from [12]

ikd _ 132, —ikd
_ piknd ¢ Be

Eq.[12137),  Tw oikd—iKNd _ 32 p—ikd-+iKNd ’

Plk=K)d _ |
1 — e—itk+K)d "

withEq. [12](28),e =0, B=

(B2)

Next, we show the correspondences between the
potentials V in Eq. (1) and V in Eq. [12](1) and the average
values of the potential: 2kV; = V;, from which 2kV = (V)
and 2kVE, = 6V,. The above equations (B1) and (B2)
become

Dispersionrelation
V)= (V) + 6V, with (3V) =0,
5 V) . _
cos Qd = coskd + ﬁsmkal7 foralloV; =0, (B3)

\%
cosKd = coskd + %sinkd + 0(5\/2),

and Eq. (B2) remains unchanged.

The third equation of (B3) and Eq. (B2) correspond to
Egs. (5)—(7) in the text of the paper.

As a final remark, note that Q in the second equation of
Eq. (B3) differs from Q defined in Eq. (4). Indeed, O is the
Floquet wavenumber of a periodic array with all the scatter-
ers having the average scattering strength (V), while Q is the

cos Qd = coskd + V sinkd, forallV; = (V}),
cos Kd = cos Qd + O(&2).

(BI)

Floquet wavenumber wavenumber of the periodic array with
all the scatterers having the scattering strength with L;=L
(and V(L; = L) # (V).
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