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An improved version of the multimodal admittance
method in acoustic waveguides with varying cross
sections is presented. This method aims at a better
convergence with respect to the number of transverse
modes that are taken into account. It is based on
an enriched modal expansion of the pressure: the
N first modes are the local transverse modes and
a supplementary (N + 1)th mode, called boundary
mode, is a well-chosen transverse function orthogonal
to the N first modes. This expansion leads to
the classical form of the coupled mode equations
where the component of the boundary mode is of
evanescent character. Under this form, the multimodal
admittance method based on the Riccati equation
on the admittance matrix (the Dirichlet-to-Neumann
operator) is straightforwardly implemented. With this
supplementary mode, in addition to the improvement
of the convergence of the pressure field, results show a
superconvergence of the scattered field outside of the
varying cross sections region.

1. Introduction
Coupled mode theory is a classical method to deal with
the propagation of inhomogeneous waveguides [1–3].
Starting from the second-order coupled mode equations,
the multimodal admittance method is based on the
introduction of the admittance matrix, which is the
modal representation of the Dirichlet-to-Neumann
operator on the transverse section of the waveguide [4–6].
The admittance matrix is governed by a matrix Riccati
differential equation that can be integrated from the

2014 The Author(s) Published by the Royal Society. All rights reserved.
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radiation condition at the outlet of the waveguide towards the source position. Then, it remains
only to account for the source to get an initial condition on the pressure at the inlet that can be used
to calculate the field in the whole waveguide by integrating a first-order differential equation.
This method allows us to avoid the problem of numerical divergence owing to the presence of
evanescent modes. Besides, when only the scattering matrix is needed, one advantage of the
whole method is that the admittance matrix does not have to be stored during the integration
of the initial value problem starting from the radiation condition. As any method used to solve
the coupled mode equations, the multimodal admittance method has a rate of convergence with
respect to the number of local transverse modes in the series expansion of the pressure at each
location on the axis of the waveguide. In the literature, several propositions have been made
to improve this rate of convergence [7–11]. Similar to the classical attachment mode used in
structural mechanics [12–14], all these techniques use a boundary mode which is not a local
transverse mode but that encapsulates the less convergent part of the series. Nevertheless, these
techniques are not well suited to implement the multimodal admittance method for varying
cross section waveguides. This is because it is not possible to define a radiation condition on
the boundary mode.

Following the results presented in a recent paper [15], an improved version of the multimodal
admittance method is presented, using the idea of a boundary mode. It is based on an enriched
modal expansion of the pressure, as in [7,10,11,15]. The pressure is projected on N + 1 transverse
functions associated with N + 1 components. The first N transverse functions are chosen as the
local transverse modes, corresponding to the solutions in a waveguide with a constant cross
section equal to the local cross section. The choice of the supplementary (N + 1)th transverse
function is the key point of our improved method. As in [7,10,11,15], it is chosen to absorb
the less convergent part of the series representing the pressure, but the novelty is that we
take it to be orthogonal to the first N local transverse modes. When projecting the wave
equation on these (N + 1) transverse functions, this latter property ensures that the coupled
mode equations take the following classical form: the identity matrix appears in front of
the higher order differential terms, and more importantly the boundary mode appears as an
evanescent mode. Regarding the multimodal admittance method, this allows us to follow the
usual formalism by defining a radiation condition at the outlet for this boundary mode; as this
mode is evanescent, it is sufficient to impose exponentially decreasing behaviour (as with any
evanescent mode). Using this property, it is then straightforward to implement the multimodal
admittance method.

The paper is organized as follows. In §2, we present the formulation of the improved
multimodal admittance method for waveguides with varying cross sections. It is shown that,
when the boundary mode is introduced, the coupled mode equations with a boundary mode,
equation (2.7), keep the same form as the coupled mode equations without boundary mode.
Thus, the whole formalism of the multimodal admittance method is conserved. Both the two- and
the three-dimensional axisymmetric cases are considered. Section 3 focuses on the convergence
of the improved modal method compared with the classical modal method. We show a much
better improvement in the convergence of the scattering coefficients than on the pressure field,
leading to what may be called a superconvergence of the scattering. Preceding the concluding
remarks, a discussion on previous works implementing a modal method with a boundary mode is
presented in §4.

