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A multimodal method based on the admittance matrix is used to analyze wave propagation through
scatterers of arbitrary shape. Two cases are considered: a waveguide containing scatterers, and the
scattering of a plane wave at oblique incidence to an infinite periodic row of scatterers. In both
cases, the problem reduces to a system of two sets of first-order differential equations for the modal
components of the wavefield, similar to the system obtained in the rigorous coupled wave analysis.
The system can be solved numerically using the admittance matrix, which leads to a stable numeri-
cal method, the basic properties of which are discussed (convergence, reciprocity, energy conserva-
tion). Alternatively, the admittance matrix can be used to get analytical results in the weak
scattering approximation. This is done using the plane wave approximation, leading to a general-
ized version of the Webster equation and using a perturbative method to analyze the Wood anoma-
lies and Fano resonances. VC 2014 Acoustical Society of America.
[http://dx.doi.org/10.1121/1.4836075]
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I. INTRODUCTION

The interaction of an acoustic wave with scatterers
made of penetrable material can be understood by solving
the equation for the acoustic pressure p in an inhomogeneous
medium,

r ! 1

qðrÞ
rpðrÞ

! "
þ x2

BðrÞ
pðrÞ ¼ 0; (1)

with x the angular frequency. Here, the mass density q and
bulk modulus B can vary with position r, allowing contrasts
between the host medium and the scatterers. Equation (1)
can be used for electromagnetic waves and for water waves
in shallow water area. In this paper, we are interested in two
families of geometrical configurations: (A) guided waves
interacting with scatterers contained in a rigid waveguide;
and (B) scattering by a periodic row of scatterers. Case (A)
includes the possibility of various sources, such as point
sources or incident beams, and arbitrary distribution and
shapes of scatterers, as used in many applications (see, e.g.,
the application to blood cell characterization,1 acoustic non-
destructive testing in complex guiding structures2 or passive
optical components in optical waveguides3). In the case of
an incident plane wave and a centered scatterer, the configu-
ration becomes equivalent to an incident plane wave imping-
ing on an infinite periodic row of scatterers with normal
incidence, because the Neumann boundaries create an

infinite number of images. This leads naturally to configura-
tion (B) where we generalize to a wave at oblique incidence
to an array of scatterers located periodically (gratings). This
configuration has been extensively studied in the context of
electromagnetism because of the increasing interest in the
properties of photonic crystals and subwavelength gratings.
Inspired by the observations in electromagnetism, the con-
cepts have been transposed to acoustics,4,5 water waves,6

and elasticity.7–9

We propose a multimodal method based on the use of
the admittance matrix to solve these problems. Our motiva-
tion is twofold: on the one hand, multimodal methods are
efficient when compared to other numerical methods
(reviews can be found in Refs. 10 and 11), on the other hand,
they offer a nice tool to inspect limiting cases where simple
analytical results are possible. In its numerical implementa-
tion, our method is directly inspired from the works initiated
in the context of acoustic waveguides with varying cross
section12 for application to musical instruments13–15 and
later extended to more complex geometries16,17 and to elas-
tic waves.18 The wave equation is first projected onto the
modal basis, which reduces the problem to a set of coupled
differential equations for the modal components of the fields.
Solving the differential system is done by introducing the ad-
mittance matrix, which allows us to get an efficient and sta-
ble numerical method. Indeed, it gives a boundary value
problem which can be integrated starting from the radiation
condition, and it avoids the problems of the numerical con-
tamination of the solution due to the exponential growth of
evanescent modes.12,19,20 For gratings in electromagnetism,
the most popular multimodal method is the rigorous coupled
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wave analysis (RCWA), combined with S-matrix or
R-matrix algorithms.19,21–23 Our approach differ by mainly
two points: (i) by means of the weak formulation of Eq. (1),
the resulting coupled mode equations naturally account for
the right continuity conditions at the scatterer interface,
increasing the accuracy compared with the common stair-
case approximation (cf. Sec. III C); (ii) the admittance
matrix, Y, is used instead of the S- or R-matrix. It is a local
operator, governed by a differential Riccati equation, and
this makes Y, by construction, well suited to deal with con-
tinuously varying media. Also, the Riccati equation can be
solved analytically in limiting cases, and this is exemplified
in the paper.

The method is presented in Sec. II. The properties of
reciprocity and energy conservation are shown and tested
including at the cutoff frequencies (Sec. III B). Modal expan-
sions may offer physical insights of the wave phenomena
since the modes used are exact solutions of the trivial prob-
lem, that is, the problem without scatterer.24 In Sec. IV, three
simple analytical results are derived and compared to direct
numerical calculations. In the low frequency regime, the
Webster equation describes the propagation of a wave in a
waveguide with varying cross section.25,26 A generalization
of the Webster equation is obtained and it is used for two
particular shapes of scatterers. Also, the reflection by a gra-
ting made of a penetrable material is considered. Following
the work of Hessel and Oliner,27 we analyze the Wood
anomalies, appearing at and near the cutoff frequencies. This
provides approximate expressions for the reflection coeffi-
cients at each interference order. The Fano resonances,
corresponding to the existence of two close anomalies, are
shown to exist for a contrast in B only.

