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We present an efficient Fourier modal method for wave scattering by perfectly conducting gratings (in the two
polarizations). The method uses a geometrical transformation, similar to the one used in the C-method, that trans-
forms the grating surface into a flat surface, thus avoiding to question the Rayleigh hypothesis; also, the trans-
formation only affects a bounded inner region that naturally matches the outer region; this allows applying a
simple criterion to select the ingoing and outgoing waves. The method is shown to satisfy reciprocity and energy
conservation, and it has an exponential rate of convergence for regular groove shapes. Besides, it is shown that the
size of the inner region, where the solution is computed, can be reduced to the groove depth, that is, to the minimal
computation domain. © 2014 Optical Society of America

OCIS codes: (050.0050) Diffraction and gratings; (000.4430) Numerical approximation and analysis;
(050.1950) Diffraction gratings; (050.2770) Gratings; (260.2110) Electromagnetic optics.
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1. INTRODUCTION
Numerical methods to simulate the diffraction of waves by
gratings have experienced successive improvements over
the last decades. For penetrable gratings, the Fourier modal
method, or rigorous coupled-wave analysis, has reached a
high degree of accuracy and it is the most popular method
being used today for modeling diffraction by penetrable gra-
tings [1–8]. The case of impenetrable gratings, with Dirichlet
boundary conditions (b.c.s) for transverse electric waves or
Neumann b.c.s for transverse magnetic waves, is subject to
more controversy. This is partially because many studies
are concerned with the inspection of the Rayleigh hypothesis
([9–13] and [14], Chap. 10). In his original work [15],
Rayleigh made the assumption that the scattered field inside
the grooves can be expanded onto a series of waves moving
away from the grating surface. This is a priori valid for shal-
low gratings, and much effort has been dedicated to inspect
the range of validity of this hypothesis. In parallel to these
studies, a few works have proposed to use geometrical trans-
formations that do not rely on the Rayleigh hypothesis. The
so-called C-method has been proposed by Chandezon and
co-workers in a series of papers [16–20]; it uses a translation
coordinate system that transforms the grating surface into a
plane surface. Further studies have then presented a compari-
son of this method with classical ones, such as the Rayleigh–
Fourier method [21–23]. However, because the C-method uses
a geometrical transformation that affects the whole space, ap-
plying the radiation condition may appear to be difficult, since
the selection of outgoing waves is not straightforward and re-
quires eigensolutions to be determined. More recently,
Shcherbakov and Tishchenko [24] introduced a geometrical
transformation in some bounded region containing the

grating, so that the new coordinates continuously match
the natural Cartesian coordinates. This is in our opinion a
key point that allows natural matching to the outer region
where the radiation condition has to be accounted for. Note
that this concept of matching the outer region is of prime im-
portance in geometrical (or optical) transformations as used
for cloaking or, say more generally, wave control [25,26]. In
this paper, we use the same idea of a “local” geometrical trans-
formation for impenetrable gratings. Otherwise, our proposed
numerical scheme is similar to the Fourier modal method and
can be implemented straightforwardly.

A noticeable improvement in the method presented con-
cerns convergence, which is often not reported quantitatively
in the literature. The convergence of a numerical method for
any problem is limited by the regularity of the field computed.
For penetrable gratings, the wave field has a discontinuous
gradient, which limits the convergence of the method to a
power law N−3∕2, N being the truncation order of the Fourier,
or modal, series [27]. If the limit of a perfectly conducting gra-
ting is considered, the error in the Fourier method is known to
increase, but the convergence in terms of power law is the
same; the shortcomings of the method, if any, may be due
to a large error for low truncation or to the fact that the error
enters in its power law decay for high truncation; we have not
seen in the literature a representation of the error able to an-
swer this question. In the present paper, these limiting cases
are directly treated as impenetrable gratings and this modifies
the convergence drastically. Indeed, our geometrical trans-
formation leads to a modified wave equation in a continuously
varying medium, with space-dependent coefficients having
the same regularity as the groove profile. For smooth pro-
files (described by a function of class C∞), this produces a
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convergence with exponential rate, much better than the
usual power laws.