2. Improved admittance method
The propagation of linear acoustic waves in a waveguide with rigid walls is considered in
the harmonic regime. The time dependance e−iωt is omitted in the following. For the sake
of comprehensiveness, the two- and three-dimensional axisymmetric cases are detailed in
the following.
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Figure 1. Geometry of the waveguide with varying cross sections, here in two dimensions.

(a) Two-dimensional case
We start from the Helmholtz equation

(� + k2)p(x, y) = 0, (2.1)

with Neumann boundary condition on the lower straight wall ∂yp(x, 0) = 0 and on the varying
upper wall ∂np(x, h(x)) = 0 (figure 1). Defining u ≡ ∂xp, it can be written as a first-order equation
along the x-axis of the waveguide

∂x

(
p
u

)
=
(

0 1
−(∂y2 + k2) 0

)(
p
u

)
, (2.2)

with boundary conditions

∂yp(x, 0) = 0

and ∂yp(x, h) = h′(x)u(x, h).

}
(2.3)

In the spirit of coupled mode equations, expansions of p and u onto transverse functions
ϕn(y; x) are written as

p(x, y) =
N−1∑
n=0

pn(x)ϕn(y; x) + p−1(x)ϕ−1(y; x)

and u(x, y) =
N−1∑
n=0

un(x)ϕn(y; x) + u−1(x)ϕ−1(y; x).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.4)

The N functions ϕn, 0 ≤ n ≤ (N − 1), are the usual local transverse modes. They correspond to
the eigenfunctions of the transverse eigenproblem ∂2

y ϕn = −γ 2
n ϕn, with homogeneous Neumann

boundary condition on the walls ∂yϕn(0; x) = ∂yϕn(h(x); x) = 0 (the associated eigenvalue is
γn = nπ/h)

ϕn(y; x) =
√

2 − δn0

h(x)
cos

nπy
h(x)

. (2.5)

Here, for the improved method, the (N + 1)th function ϕ−1 is not a local transverse mode but
it will be chosen as a function orthogonal to the modes ϕn, 0 ≤ n ≤ (N − 1), with the particular
boundary conditions ∂yϕ−1(h(x); x) �= 0 and ∂yϕ−1(0; x) = 0. This choice is meant to better account
for boundary condition (2.3) at y = h that cannot be satisfied by the local transverse modes. It is
very easy to write such a boundary mode for any order of truncation N

ϕ−1 = χ −
N−1∑
n=0

χnϕn

and χn ≡ (χ , ϕn),

⎫⎪⎪⎬
⎪⎪⎭ (2.6)
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where (f , g) ≡ ∫h(x)
0 dyf̄ (y)g(y) denotes the scalar product (where overbar means conjugate). Any

χ with ∂yχ (h(x); x) �= 0 and ∂yχ (0; x) = 0 is possible, and in the following we have chosen

χ (y; x) = aN

√
2

h(x)
cos

πy
2h(x)

,

where aN is a normalization factor such that ‖ϕ−1‖ = 1. Then, to obtain the coupled mode
equations, we just have to project wave equation (2.2) on the (N + 1) modes ϕn. Details of the
calculations are presented in appendices A and B. Eventually, the coupled mode equations take
the form

d
dx

(
p
u

)
=
(

−A I
−K2 tA

)(
p
u

)
, (2.7)

with p ≡ (pn), u ≡ (un), and where I is the identity matrix and K is a diagonal matrix with diagonal
element given by

kn ≡
√

k2 − ‖∂yϕn‖2 (2.8)

and the coupling matrix A has components

Anm ≡ (ϕn, ∂xϕm). (2.9)

The square root is chosen with positive real part or with positive imaginary part. For 0 ≤ n ≤
(N − 1), kn =

√
k2 − (nπ/h)2 correspond to the usual horizontal wavenumbers of the modes in the

straight part of the waveguide. k2
−1 is found negative (assuming of course that the truncation

includes all the propagative modes), k−1 is imaginary, representing an evanescent part of the
wavefield. As N is increased, it is more and more evanescent, as can be seen in the explicit
expression obtained from (2.8)

k2
−1 = k2 −

(
‖∂yχ‖2 −

N−1∑
n=0

γ 2
n χ2

n

)
, (2.10)

which implies that k2
−1 ∝ −N2 for large N (for details, see [15]).