II. DERIVATION AND NUMERICAL INTEGRATION
OF THE MULTIMODAL FORMULATION

In this section, the problem of the scattering by penetra-
ble scatterers is treated using a weak formulation, Eq. (7),
that exactly accounts for the boundary conditions at the scat-
terer boundaries, Eq. (3). Expanding the solution onto a basis
of transverse functions leads to a system of coupled wave
equations governing the multimodal wavefield, Eq. (10).
This system applies to the case of scatterers in waveguides
with hard walls and to the case of a grating of scatterers,
depending on the choice of the transverse functions, Eq. (6).
Then, the numerical scheme is presented. It is based on the
use of the so-called admittance matrix, which translates the
Dirichlet to Neumann operator for the modal components.

A. Formulation

The wavefield pðrÞ satisfies the wave equation (1) in the
2D-space r ¼ ðx; yÞ (the time dependence e&ixt will be omit-
ted in the following). The scatterers present a contrast in
both the mass density and the bulk modulus, and we note
(q0, B0) the quantities inside the scatterers and (q, B) in the
host medium, q0, B0, q, and B being constant. The scatterers
are located within a region 0 ' x ' L and they have arbitrary
shapes. Introducing X0 and Xext, respectively the space occu-
pied by the penetrable scatterers and the part of the

waveguide outside the scatterers, p0 and p the solutions in
X0 and Xext, Eq. (1) may also be written

Dþ q0x
2

B0

! "
p0 ¼ 0 in X0;

Dþ qx2

B

! "
p ¼ 0 in Xext;

8
>>><

>>>:
(2)

with the following (essential and natural) boundary condi-
tions at the scatterers boundary

p0 ¼ p and
1

q0

@p0

@n
¼ 1

q
@p

@n
; (3)

where n is the exterior normal of the scatterers. The forcing
is an incident field p incð Þ satisfying the wave equation in the
absence of scatterer. Finally p satisfies radiation conditions
at x¼ 0 and L, where the scattered pressure field corresponds
to outgoing waves.

Two configurations are considered, as illustrated in
Fig. 1. In the first configuration (A), scatterers are contained
in a waveguide of height h with Neumann boundary condi-
tions at y¼ 0, h. In the second configuration (B), an infinite
periodic row of scatterers is considered with a h-periodicity

along the y axis on which an incident plane wave p incð Þ

¼ eiðaxþbyÞ is sent. This latter case can be solved by consider-
ing a single scatterer with periodic boundary conditions, the

essential condition p x; hð Þ ¼ p x; 0ð Þeibh and the natural con-

dition @yp x; hð Þ ¼ @yp x; 0ð Þeibh, b being the vertical compo-
nent of the wave vector, constant for the whole problem.

The wavefield p(x, y) is now developed as

pðx; yÞ ¼
X

m

pmðxÞumðyÞ; (4)

with {um} a basis of transverse functions satisfying the
orthogonality relations

ðun; umÞ ¼ dmn and ðu0n ; u0mÞ ¼ c2
ndmn; (5)

FIG. 1. Two configurations are studied. (A) The scatterers are contained in a
2D waveguide with Neumann boundary conditions at the walls. (B) An infi-
nite periodic row of scatterers is considered.
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with f ; gð Þ ¼
Ð h

0 dy f "g the scalar product. These functions
are chosen to satisfy the same boundary conditions as the
wavefield p, namely,

ðAÞ; unðyÞ (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2& dn0

h

r
cos np

y

h

! "
; n 2N;

ðBÞ; unðyÞ (
1ffiffiffi
h
p eiðbþ2np=hÞy; n 2 Z: (6)

Following Ref. 24, the wave equation (1) is written in a
weak formulation, also called weighted residuals method

ð

X
dr ½rp !r"q & k2p"q*

þ
ð

X0

dr
q
q0

& 1

! "
rp !r"q & k2 B

B0
& 1

! "
p"q

" #
¼ 0;

(7)

where k2 ( x2q=B and where qðrÞ ¼ QðxÞunðyÞ is a test
function compactly supported, X ¼ X0 [Xext denotes the
whole space of the waveguide. Note that for N scatterers
(see Fig. 1) occupying domains Xi; i ¼ 1;… ;N, the integral
over X0 ¼ [i¼1;…;N Xi has to be understood as the sum of
integrals over Xi; i ¼ 1;…;N.

Integrating Eq. (7) over y, the equation ends withÐ
dxQðxÞ f ðxÞ ¼ 0 for any Q, from which f xð Þ ¼ 0 is

deduced. This leads to

@x p0n þ
q
q0

& 1

! "
Cnmp0m

& '
þ k2

npn

& q
q0

& 1

! "
Dnmpm þ k2 B

B0
& 1

! "
Cnmpm ¼ 0; (8)

where we used the Einstein summation convention and
where

CnmðxÞ (
ðbðxÞ

aðxÞ
dy unðyÞumðyÞ;

DnmðxÞ (
ðbðxÞ

aðxÞ
dy u0nðyÞu0mðyÞ;

8
>>>><

>>>>:

(9)

and [a(x), b(x)] are a parameterization of the interface
between one scatterer and the host medium (Fig. 1). For all x
values, a scatterer occupies y 2 aðxÞ; bðxÞ½ *, and a¼ b is
imposed when there is no scatterer at the x position. In the
case where the cross section at x intersects more than one
scatterer, the result follows by linearity: Cnm and Dnm are the
sums of the integrals (9) over the segments aiðxÞ; biðxÞ½ * of
the ith scatterer.