The key steps of the method presented are (1) the geomet-
rical transformation leading to a modified wave equation
expressed in a bounded region of space; (2) the introduction
of an auxiliary field to get a system of coupled, first-order
differential equations, with simple b.c.s; and (3) the modal ex-
pansions of the two wave fields leading to a usual system of
evolution equations for the modal components. Steps 2 and 3
are similar to the !E;H" formulation in the Fourier modal
method. Finally, the modal components expressed in the
virtual space do not question the Rayleigh hypothesis.

The paper is organized as follows: in Section 2, the modal
formulation, Eq. (17), is derived. Section 3 is concerned with
the numerical resolution. In the present paper, we use the
impedance matrix, or the admittance matrix (Section 3.A),
and implement a Magnus scheme (Section 3.B). However,
the Fourier modal method, based on the scattering
matrix, would be as efficient to solve our system of coupled
equations, Eq. (17). In addition to illustrative examples, where
the method is validated by comparison with a finite-element
code, in Section 4 we inspect the convergence of the method
and the influence of the size of the transformed region, where
the calculation is performed. Concluding remarks are pre-
sented in Section 5.

2. MODAL FORMULATION IN THE
TRANSFORMED SPACE
We consider a perfectly conducting grating whose profile is
described in the real space !X; Y " by a periodic function
Y # f !X", with period d (Fig. 1). The grating is illuminated
from vacuum [Y > f !X"] by a monochromatic plane wave
with wavenumber k and incidence angle θ. The harmonic time
dependence with angular frequency ω is e−iωt, and it will be
omitted in the following. The wave is polarized, with either
the electric field parallel to the grooves, E # E!X; Y "eZ , re-
ferred to as transverse electric (TE) waves, or the magnetic

field parallel to the grooves, H # H!X; Y "eZ , referred to as
transverse magnetic (TM) waves. For TE waves, a Dirichlet
b.c. is imposed at the surface of the perfectly conducting gra-
ting, whereas for TM waves, a Neumann b.c. applies.

A. Geometrical Transformation
The wave field u, being either the electric field u # E for TE
waves or the magnetic field u # H for TM waves, satisfies the
Helmholtz equation

!Δ$ k2"u # 0; (1)

with periodic b.c.s (respectively, essential and natural b.c.s)

u!d; Y " # eiβdu!0; Y "; (2a)

∂Xu!d; Y " # eiβd∂Xu!0; Y"; (2b)

and β ≡ k sin θ. On the grating surface Y # f !X",

!
u # 0 !Dirichlet b:c:; in TE";
n · ∇u # ∂Yu − f 0∂Xu # 0 !Neumann b:c:; in TM": !3"

Next, we define a new coordinate system !x; y" (trans-
formed space) deduced from !X; Y " in the real space:

x ≡ X; y ≡
!
L Y−f !X"

L−f !X" ; f !X" ≤ Y ≤ L
Y; Y > L:

(4)

The transformation is local, in the sense that for Y > L, the
virtual and real spaces coincide; this is of importance when
the radiation condition will be taken into account. In practice,
the numerical solution is computed in the transformed region
(0 ≤ y ≤ L) that corresponds to the region (f !X" ≤ Y ≤ L) in
the real space; we present below the calculations in that
region.

B. Modified Wave Equation and Boundary Conditions
According to the theory of transformation media, mapping of
the coordinates !X; Y" → !x; y" results in a change of the
parameters appearing in the wave equation, Eq. (1). Denoting
J as the Jacobian tensor of the geometrical transformation, we
obtain in the !x; y" virtual space

∇ ·
" tJJ
det J

∇u
#
$

k2

det J
u # 0; (5)

where the information in the variable change (or metric infor-
mation) translates, for TE waves, into a new permeability ten-
sor tJJ∕ det J and a new permittivity 1∕ det J (respectively, a
new tensor of permittivity and a new permeability for TM
waves) that vary in space. Owing to Eq. (4), we get

J #
"
1 −a∕b
0 1∕b

#
; (6)

where

a!x; y" ≡ f 0!x"
L − y
L

; b!x" ≡
L − f !x"

L
; (7)

(a) (b)