Coupled mode equations (2.7) with the boundary mode (as well as equations (2.8) and (2.9))
have exactly the same form as the coupled mode equations without the boundary mode [6].
Consequently, from this point, it is straightforward to implement the admittance method
following the same steps as in [6]. We first define the admittance matrix Y and the propagator
matrix G

u = Yp, p(xf ) = G(x)p(x), (2.11)

where xf is the abscissa of the outlet and x ≤ xf . The matrix Y satisfies a Ricatti equation and G a
differential equation coupled to Y,

Y′ = −K2 − Y2 + YA + tAY

and G′ = −G(−A + Y).

}
(2.12)

Both equations are integrated from the radiation condition at the right part of the waveguide
x = xf with the initial conditions Y(xf ) = Yc (Yc is the characteristic admittance defined by Yc ≡ iK(xf ))
and G(xf ) = I. The above Riccati equation is used because of its stability [4–6], and the numerical
integration by Magnus method is detailed in [6]. Once equations (2.12) are integrated up to the
inlet x = xi, the reflection and transmission matrices can be calculated. Indeed, the wave can be
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split into right- and left-going waves p = p+ + p− and u = Yc(p+ − p−), so that the reflection
matrix is defined by p−(xi) = Rp+(xi) and the transmission matrix is defined by p(xf ) = Tp+(xi).
Using from equation (2.11) u(xi) = Y(xi)p(xi) and p+(xf ) = p(xf ) = G(xi)p(xi), we get

R= [Yc + Y(xi)]
−1[Yc − Y(xi)]

and T= G(xi)(1 + R).

}
(2.13)

Note that the great advantage of the method is that the matrices Y and G do not have to be stored
during the integration of differential equations (2.12). If needed, the solution inside the scattering
region, p(xi ≤ x ≤ xf ), can be obtained from the first equation of coupled mode equations (2.7)

p′ = (−A + Y)p, (2.14)

with the incident wave condition at the left part of the waveguide x = xi.
It is important to remark that the introduction of boundary mode does not change the

formalism of the admittance method: equations (2.7), (2.12) and (2.14) have the same form
as for the usual case without the boundary mode and, from the structure of coupled mode
equations (2.7), the energy conservation is preserved (for details on energy conservation in the
multimodal method, see [16]).

(b) The three-dimensional axisymmetric case
This case corresponds to the acoustic propagation in rigid ducts, with varying circular cross
sections (without mean flow). It is similar to the two-dimensional case, with a difference lying
only in the form of the transverse Laplacian. We give below only the expressions that are different
from the two-dimensional case and all the above remarks for the two-dimensional case remain
valid for the three-dimensional axisymmetric case. The Helmholtz equation is

1
r
∂r(r∂rp(z, r)) + ∂z2 p(z, r) + k2p(z, r) = 0, (2.15)

with Neumann boundary condition on the varying wall ∂np(z, h(z)) = 0. It can be written as a
first-order equation along the z-axis of the waveguide

∂z

(
p
u

)
=
⎛
⎝ 0 1

−
(

1
r
∂rr∂r + k2

)
0

⎞
⎠(p

u

)
, (2.16)

with boundary condition

∂rp(z, h) = h′(z)u(z, h). (2.17)

The same form of decomposition as in (2.4) are chosen

p(z, r) =
N−1∑
n=0

pn(z)ϕn(r; z) + p−1(z)ϕ−1(r; z)

and u(z, r) =
N−1∑
n=0

un(z)ϕn(r; z) + u−1(z)ϕ−1(r; z),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.18)

where ϕn(r; z) (n ≥ 0), defined by

ϕn(r; z) = 1√
πh2(z)

J0(βnr/h(z))
J0(βn)

, (2.19)

are the eigenfunctions of the transverse eigenproblem 1/r∂r(r∂rfn) = −γ 2
n fn with Neumann

boundary condition at r = h(z), ∂rfn(h) = 0. Here, γn = βn/h and βn is the (n + 1)th zero of J1 (and
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Jn denotes the nth Bessel function). The boundary mode, as in two dimensions, is defined by
equation (2.6), with a difference in the definition of the scalar product (f , g) ≡ ∫h(z)