Defining the quantity qn ( p0n þ ðq=q0 & 1ÞCnmp0m, the
above equation can be written as a set of first-order coupled
equations governing the modal components p ( ðpmÞ and
q ( ðqmÞ,

p

q

 !0
¼ 0 E&1

K2 þ F 0

 !
p

q

 !

(10)

where K is a diagonal matrix with Kn ¼ ikn, k2
n ( k2 & c2

n.
Matrices E and F are defined by

EðxÞ ( Iþ ðq=q0 & 1ÞCðxÞ;
FðxÞ ( ðq=q0 & 1ÞDðxÞ & k2ðB=B0 & 1ÞCðxÞ: (11)

The above system can be written as a second-order equation
on p,

ðEp0Þ0 ¼ ðK2 þ FÞp; (12)

in agreement with Ref. 24 In the case (B), where the projec-
tion is identical to a Fourier transform, the first equation of
the above system (10) corresponds to qn ¼ ½q&1*n&mpm, with
½q&1*n&m (

Ð
dy q&1ðrÞ e2ip n&mð Þ=h (often called the Toeplitz

matrix). This form is in agreement with the form derived
by Li.22 However, in Ref. 22 the form qq ¼ @xp is first
projected to get p0n ¼ ½q*n&mqm. In this reference, within the
staircase approximation (locally q depends on y only), the
rule of Fourier factorization derived by Li, called inverse
rule, states that the correct truncation of p0m ¼ ½q*n&mqm pre-
cisely leads to qn ¼ ½q&1*n&mpm. Ironically, our variational
representation leads to the same conclusion for this equation,
although no consideration on the truncation has been done.
This will be discussed further in the following Sec. III B.

B. Numerical integration

There are two difficulties to solve Eq. (10). First, the
contamination by exponentially growing evanescent modes
has to be avoided (see, e.g., Refs. 12, 19, and 20). Second,
the original problem is posed as a boundary value problem,
with a forcing source at x¼ 0 and a radiation condition at
x¼L. Therefore, the coupled first-order equations (10) can-
not be solved directly as an initial value problem.12 To
circumvent these problems, we implement a multimodal
admittance method which leads to a stable initial value prob-
lem. This method has been presented in earlier works for
waveguides with varying cross section for acoustic waves12,28

and elastic waves,29 or for waveguides with curvature
effect.16,17 The main steps are recalled in the following.

The first step is to define the admittance matrix, which
links the vector q to p: q ¼ Yp. Using Eq. (10) the admit-
tance matrix satisfies a Riccati equation,

Y0 ¼ &YE&1Yþ K2 þ F; (13)

that can be solved numerically from the output (x ¼ L) to
the input (x¼ 0) of the region of interest, given an initial
condition YðLÞ. Since the region x > L is such that only
right-going waves can propagate (the medium is uniform
and contains no source), then Eðx > LÞ ¼ I, Fðx > LÞ ¼ 0
and, from Eq. (10), p0 ¼ q and q0 ¼ K2p. It follows that

YðLÞ ¼ K:

Once the admittance matrix has been calculated along the x
axis, the modal wavefield p is calculated as the solution of
the first-order, numerically stable, equation
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p0 ¼ E&1Yp; (14)

given an initial condition p(0).
Note that, from the calculation of Y, and without the

need to compute the wavefield in a particular configuration,
the scattering properties of the region of interest

x; yð Þ 2 0; L½ * + 0; h½ *
( )

can be deduced. Indeed, the reflec-
tion matrix R, defined by pðrÞð0Þ ¼ RpðincÞð0Þ, with p incð Þ the
incident wave and pðrÞ the reflected wave, can be written as

R ¼ ½Kþ Yð0Þ*&1½K& Yð0Þ*: (15)

The transmission matrix T, defined by pðtÞðLÞ
¼ TpðincÞðLÞ, pðtÞ being the transmitted wave, can also be
calculated as following. Together with the computation of Y,
one computes the propagator G, defined such that, for x ' L,
pðLÞ ¼ GðL; xÞpðxÞ, and solution of the equation G0

¼ &GE&1Y with GðL; LÞ ¼ I. Then,

T ¼ GðL; 0ÞðIþ RÞ: (16)

Note that the calculation of both R and T does not require
any storage of Y or G along the axis.

Following the above cited papers (see, notably, Refs. 28
and 29), one uses a Magnus scheme to solve Y, G, and p.
From Eq. (10), one writes

pðx& dxÞ
qðx& dxÞ

 !

¼ e&Mdx pðxÞ
qðxÞ

 !