Fig. 1. (a) Grating in real space with !X; Y" coordinates, being d-peri-
odic along X , illuminated by a wave (TE or TM) with wavenumber k at
incidence θ. The isolines of the y-values resulting from the geometri-
cal transformation [Eq. (4)] are shown, with y # 0 on the grating
surface and y # L # Y being invariant. (b) Resulting virtual space
in !x; y" coordinates.
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and with det J # 1∕b,

tJJ
det J

#
"

b −a
−a !1$ a2"∕b

#
: (8)

Here, we have denoted u!x; y" # u!X; Y " and f !x" # f !X" in
the virtual space to avoid multiple notations. The transformed
wave equation, Eq. (5) reads as

∂x!b∂xu − a∂yu" $ ∂y!−a∂xu$ !1$ a2"∕b∂yu" $ k2bu # 0:

(9)

Next, rather than dealing with this second-order equation on
u, it is preferable to use coupled first-order evolution equa-
tions along y. To do that, we use an auxiliary wave field
v!x; y" defined as

v ≡ −a∂xu$
!1$ a2"

b
∂yu; (10)

which is basically the quantity that is derived with respect to y
in Eq. (9). We get the desired coupled-wave equations on
!u; v":

(
∂yu # ab

1$a2 ∂xu$ b
1$a2 v;

∂yv # −bk2u − ∂x
$

b
1$a2 ∂xu

%
$ ∂x

$
ab

1$a2 v
%
;

!11"

with the b.c.s being translated into

u!d; y" # eiβdu!0; y"; (12a)

&
∂xu −

a
b
∂yu

'

x#d
# eiβd

&
∂xu −

a
b
∂yu

'

x#0
; (12b)

which means u and ∂xu are pseudoperiodic; then, at the gra-
ting surface y # 0, the b.c.s for either TE or TM polarization
take the simple form

!
u!x; 0" # 0 !for Dirichlet b:c:";
v!x; 0" # 0 !for Neumann b:c:": !13"

C. Coupled Modal Wave Equations
The fields u!x; y" and v!x; y" are now expanded as

!
u!x; y" #

P$∞
n#−∞ un!y"φn!x";

v!x; y" #
P$∞

n#−∞ vn!y"φn!x";
!14"

and here, the φn!x" are chosen as

φn!x" #
1(((
d

p ei!β$2nπ∕d"x; (15)

to satisfy the pseudoperiodic b.c.s. Note that the choice of φn
as cosine or sine functions can be used straightforwardly to
treat the case of waves propagating in Neumann or Dirichlet
waveguides [27]. The common properties of the bases are the
orthogonality relations

!φm;φn" # δmn and !φ0
m;φ0

n" # γ2nδmn; (16)

with !f ; g" #
R
d
0 dxf̄ g the scalar product. In the present case,

we have γn # β$ 2nπ∕d.
Let us stress again that in our transformation, as in

[16,17,24], the grating surface coincides with y # 0, which
means the expansion, Eq. (14) does not question the Rayleigh
hypothesis. This is because the modal components un!y" are
not equal to the modal components un!Y " that would have
been defined by expanding u!X; Y" in the real space.

The projection of Eq. (11) on the basis fφng leads to a set of
first-order coupled equations governing the modal compo-
nents u ≡ !un" and v ≡ !vn":

∂
∂y

"
u
v

#
#

"
A!y" B!y"

−k2B!L" $ C!y" −A%!y"

#"
u
v

#
; (17)

with

Amn #
Z

d

0
dx

ab
1$ a2

φ̄mφ0
n; (18a)

Bmn #
Z

d

0
dx

b
1$ a2

φ̄mφn; (18b)

Cmn #
Z

d

0
dx

b
1$ a2

φ̄0
mφ0

n; (18c)

and A% the conjugate transpose of A. Note that using the
Bloch–Floquet modes (15), C is simply C # −ΓBΓ, with Γ
the diagonal matrix given by Γm # iγm.

3. NUMERICAL SCHEME
Several methods exist to solve the system of two coupled
linear differential equations, Eq. (17). More often, it is solved
using scattering matrix or reflection matrix methods that
avoid the use of a transfer matrix, known to produce numeri-
cal instabilities. Here, we present an alternative way based on
the use of the impedance Z (or admittance Y) matrix [27,28].