0 2πr drf̄ (r)g(r)
and χ is chosen such that ∂rχ (h(z); z) �= 0. The function χ has been chosen as follows:

χ (r; z) = aN√
πh2(z)

J0

(
βr

h(z)

)
,

where β is the first zero of J0 (with five digits: β = 2.4048), and, as in the two-dimensional case, aN

is the normalization factor such that ‖ϕ−1‖ = 1.
Then, following the same steps as in two dimensions in the previous section, one obtains the

same form of coupled mode equations as in (2.7). Only the expressions of the matrices occurring
in this equation change: K is a diagonal matrix with diagonal element given by kn ≡

√
k2 − ‖∂rϕn‖2

and Anm ≡ (ϕn, ∂zϕm). Equations (2.11)–(2.14) remain valid. Details of the calculations are presented
in appendix C.

3. One-dimensional toy model
In this section, for the sake of clarity, we consider very simple one-dimensional models to
examine two aspects that will be useful in the following. The first is concerned with the improved
convergence using boundary modes (a technique which is also called polynomial subtraction
[17–19]). The second allows us to illustrate the different types of errors that occur when solving
an ordinary differential equation with truncated series.

(a) Improved convergence in one dimension
Let us take a function f with sufficient regularity defined on [0, 1]. We want to project f on the
Neumann modes ϕn defined by ϕ′′

n + γ 2
n ϕn = 0 with ϕ′

n(0) = ϕ′
n(1) = 0. These modes ϕn are similar

to the ones considered in the waveguide problem. The explicit expression of the normalized ϕn is
ϕn(y) = √

2 − δn0 cos γny with γn ≡ nπ . Here, the scalar product is defined by (f , g) ≡ ∫
dyf (y)g(y).

The expansion of f is

f (y) =
∞∑

n=0

pnϕn(y). (3.1)

Integrations by parts give
(ϕ′′

n , f ) = [ϕ′
nf − ϕnf ′] + (ϕn, f ′′), (3.2)

with (ϕ′′
n , f ) = −γ 2

n pn, leading to

− γ 2
n pn = −[ϕnf ′] + (ϕn, f ′′). (3.3)

Hence, successive integrations by part give the behaviour of the coefficients pn

pn = [ϕnf ′]
γ 2

n
− [ϕnf ′′′]

γ 4
n

+ · · · . (3.4)

With γn ∝ n, the convergence of the coefficients pn is 1/n2 if f ′ does not vanish at the boundaries
and it is at least 1/n4 if it vanishes. The convergence of the truncated series

fN(y) ≡
N∑

n=0

pnϕn(y) (3.5)

is given by the rest

RN ≡ (f − fN) =
∞∑

n=N+1

pnϕn (3.6)

whose norm is

‖RN‖2 =
∞∑

n=N+1

|pn|2. (3.7)
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If f ′ does not vanish at the boundaries, we have

pn ∝ 1
n2 , and thus ‖f − fN‖ ∝ 1

N3/2 . (3.8)

More generally, from equation (3.4), it is seen that the convergence of the series is governed by
the values of the successive derivatives of the function f at the boundaries. Therefore, it is possible
to improve the convergence by introducing a new function g

g(y) ≡ f (y) − f ′(0)χ0(y) − f ′(1)χ1(y), (3.9)

with χ ′
0(1) = χ ′

1(0) = 0 and χ ′
0(0) = χ ′

1(1) = 1. The function g satisfies by construction g′(0) =
g′(1) = 0, so that, from (3.4), its coefficients qn ≡ (ϕn, g) behave as 1/n4. This polynomial subtraction
technique (because χ0 and χ1 can be chosen as polynomials) improves the convergence of the
series. Indeed, considering the truncated series

gN(y) ≡
N∑

n=0

qnϕn(y) (3.10)

the following behaviours are obtained:

qn ∝ 1
n4 and ‖g − gN‖ ∝ 1

N7/2 . (3.11)

It follows that a truncated series approximation for f can be built, as

f̂ N(y) ≡ gN(y) + f ′(0)χ0(y) + f ′(1)χ1(y) (3.12)

that satisfies

‖f − f̂ N‖ = ‖g − gN‖ ∝ 1
N7/2 . (3.13)

It is the basic idea of the boundary mode method: f̂ N in equation (3.12) is a much better
approximation of f than fN in equation (3.5) owing to the introduction of the functions χ0 and
χ1 (known explicitly).