(17)

where

M ( 0 E&1

K2 þ F 0

 !

; (18)

evaluated at ðx& dx=2Þ. Then, writing the exponential prop-
agator as

e&Mdx ¼
E1 E2

E3 E4

 !

(19)

an iterative scheme to compute Y, G; and p can be written as

Yðx& dxÞ ¼ ½E3 þ E4YðxÞ*½E1 þ E2YðxÞ*&1; (20)

Gðx& dxÞ ¼ GðxÞ½E1 þ E2YðxÞ*&1; (21)

pðxÞ ¼ ½E1 þ E2YðxÞ*&1pðx& dxÞ: (22)

Note that, in a region with constant properties q and B,
exact algebraic solutions for Y, R, T; and p can be written.
Then, the numerical, iterative, integration of Eq. (10) is only
needed in the region closely surrounding the inhomogeneity
(x 2 xmin; xmax½ *, Fig. 2), resulting in a fast computation.

Figure 2 shows an example of computation of the wave-
field generated by a point source in a waveguide containing
a scatterer of any shape. The shape of the scatterer is para-
meterized and the point source is at (xs, ys) ¼ (h, 0.4h). At
the chosen high frequency kh¼ 19.5p, 20 modes are

propagating and a converged field is obtained with N¼ 30.
Given two points xmin and xmax, at the left and right of the
scattering region and close to it, one uses iterative schemes
(20)–(21), with the radiation condition YðxmaxÞ ¼ K, to get
R, T, and the admittance matrix Y. Then the wavefield
upstream from the scatterer can be written as the sum of the
incident field p incð Þ ¼ g, that is, the classical Green’s func-
tion in a 2D uniform waveguide [Fig. 2(a)],

gnðxÞ ¼
unðysÞ
2ikn

eiknjx&xsj; (23)

and the reflected field Rg. From the initial condition
pðxminÞ ¼ ðIþ RÞ gðxminÞ, Eq. (22) is integrated to get the
wavefield in the scattering region, and the wavefield down-
stream from this region is simply given by Tg.

Two different contrasts in the mass density are consid-
ered: q=q0 ¼ 10 [Fig. 2(b)] and q=q0 ¼ 0:3 [Fig. 2(c)], while
B=B0 ¼ 1 in both cases. Obviously, the wavelength change in
the scattering media (k ¼ 2p=k varies as k ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qB0=q0B

p
Þ

is visible.
Another example is given in Fig. 3, calculated at a

higher frequency (k=h ’ 0:03, 71 modes are propagating)
for a contrast in B only. The incident wave is obtained by
weighting the modal components in Eq. (23) by a Gaussian
function, as described in Ref. 30 resulting in a cluster of
modes, of which one sees the ray-like behavior, and the
reflection and refraction of the beam by the scatterer.

III. PROPERTIES OF THE NUMERICAL SCHEME

In this section we discuss the properties of the numerical
scheme obtained from the coupled mode evolution equation,
Eq. (10). First, the reciprocity and energy conservation are
inspected: these properties are satisfied by the initial problem

FIG. 2. (Color online) Wavefield (real part) generated by a point source in a
waveguide containing a scatterer with a contrast in q (no contrast in B). (a)
Incident wave in the empty waveguide produced by a point source, Eq. (23),
with xs ¼ h, ys¼ 0.4h. In the presence of a scatterer with contrasts (b)
q=q0 ¼ 10; (c) q=q0 ¼ 0:3. kh¼ 19.5p, calculations have been done using
N¼ 30 modes (20 propagating modes).
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and it is important to check that the numerical scheme
preserves them. Then, the convergence of the scattering
coefficients and of the pressure field in the scattering region
are presented. Finally, a discussion on the accuracy of our
projection with respect to the shape of the scatterer is pro-
posed. This is done by comparing it to the projections used
in the coupled wave analysis (RCWA) and discussed in a
series of papers.22,23,31

A. Reciprocity and energy conservation

Reciprocity links two solutions pA and pB of the prob-
lem, namely,

r ! pA
1

q
rpB & pB

1

q
rpA

& '
¼ 0; (24)

which translates, on our modal components, to

@x½tpAqB & tpBqAÞ* ¼ 0: (25)

The energy conservation is obtained following the same pro-
cedure, choosing pA ¼ p, pB ¼ "p which gives the conserva-
tion of the Poynting vector @xP ¼ 0, with

PðxÞ / Im½ðq&1@xp; pÞ* ¼ Im½ðt"p; qÞ*: (26)

Since E and F are self-adjoint matrices, it follows directly
that the reciprocity Eq. (25) and the energy conservation
@xP ¼ 0 are satisfied. This shows that the coupled mode
equations (10) are, by construction, conservative.

To verify the reciprocity and the energy conservation of
the numerical solution of Eq. (10), the following properties
of the scattering matrix S are inspected:

JS& tSJ ¼ 0; (27)

Hm þ tSHp & tSHpS& HpS ¼ 0; (28)

where Hp ( Jþ tJ, Hm ( J& tJ, and

J ( K 0
0 K

! "
(29)

and these properties are expressed including the evanescent
modes.32 The first equation refers to the reciprocity and it has
the same form with or without the evanescent modes. The sec-
ond equation refers to the conservation of energy. In this
expression, the terms involving Hp represent the energy flux
carried out by the evanescent modes (if evanescent modes were
not accounted for, we would have Hp¼ 0). Finally, as already
noted in Ref. 32, as soon as reciprocity and energy conserva-
tion are verified, the time-reversal invariance is also verified.