A. Admittance/Impedance Matrices
The impedance matrix Z links the two vectors u and v through
u # Zv. Z is known to satisfy a Riccati equation, from Eq. (17),

Z0 # B$ AZ$ ZA% $ Z&k2B!L" − C'Z; (19)

that can be solved given an initial condition. For TE waves,
u # E vanishes at y # 0, leading to the initial condi-
tion Z!0" # 0.

Since, for TM waves, the b.c. at y # 0 is v # 0 [Eq. (13)], we
rather use the admittance matrix Y that is the inverse of the
impedance matrix v # Yu. Thus, it can be integrated with the
initial condition Y!0" # 0. In the following section, we present
the Magnus scheme used to integrate the impedance/
admittance matrix and, if needed, to compute the wave field.

B. Magnus Scheme
Basically, the coupled-wave equations for the modal compo-
nents [Eq. (17)] are written formally as

∂
∂y

"
u
v

#
# M!y"

"
u
v

#
; (20)

Félix et al. Vol. 31, No. 10 / October 2014 / J. Opt. Soc. Am. A 2251



and are solved using a Magnus scheme,

"
u
v

#
!y" # exp&−M!y$ dy∕2"dy'

"
u
v

#
!y$ dy"; (21)

where the step size dy depends on the truncation order N of
the infinite series, that is, using the expansions

u!x; y" #
XN

n#−N

un!y"φn!x" (22)

(same for v). Indeed, to capture the variations of the most
evanescent mode considered in the truncation, typically,

kN #
((((((((((((((((
k2 − γ2N

q
# iαN , we fix dy # 1∕αN . We define the

matrix F:

F!y$ dy∕2" ≡ exp&−M!y$ dy∕2"dy' #
"
F11 F12
F21 F22

#
; (23)

where each Fij is a !2N $ 1" × !2N $ 1" matrix.
The problem is solved numerically in two steps, only the

first of which is necessary to get the scattering properties.
In the first step, only Z (or Y) is calculated. To do that, we
translate on Z the relations u!y" # F11u!y$ dy" $ F12v!y$
dy" and v!y" # F21u!y$ dy" $ F22v!y$ dy", where F is
evaluated at !y$ dy∕2" to get

Z!y$ dy" # &Z!y"F21 − F11'−1&F12 − Z!y"F22' (24)

and the integration is performed from Z!0" # 0 to Z!L".
Similarly, for TM waves, the integration is performed from

Y!0" # 0 to Y!L" using

Y!y$ dy" # &F22 − Y!y"F12'−1&Y!y"F11 − F21': (25)

Accounting for the source term is easy when Z!L" or Y!L" is
known. This is because, as in [13], the coordinate transform
concerns only the bounded region 0 ≤ y ≤ L. Thus, at the
boundaries y # L (and Y # y ≥ L), the waves correspond
to the physical, incident and reflected, waves in the real space;
this has to be opposed to the C-method, where the physical
incident and reflected waves have to be determined in the
virtual space (being unbounded). We have, thus, for y ≥ L,

u!x; y" # e−ik cos θyφ0!x" $
XN

n#−N

Rneikn!y−L"φn!x" (26)

and v # ∂yu, leading to

!
un!L" # e−ik cos θLδn0 $ Rn;
vn!L" # −ik cos θe−ik cos θLδn0 $ iknRn;

!27"

fromwhich the reflection coefficients Rn (calculated at y # L)
can be deduced by inversion of the relations

&iknδmn − Ymn!L"'Rn # &ik cos θδm0 $ Ym0!L"'e−ik cos θL (28)

or

&iknZmn!L" − δmn'Rn # &ik cos θZm0!L" $ δm0'e−ik cos θL: (29)

If the wave field is looked for, then it is sufficient to store
the impedance matrix or admittance matrix at each y. If so,

then the wave field is calculated starting from the initial values
un!L" or vn!L" in Eq. (27); then, coming back to Eq. (21), we
use u!y" # F11u!y$ dy" $ F12v!y$ dy" and v!y" # F21u!y$
dy" $ F22v!y$ dy" to get, from y # L to y # 0,

u!y" # &F11 $ F12Y!y$ dy"'u!y$ dy" (30)

or

v!y" # &F21Z!y$ dy" $ F22'v!y$ dy": (31)

In the latter case, the wave field u!y" is deduced from v!y"
using u!y" # Z!y"v!y".