Let us take the concrete example of f (y) = cos y on [0, 1], satisfying f ′(0) = 0 and f ′(1) �= 0.
From (3.4), one knows that pn ∝ 1/n2. Here, the explicit expression of pn is

pn = f ′(1)ϕn(1)

γ 2
n − 1

(3.14)

and one recovers that pn ∝ 1/n2. To improve the series expansion, the following choice for χ is
done: χ (y) ≡ χ1(y) = y2/2 (here, χ0 is useless for f ′(0) = 0) and we define g ≡ f − f ′(1)χ , as in (3.9).
The coefficients qn = (ϕn, g) are explicit

qn = pn − f ′(1)χn = f ′(1)ϕn(1)

γ 2
n (γ 2

n − 1)
, (3.15)

for n > 0, where

χn ≡ (ϕn, χ ) = ϕn(1) − δn0

γ 2
n

. (3.16)

Eventually, the truncated series

f̂ N(y) =
N∑

n=0

qnϕn(y) + f ′(1)χ (y), (3.17)

converges as

‖f − f̂ N‖ =
√√√√ ∞∑

n=N+1

q2
n ∝ 1

N7/2 . (3.18)
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We see that it is very simple to improve the convergence by the technique of polynomial
subtraction when f ′(1) is known. In this paper, the improved multimodal method uses the
same kind of ideas in a more involved situation, where one has to solve a partial differential
equation with f ′(1) unknown. The procedure consists in introducing an extra degree of freedom
p−1, replacing f ′(1) in (3.17), and supposed to approximate f ′(1). As another remark, note that
decomposition (3.17) can be rewritten as

f̂ N(y) =
N∑

n=0

[
qn + f ′(1)χn

]
ϕn(y) + f ′(1)

[
χ (y) −

N∑
n=0

χnϕn(y)

]
. (3.19)

This choice has the advantage of dealing with orthogonal functions, the ϕn (n ≤ N) and the
function [χ (y) −∑N

n=0 χnϕn(y)] (what we call loosely a boundary mode). This is the same form
as the expansion chosen in equation (2.4). This makes the projection easier and this is the choice
made for the improved multimodal method in the waveguide.

(b) Boundary value problem: remainder error and coefficient error
Let us consider the following boundary value problem:

f ′′(y) + f (y) = 0, (3.20)

with

f ′(0) = 0 and f ′(1) = αf (1) + β, (3.21)

where α = − tan(1)/2 and β = − sin(1)/2, such that f (y) = cos y is the known exact solution. The
numerical solution f̃ N is sought as an Nth partial sum approximation

f̃ N(y) =
N∑

n=0

p̃nϕn(y), (3.22)

with ϕn(y) the same Neumann modes as in the previous section. To obtain the equations on p̃n,
one uses the Galerkin method by projecting equation (3.20) on the ϕn (for n ≤ N). One gets

(1 − γ 2
n )p̃n = −ϕn(1)f ′(1), (3.23)

where the following properties have been used: f ′(0) = 0, (ϕn, f ) = pn, ϕ′′
n = −γ 2

n ϕn and the
integration by parts

(ϕn, f ′′) = ϕn(1)f ′(1) − γ 2
n p̃n.

Then, it is sufficient to use the boundary condition at y = 1 to obtain the linear system governing
the p̃n

N∑
m=0

[(1 − γ 2
n )δmn + αϕn(1)ϕm(1)]p̃m = −βϕn(1), (3.24)

for 0 ≤ n ≤ N. It is a system of (N + 1) equations with (N + 1) unknowns p̃n that can be solved by
a standard inversion technique. The error between the exact solution f (y)

f (y) =
∞∑

n=0

pnϕn(y) (3.25)

and the numerical Galerkin solution f̃ N (3.22) can be written as the sum of two parts

f − f̃ N =
N∑

n=0

[pn − p̃n]ϕn +
∞∑

n=N+1

pnϕn. (3.26)
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The second part in the left-hand side, denoted RN(y), is the remainder error corresponding to the
distance between f and the set spanned by the functions ϕ0, . . . , ϕN . The first part in the left-hand
side is the coefficient error rN : let us see where does it comes from. Equation (3.23) is exact but the
elimination of f ′(1) using f (1) =∑N

n=0 p̃nϕn(1) is not exact. It is possible to write an exact system
by using f (1) =∑∞

n=0 pnϕn(1). More precisely, one writes

f ′(1) = α

[ N∑
n=0

pnϕn(1) + RN(1)