In order to test the properties (27)–(28), calculations
have been performed in the case of a square scatterer
centered at y ¼ h=2 in a waveguide. The mode zero is sent
(incident plane wave). The frequency range is chosen such
that one passes through, and on, the cutting points
kn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 & c2

n

p
¼ 0 ðn ¼ 2; 4Þ. These “cutoff” frequencies,

associated to Wood’s anomalies, are known as a delicate
problem in numerical computing4,33 (see also Sec. IV B).

We have reported in Fig. 4 the relative errors

!1 ¼
kJS& tSJk
kJSk

; !2 ¼
kHmþ tSHp& tSHpS&HpSk

kHmþ tSHpk
;

(30)

that measure the deviation to the reciprocity property,
Eq. (27), and the deviation to the energy conservation,

Eq. (28). In Eq. (30), kMk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jjMijj2
q

In the presented

cases, !1. and !2 remain within the computer precision over
the whole frequency range, though a noticeable variation is
observed at the cutoff frequencies.

B. Convergence

To characterize the convergence of these three formula-
tions, the reflection coefficient RðNÞ00 of the incident plane

FIG. 3. (Color online) Wavefield (real part) generated by a cluster of modes
in a waveguide containing a scatterer with a contrast in B (no contrast in q).
(a) Incident beam wave; in the presence of a scatterer with contrasts (b)
B=B0 ¼ 10; (c) B/B0¼ 0.3 for kh¼ 70.5p, N¼ 100 modes are taken into
account in the calculations.

FIG. 4. (Color online) Evaluation of the properties of reciprocity and energy
conservation: relative errors !1 and !2 [Eq. (30)], computed with 17 modes,
as function of the nondimensional frequency kh=2p. Calculations have been
performed for square scatterers of side a ¼ h/10, centered at y ¼ h=2, with
B=B0 ¼ 2, q=q0 ¼ 1 for an incident plane wave.
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wave (the central term of the reflection matrix) is computed
with N modes taken into account, and compared with RðexÞ,
obtained with numerical simulations based on finite element
methods.34 First, the following rates of convergence are
obtained

jRðNÞ00 & RðexÞj /
N&3 for a contrast in B only;

N&1 for a contrast in q:

(

(31)

As expected, the convergence when no contrast in q is con-
sidered is better, due to a higher regularity of the pressure
field in that case. However, the convergence of the pressure
field may differ from the convergence of the reflection coef-
ficient. Indeed, the convergence of the reflection coefficient
is given by the convergence of the propagating modes. In the
scattering region, the convergence of the pressure field is
limited by the convergences of both the propagating and
evanescent modes. This latter convergence can be evaluated
theoretically since it corresponds to the usual remainder se-
ries: it is N&3/2 for a contrast in q (p is continuous but rp is
not), and N&5/2 for a contrast in B only (p and rp are
continuous).

We have checked (results are not reported) that the pres-
sure field has a convergence N&1 for a contrast in q and
N&5/2 for a contrast in B only, corresponding to the lowest
convergence of both the propagating and evanescent modes.
Similar low convergence of the pressure field has already
been observed in the case of waveguides with varying cross
section, corresponding to sound hard scatterers.35

C. Remark on the coupled wave analysis method

In the case of the grating (B), the convergence of multi-
modal method has been inspected in details in a series of
papers, following the improvements proposed by Li.22,23,31

In these references, the initial system to solve is

p0n ¼ ½q*n&mqm;

q0n ¼ cncm½q&1*n&mpm & x2½B&1*n&mpm; (32)

where the contrast in B, which is disregarded in those refer-
ences, has been added. Li shows that the convergence can be
improved using the rules of Fourier factorization for trun-
cated series. For the staircase approximation (q and B
depend on y only), this leads to

p0n ¼ ½q&1*&1
n&mqm;

q0n ¼ cncm½q*
&1
n&mpm & x2½B&1*n&mpm: (33)

For our weak formulation taking naturally into account the
boundary conditions at the scatterers interfaces, the system
(10) can be written

p0n ¼ ½q&1*&1
n&mqm;

q0n ¼ cncm½q&1*n&mpm & x2½B&1*n&mpm; (34)

which differs slightly from Eq. (33).
To get further information on the accuracy of the three

formulations, we have performed calculations for three

geometries: (a) a square with sides along the x and y direc-
tions, (b) the same square with its diagonals along x and
y directions, and (c) a circle. The errors jRðNÞ00 & RðexÞj
are reported in Fig. 5. Obviously, only the first geometry
corresponds to a lamellar profile. Also two materials
have been considered: (i) a nonmagnetic material (B¼B0)
with q=q0 ¼ 0:01 and (ii) a nearly sound hard material
with B/B0¼ 6+ 10&7 and q=q0 ¼ 10&4 (corresponding to
steel in air).