C. Reciprocity and Energy Conservation
In this section, we check that our formulation, Eq. (17)
satisfies the reciprocity relation and it conserves the energy.
Reciprocity links two solutions uA and uB of the problem,
namely,

∇ · &uA∇uB − uB∇uA' # 0; (32)

which translates, on our modal components, to

∂y&tuAv̄B −

tūBvA' # 0; (33)

where we considered that the u solution implies the ū solution
(time reversal invariance of the Helmholtz equation). The en-
ergy conservation simply follows by choosing uA # uB # u,
leading to the conservation of the Poynting vector ∂yΠ # 0,
with

Π!y" ∝ Im&tūv': (34)

Since B and C are self-adjoint matrices, it follows directly that
the reciprocity, Eq. (33) and the energy conservation ∂yΠ # 0
are satisfied. In practice, the energy conservation is checked
by inspecting the value of je − 1j,

e ≡
X

n

jRnj2
kn

k cos θ
; (35)

being the normalized reflected energy [with the notations in
Eq. (26), and where the sum is performed with the propagat-
ing modes only]; in all the results presented, the energy
conservation has been found to be satisfied within
je − 1j ∼ 10−11–10−15.

4. RESULTS
Before a more quantitative inspection of the numerical
method, we report in Fig. 2 examples of fields computed
for complex shapes of the grating surface; in each case, the
profiles are generated by summing sine and cosine functions
(d-periodic; see figure caption); either TM polarization
(Neumann b.c.) or TE polarization (Dirichlet b.c.) has been
considered in the examples, and the nondimensional fre-
quency kd has been chosen such that the wavelength is of
the same order as the grooves in Figs. 2(a) and 2(b), much
larger [rough surface type in Fig. 2(c)], and much smaller
[Fig. 2(d)]. Note, in Fig. 2(b), the typical cat-eye pattern ob-
served at the cut-off frequency and corresponding to the
Rayleigh–Wood anomaly (see, e.g., [14], chapter 8). The modal
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calculation has been validated by comparison with a finite-
element code [29]; for the profile in Fig. 2(a), the difference
between the computed fields is 9% with N # 10 and 1% with
N # 13; for the profile in Fig. 2(b), at a lower frequency, the
difference between the computed fields is 10% withN # 7 and
1.5% with N # 10.

In the following sections, we inspect the convergence of the
method and the influence of the length L of the transformed
region in the case of a sine shape.

A. Convergence
The results of the convergence of the method have been ob-
tained for a simple sine shape f !x" # 0.5d!1 − cos 2πx∕d", and
kd # 7.5π, θ # π∕4. The modal components un are shown to
decrease exponentially with n [Fig. 3(a)]. This fast rate of
decay is expected for infinitely differentiable f !x" shapes.
Indeed, this results in all the coefficients in Eq. (9) being in-
finitely differentiable; hence, u and v behave the same. Also,
the φn functions are adapted, which means here that they are
pseudoperiodic (and all their derivatives). This behavior of
the modal components produces an exponential convergence
of the wave field as well. This is illustrated in Fig. 3(b), where

we report the behavior of εN ≡ ‖u − uex‖∕‖uex‖, with u the sol-
ution truncated at order N [Eq. (22)], and where uex refers to
an exact solution (in practice, calculated for a large N -value).
Note that the case of penetrable gratings would produce a
convergence with a power law decay [27], because of the
discontinuities in the contrasts between the two media; obvi-
ously, any power law is worse than the exponential decay.

B. Influence of the Size L of the Transformed Region
Figure 4 illustrates the fact that the field calculated does not
depend on L, even in the limiting case where L # max!f ", that
is, when only the grooves are resolved.

More quantitatively, we report in Fig. 5 the behavior of the
reflection coefficient R0 of the mode 0 for varying L-values;
also, the conservation of the energy given by je − 1j
[Eq. (35)] is shown. For both TE and TM polarizations,
small variations of jR0j are visible for L in the range
&max!f "; 4 max!f "', whose amplitude decreases when increas-
ing N . This fact, together with the fact that the energy is
conserved even for L # max!f ", shows that the calculation
domain can be reduced to its minimum size (the groove
thickness).