]
+ β. (3.27)

Thus, from (3.23) and (3.27), the exact coefficients pn (0 ≤ n ≤ N) satisfy the exact linear system of
(N + 1) equations

[
(1 − γ 2

n )δmn + α

N∑
m=0

ϕn(1)ϕm(1)

]
pm = −βϕn(1) − αϕn(1)RN(1). (3.28)

It appears that the coefficients p̃n and pn in the coefficient error (3.26) obey two different systems
of equations (3.24) and (3.28). These two systems can be written formally as

Mp̃ = S

and Mp = S + T,

}
(3.29)

with Mnm ≡ [(1 − γ 2
n )δmn + αϕn(1)ϕm(1)], Sn ≡ −βϕn(1), Tn ≡ −αϕn(1)RN(1) and with p =

(p0, . . . , pN)T, p̃ = (p̃0, . . . , p̃N)T. Thus, the coefficient error is

pn − p̃n = [M−1T]n. (3.30)

In this specific example, the exact solution is f (y) = cos y, such that T is known and the coefficient
error in (3.26) can be calculated by numerical inversion of M. The convergence is calculated and
it can be summarized as follows:

f − f̃ N =
N∑

n=0

[pn − p̃n]ϕn

︸ ︷︷ ︸
‖rN‖∝N−3

+
∞∑

n=N+1

pnϕn

︸ ︷︷ ︸
‖RN‖∝N−3/2

, (3.31)

where the coefficient error and the remainder error have been calculated with the norm L2. In this
simple example, the coefficient error rN is smaller than the remainder error RN. For the waveguide
problem, it will be shown that this is not always the case.

4. Results
In this section, the improved admittance multimodal method is applied for the three-dimensional
axisymmetric case. The computation performed following the steps presented in §2. We have
checked that the same conclusions are drawn for the two-dimensional case.

To begin with, it is shown that the use of the impedance matrix method implemented with the
boundary mode allows us to reach a high accuracy with very few degrees of freedom. A typical
example is shown in figure 2 at a frequency (kh0 = 7, h0 = 1 being the height of the right lead) just
below the cut-on frequency of the third mode in the right lead, so that there are two propagating
modes in the right lead and one propagating mode in the left lead. The method is performed
with Nm = N + 1 = 4 degrees of freedom, achieving an accuracy better than 1% on the scattering
coefficient. The incident wave is mode 0 from the left and the outgoing boundary condition is
imposed at the right.
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Figure 2. Example of wave field obtained with N = 3 (Nm = 4 modes). Here, the axisymmetric geometry is h(z ≤ 0)=
0.5, h(0< z < 1)= 0.75 − 0.25 cosπ z and h(z ≥ 1)= 1. The frequency is kh0 = 7 with h0 = 1, just below the cut-on
frequency of the third modeβ2 = 7.0156. The incident wave is plane. (Online version in colour.)

In the following, the convergence of the improved method is examined with respect to the
wave field and with respect to the scattering coefficients, where a superconvergence will be
shown. To do that, the geometry of a cosine waveguide is considered, namely

{
h(z) = 1, for |z| > 1,

h(z) = 1.4 + 0.4 cos πz, for |z| ≤ 1.
(4.1)

Except for the result shown in figure 7, the frequency is kh0 = 0.9π with h0 = 1, which corresponds
to one propagating mode in the leads. Moreover, the mode 0 is incident from the left and the
outgoing boundary condition is imposed at the right.

Let us first examine the asymptotic behaviour of the modal coefficients. Equations (2.4)
and (2.6) show that

p(z, r) =
N−1∑
n=0

qn(z)ϕn(r; z) + p−1(z)χ (r; z). (4.2)

with

qn ≡ pn − (χ , ϕn)p−1, (4.3)

Expansions (4.2) and (2.4) correspond, respectively, to expansions (3.17) and (3.19). As seen in the
toy model section, the coefficients qn are expected to decrease more quickly than the coefficients
pn (equations (3.11) and (3.8)). In our impedance multimodal method, the system is solved on the
coefficients pn that are found to follow pn ∝ 1/n2 (figure 3). Nevertheless, when qn is computed
from equation (4.3), the behaviour qn ∝ 1/n4 is actually recovered [7,11,15].