For the cases (ii) with high contrast in q, the formulation
(32) does not converge. This is not surprising since it was, in
fact, the observation that Eq. (32) is inaccurate to deal with
metallic grating that motivated Li’s works. The convergence
of the Li’s formulation (33) and our formulation (34) are, in
general, similar. Here “similar” means that they have the
same rate of convergence (in N&1 since there is a contrast
in q) and their relative accuracies depend on the configura-
tion and of the frequency. But a noticeable fact is the follow-
ing: The accuracy of the formulation (33) decreases of about
two orders of magnitude between the lamellar profile (a) and
the two other profiles; this is expected since for nonlamellar
profiles, one should use the more involved formulation pro-
posed in Ref. 23 instead of the formulation (33). On the

FIG. 5. (Color online) Error jRðNÞ00 & RðexÞj, from the formulations (32)
(dashed lines), (33) (plain), and (34) (plain dotted), for three scatterer geo-
metries. Top: nonmagnetic material, B=B0 ¼ 1 and q=q0 ¼ 0:01, Bottom:
nearly sound hard material, B/B0 ¼ 6+ 10&7 and q=q0 ¼ 10&4. Left: square,
center: rotated square, right: circular scatterer. Both the square side and the
circle diameter are equal to h/2.

170 J. Acoust. Soc. Am., Vol. 135, No. 1, January 2014 Maurel et al.: Wave scattering by penetrable scatterers



contrary, the accuracy of our formulation (34) is roughly
constant for the three scatterer shapes. A more complete
study on the relative accuracy of the coupled-wave methods
will be reported elsewhere. Presently, we do not have
explanations for the observed differences. However, our
weak formulation naturally takes into account the boundary
conditions at the scatterer boundaries, which means for
instance, that the second-order Eq. (12), equivalent to
Eq. (34), accounts for the real shape of the scatterer (for
instance, the normal derivative to the scatterer).

IV. ANALYTICAL SOLUTION IN THE WEAK
SCATTERING APPROXIMATION

A. Plane wave approximation, generalized Webster
equation

Considering the plane wave approximation (PWA), the
wave equation deduced from a weak formulation is used to
determine analytical solutions that are then compared with
the full numerical solution of Eq. (10) using the admittance
method. The geometry of Fig. 1 (case A) is considered in
this section. From the second-order Eq. (12) at low fre-
quency, pðx; yÞ ’ p0ðxÞ [denoted by p(x) in the following]
satisfies the equation

ðhwp0Þ0 þ k2hwp ¼ & q
q0

ðhsp
0Þ0 & B

B0
k2hsp; (35)

where hsðxÞ ( bðxÞ & aðxÞ and hw ( h& hs are the local
heights of the part in the waveguide occupied by the scat-
terer and by the host medium, respectively, and where we
have used C00 ’ hs=h and D00 ’ 0. Obviously, the limit
q=q0 ! 0 and B=B0 ! 0 that corresponds to the limit of
Neumann boundary condition (thus a waveguide with vary-
ing cross section) leads to the usual Webster equation
ðhwp0Þ0 þ k2ðhwpÞ ¼ 0 with hw the varying cross section.

Next, two cases are inspected, where analytical predic-
tions are possible. The first case corresponds to the Born
approximation already considered in Ref. 24. This is simply
done by considering the above equation written as a wave
equation with a source term s(p),

p00þ k2p¼ sðpÞ

sðpÞ¼& q
q0

hs

hw
p00& q

q0

&1

! "
h0s
hw

p0& B

B0
k2 hs

hw
p:

8
><

>:
(36)

The Born solution is obtained by convoluting the one dimen-
sional Green’s function with the source term written
at leading order sðpÞ ’ sðpðincÞÞ. In reflection p ¼ pðincÞ

þRe&ikx (here, R is a scalar), and R is given by

R ¼
ð

dx0
eikx0

2ik
s½pðincÞðx0Þ*: (37)

In the case of a local, discontinuous, narrowing, hw is
written

hwðxÞ ¼
hw if 0 < x < L;
ðhþ hwÞ=2 if x ¼ 0; L;
h otherwise;

8
<

: (38)

and we get h0sðxÞ ¼ ðh& hwÞ½dðxÞ & dðx& LÞ*, leading to
the reflection coefficient RE of the expansion

RE ¼
h& hw

hþ hw
ð1& e2ikLÞ 1& q

q0

þ hþ hw

4hw

q
q0

& B

B0

! "& '
:

(39)

In the case of an homogeneous guide with varying cross
section (Neumann boundary condition, obtained for q/q0,
B/B0! 0) is recovered the usual expression

RðNeumÞ
E ¼ h& hw

hþ hw
ð1& e2ikLÞ: (40)

A second case of interest, although somehow artificial, leads
to an exact analytical solution. Kumar and Sujith36 show that
the classical Webster equation has an exact solution for
hwðxÞ ¼ A cos2ðjxÞ [indeed, PðxÞ ( pðxÞ cos ðjxÞ satisfies
the classical wave equation P00 þ ðj2 þ j2ÞP ¼ 0*. In our
case, this can be used considering the same contrast in q and
B. Under this assumption, the classical Webster equation is
obtained