C. Remark on Profiles with Discontinuous Derivatives
Obviously there are no restrictions to considering grating pro-
files with one of their derivatives being discontinuous; this is
illustrated in Fig. 6 for a profile with a discontinuous first
derivative and a profile with a discontinuous second deriva-
tive. In these cases, the convergence is degraded, from expo-
nential decay to a power law decay (∼N−1 and ∼N−3 for the
given examples), as observed in other problems [27,30].
Generally, we expect a power law convergence N−α, with α
related to the regularity of the profile function (e.g., to the

(a) (b)

(c) (d)

Fig. 2. Real part of the wave field u!x; y" for grating shapes
f !x" #

P
pap cos!2pπx∕d" $ bp sin!2pπx∕d". (a) fap∕dgp#1;3 #

&−0.08;−0.08;−0.06' (zero bp) and kd # 7.5π, θ # 0 (TM). (b) a2 #
0.25d, b1 # −0.5d, b5 # −0.1d (zero otherwise), and kd # 2π, θ # 0
(TE). (c) For both ap and bp: 15 values chosen randomly,
kd # 3.5π, θ # −π∕5 (TM). (d) fap∕dgp#1;3 # &−0.13; 0.10;−0.04',
fbp∕dg # &0.19; 0.03; 0.07', and kd # 10.5π, θ # π∕4 (TE).

(a)

(b)

Fig. 3. (a) Rate of decay of the modal components junj (averaged
over y); the gray strip indicates the n-values corresponding to propa-
gating modes. (b) Convergence of the wave field juj [averaged over x
and y for L # 2 max!f "]. In both figures, for TM polarization (dotted
lines with open symbols) and TE polarization (solid lines with closed
symbols).
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order of the first discontinuous derivative). While increasing
the regularity of the function, the exponential decay is
recovered progressively.

However, the case of a profile with, locally, an infinite first
derivative [e.g., a discontinuous function f !X"] cannot be
treated, although the multimodal equation, Eq. (17) remains
workable numerically. The Jacobian (6) becomes infinite if
f 0 is infinite, preventing a proper bijective coordinate change
to be performed.

5. CONCLUSION
An efficient Fourier method is presented, for scattering by
perfectly conducting gratings, either in TE or TM wave
polarization. We use the idea of a geometrical transformation,
introduced earlier in the C-method [16,17], that transforms the
grating surface into a plane surface, thus avoiding to question
the Rayleigh hypothesis. Besides, as introduced recently in
[24] for penetrable gratings, our transformation is local and
matches the outer region continuously, which makes the radi-
ation conditions easy to account for. The resulting system of
coupled equations, Eq. (17), describes the wave propagation
in the inner (rectangular) transformed region, and the space-
dependent coefficients encapsulate the complexity of the
groove shape. Note that a Magnus scheme has been used to
solve this system, but it could be solved equivalently using
the Fourier modal method. The method has been validated
by comparison with a finite-element code, and it has been
shown that it presents the following advantages: (1) it ensures
reciprocity and energy conservation; (2) the inner region,
where the calculations are performed, can be reduced to its
minimum size, that is, the thickness of the grooves; and (3)
the convergence of the method is exponential, which is the
best convergence expected. Finally, a significant advantage
of our formalism (not addressed in the present paper) is
that it is well suited for perturbative calculations, as done in
Ref. [31].

Note, finally, that the present method can be implemented
straightforwardly in the case of waves propagating in wave-
guides, in 2D and 3D, and this will be done elsewhere.

Fig. 4. Examples of fields computed for a sine shape f !x" #
a0!1 − cos 2πx∕d", a0 # 0.25d, kd # 7.5π, and θ # π∕4 [max!f " #
0.5d]. At the bottom, for L # max!f " and on top, for L # 4 max!f ".

(a)

(b)

Fig. 5. Reflection coefficient R0 as a function of L for the configu-
rations in Fig. 4 and N # 13, 25; energy conservation measured by
je − 1j [see Eq. (35)] as a function of L.

(a)

(b)

Fig. 6. Examples of wave fields for grating profiles having (a) a dis-
continuous first derivative and (b) a discontinuous second derivative.
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