ðHp0Þ0 þ k2Hp ¼ 0;

H ( hþ q
q0

& 1

! "
hs;

8
><

>:
(41)

and it is possible to build a smooth variation of hs such that
hs¼ 0 for jxj > L=2 and such that for jxj < L=2 we get
H ¼ A cos2ðjxÞ. This requires tan2ðjL=2Þ¼ðq=q0&1ÞDh=h,
where Dh¼hsð0Þ. The reflection coefficient RS and the
transmission coefficient TS due to the smooth variations of
hs can now be determined by solving the following system
(with the continuity of p and p0 at the interfaces x¼6L=2),

pðx ' &L=2Þ ¼ eikx þ RS e&ikx;

pðjxj ' L=2Þ ¼ aeiKx þ be&iKx

cos jx
;

pðx ' &L=2Þ ¼ TS eikx;

8
>>><

>>>:
(42)

with K2 ( k2 þ j2 and where the solution pðjxj ' L=2Þ cor-
responds to the exact solution of the approximated Webster
problem. The reflection coefficient reads as

RS¼
½~j2&j2*sinKLþ2K~jcosKL

½K2þðkþ i~jÞ2*sinKL&2Kð~j& ikÞcosKL
; (43)

with ~j ¼ j tan jL=2 (j and ~j depend on the characteristics
of the scatterer only). Results are shown on Fig. 6 in the
case of the narrowing and in the case of the smooth cosine
form. The expressions obtained appear to be in good agree-
ment with the direct numerics for kh < 0:8p, afterward
resonant phenomena appear. The numerics has been per-
formed solving Eq. (10) with N ¼ 20 modes using the ad-
mittance method. Note that the reflection extinctions are
obtained at different frequencies, given by kL ¼ np for the
expansion (RE), and tanðKLÞ=K ¼ tanðjLÞ=j for the cosine
form (RS).
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B. Periodic grating Wood anomalies

In this paragraph it is shown that the use of the admit-
tance matrix is an efficient tool to get analytical approxi-
mated solutions. This is exemplified on the Wood anomaly.

In 1965, Hessel and Oliner27 explained the main fea-
tures of the anomalies observed by Wood in 1902.37

Namely, they consider the system

½Kþ Y* p ¼ 2KpðincÞ (44)

equivalent to our Eq. (15) (with pðrÞ ¼ p& p incð Þ), and
pointed out two families of frequencies, or wavenumbers k,
able to produce a rapid variation of the reflection coeffi-
cients: (i) the Rayleigh wavenumbers, associated to the
branch points kn¼ 0 for some n value, and (ii) resonance
wavenumbers associated to complex poles of pn in the vicin-
ity of ½Kþ Y*nn ¼ 0. Below we derive an explicit expression
of Y to solve Eq. (44) in the weak scattering approximation,
which translates in Y ¼ Kþ y and kyk, kKk.

For simplicity, the calculations are performed for a
plane wave at normal incidence to the grating with centered
symmetrical scatterers, so that the Neumann waveguide con-
figuration can be used. By symmetry, only the even modes
are excited. The system in Eq. (44) can be written

1þ z00 z02 ! ! ! z0N

z20 1þ z22 !

! . .
.

zN0 … 1þ zNN

2

666664

3

777775

p0

p2

!

pN

2

66664

3

77775
¼

1

0

!

0

2

66664

3

77775
;

(45)

where

znm ¼ ynmð0Þ=2ikn; (46)

for scatterers occupying [0, L] (see Fig. 1) and with
ynmð0Þ ¼ Oð!Þ where ! measures the small scattering
strength. It follows that Rp incð Þ ¼ &ðIþ zÞ&1zpðincÞ, which
reduces to, at dominant order,

Rn0ðkÞ ’ &
zn0

1þ
X

j

zjj

: (47)

Let us comment the above result. The reflection Rn0

’ &zn0 is in general small. It departs from this simple
behavior in two cases. First, near a Rayleigh wavenumber
km ¼ 0: the quantity zn0 is still Oð!Þ for n 6¼ m since kn does
not vanish. However, both quantities zm0 and 1þ R zjj

’ zmm become possibly very large. From Eq. (46), they
become of order Oð!Þ=km. Second, at the wavenumber that
produces 1þ zmm ¼ 0, all the reflection coefficients become
of order unity.

To go further, the condition 1þ zmm ¼ 0 is inspected.
This relation is equivalent to ymmð0Þ ¼ &2ikm, Eq. (46).
Thus, the corresponding wavenumber km ¼ Oð!Þ is small.
This implies that the second Wood anomaly occurs at a
wavenumber close to the Rayleigh wavenumber. Although
the predictions in Eq. (47) are not expected to be accurate at
these resonances, since we have assumed zmn , 1, they are
able to capture the rapid variations of Rn0,

ðiÞ km ¼ 0; Rn 6¼m;0 ’
&zn0

zmm
! 0;

Rm0 ’
&zm0

zmm
!O ð1Þ;

ðiiÞ 1þ zmm ¼ 0; Rn0 ’ &
&zn0X

j 6¼m

zjj

!O ð1Þ:

8
>>>>>>>>><

>>>>>>>>>:

(48)

Next, the specific form of zn0 and znn are derived in the
case of penetrable scatterers. To do that, the Ricatti equation
(49) is linearized (assuming that F and e ( E& I are small).
Given A ( &KeK& F, the linearized equation reduces to

y0 ¼ &yK& Ky& A: (49)

Here, a rectangular scatterer of small size is considered.
Note that larger sizes with smaller contrasts could be consid-
ered to get weak scattering. The scatterer shape is given
by aðxÞ ¼ ðh& hsÞ=2, bðxÞ ¼ ðhþ hsÞ=2 ðhs , hÞ, for xmin

¼ 0 < x < xmax ¼ L (Fig. 2). This leads to a piecewise con-
stant matrix A, and the linearized Ricatti equation can be
solved analytically starting from the radiation condition
YðxmaxÞ ¼ 0 to get ynmð0Þ ¼ AnmLSnm, with Snm

( sinc kn þ km½ *L=2ð Þei knþkmð ÞL=2 a shape factor. The matrix
Anm is calculated using Eqs. (9)–(11) and the quantities znn

and zn0 are deduced,

znn¼
ð2&dn0Þ

2ikn

hsL

h
k2

n

q
q0

&1

! "
þk2 B

B0
&1

! "" #
Snn;

zn0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2&dn0Þ

p

2ikn

hsL

h
k kn

q
q0

&1

! "
þk

B

B0
&1

! "" #
Sn0:

8
>>>>><

>>>>>:

(50)

Some refinements with respect to our general comments
above can be done. From Eq. (50), it can be seen that the
Rayleigh anomaly only occurs if a contrast in B exists.

FIG. 6. (Color online) Plane wave reflection coefficient of a waveguide seg-
ment with a discontinuous narrowing, and a smooth, sine shaped, narrowing
as a function of the nondimensional frequency kh=p with q=q0 ¼ B=B0 ¼ 3.
Plain lines: numerical solution calculated with N¼ 20 modes, dashed lines:
analytical solutions.
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Indeed, if not the case, znn / kn and z0n / 1 instead of being
proportional to 1/kn as expected from the expression in
Eq. (46). To the opposite, for B 6¼ B0, both znn and zn0 are
proportional to 1/kn. Next, the condition for the second
anomaly implies znn ¼ &1. Inspecting Eq. (50) leads to the
following conclusions: the second Wood anomaly occurs if
kn is purely imaginary, thus below the Rayleigh anomaly at
kn¼ 0. This will produce a max&min Fano resonance type.38

This condition can be easily obtained, e.g., for no contrast in
q and for B > B0, and the distance between the max and the
min is measured by the small ynn=2.

To summarize, for small penetrable scatterers,

(1) for a contrast in q only, no anomalies are expected,
(2) for a contrast in B only: if B < B0, only the Rayleigh

anomaly is expected, and for B > B0, a resonant anomaly
(with maximum reflection value) preceding a Rayleigh
anomaly is expected. This corresponds to a Fano type
resonance.

We have considered an incident plane wave at normal
incidence to an array of square scatterers with
hs ¼ L ¼ h=10. The frequency range is such that
kh 2 ½0; 4p*, thus passing through two cutoff frequencies of
even modes at kh ¼ 2p and 4p. We have checked that no
anomalies are observed for no contrast in q (results are not
reported). The results for a contrast in B are shown on Fig. 7.
The comparison of our analytical expression (47) with direct
numerics shows a good agreement both for B/B0 < 1 (only
the Rayleigh Wood anomaly is observed) and for B/B0 > 1
where the two anomalies occur, leading to a Fano shape
behavior.

V. CONCLUSION

We have presented a multimodal method based on the
use of the admittance matrix to describe the acoustic propa-
gation through arbitrary shaped penetrable scatterers, located
in a rigid waveguide or forming a periodic array. Our
coupled wave equations are based on a weak formulation.
Together with the local admittance formulation, it leads to
an efficient and easily implementable numerical method,
well suited to describe continuously variable shape of scat-
terers, beyond the usual staircase approximation. Besides,
the reciprocity and energy conservation of the initial prob-
lem are preserved in our numerical scheme. Works are in
progress to better understand the influences of the projection
method and of the truncation rules as discussed in Refs. 22
and 23 on the convergence and accuracy of the numerical
schemes in multimodal methods.

The formulation presented in this paper allowed to de-
velop analytical calculations in limiting cases. This has been
illustrated in two examples of interest: The generalization of
the Webster equation, which describe the acoustic propaga-
tion in the low frequency limit, and the derivation of the
reflection coefficients by a periodic array of small scatterers,
leading to a quantitative prediction of the Wood anomalies.
The use of the Riccati differential equation for the imped-
ance matrix is a key point of our resolution in this latter
case, and certainly, this kind of approach may be used in a
large class of scattering problems.
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