Next, the local and global errors on the field are defined by

εN(z, r) ≡ |p(z, r) − pex(z, r)|2 (4.4)

and

εN ≡
∫

V dV|p(z, r) − pex(z, r)|2
∫

V dV|pex(z, r)|2 , (4.5)

where p(z, r) is the solution calculated at order N (equation (2.4), i.e. with Nm = N + 1 coefficients)
and pex(z, r) the converged solution considered to be exact. In order to assess the advantage of the
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Figure 3. Convergence of the projection coefficients pn (points) and qn (circles) as a function of n (the geometry is defined in
equation (4.1)). (Online version in colour.)
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Figure4. Convergence of the global error as a function of the truncatureNm for themultimodalmethodwithout (dotted circles)
or with (circles) the boundary mode (the geometry is defined in equation (4.1)). (Online version in colour.)

boundary mode, the usual multimodal method without the boundary mode is considered, using
the expansion

pnoBM(z, r) =
N∑

n=0

pn(z)ϕn(r; z), (4.6)

whose corresponding local and global errors are defined as in equations (4.4) and (4.5). Note that
above expression equation (4.6) has (N + 1) components on the classical transverse modes ϕn; it
has been chosen as such in order to have the same number of degrees of freedom Nm = N + 1.

The rates of convergence of the global errors are shown in figure 4 as a function of the
total number of transverse functions taken into account (number of modes plus the boundary
mode in the case of the improved method and number of modes in the case of the usual
multimodal method). The rate of convergence is 1/N for the usual method and 1/N3.5 for the
improved method.
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Figure 5. Solution without (a), (b) and with boundary mode (c), (d). At left the solution calculated with Nm = 10 and at right
the error. The geometry is defined in equation (4.1), a plane incident wave is considered. (Online version in colour.)

In order to get further insights on the non-uniformity of the convergence, it is interesting to
inspect the pattern of the local error in space. The real part of the total fields as well as these local
errors in space εN(z, r) are shown in figure 5 both for the usual and the improved methods. The
total number of modes is Nm = 10 in both cases. Both results are close to the reference solution but
one can note spurious wiggles near the boundaries for the computation without the boundary
mode (of course, the amplitudes of these wiggles decrease with the order of truncation [4]). When
plotting the solution (figure 5a), the wiggles appear to be located close to the inclined wall. It is
interesting also to inspect the pattern of the local error for the computation with boundary mode.
Indeed, in this case, the pattern of the error presents a characteristic length that corresponds to
the first omitted mode. This corresponds to the intuitive idea of the error owing to a truncation
for series of functions of one variable, namely if f (z) =∑ fnφn(z), the error is εN =∑∞

n=N+1 fnφn �
fN+1φN+1. A contrario, the pattern of the error without the boundary mode does not follow this
simple behaviour. This means that the coefficient error (the modal coefficient depends on N and
pn converges towards its asymptotic value pex

n ) has a non-negligible weight, as already discussed
in the toy model section.

The next results concern the convergence of the elements of the scattering matrix. These are the
most important quantities because usually, one is more interested in obtaining the transmission
and reflection coefficients owing to the inhomogeneity of the waveguide rather than the detailed
pattern of the field inside the scattering region. Note that, to compute the scattering matrix, only
the integrations of the equations on Y and G are needed. They are evolution equations posed
as an initial value problem which means that they do not imply large memory storage. In our
computation example, with kh0 = 0.9π , only one mode is propagative in the straight terminations
of the waveguide so that the scattering is characterized by one transmission coefficient T = T00
and one reflection coefficient R = R00. Figure 6 shows the rate of convergence of the transmission
coefficient as a function of the total number of transverse modes. Without the boundary mode,
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Figure 6. Convergence of the transmission coefficient |T00|. The error is plotted as a function of the total number of modes
without (filled circle) and with the boundary mode (open circle). (Online version in colour.)

the convergence is |T − Tex| ∼ N−1, and with the boundary mode the convergence is |T − Tex| ∼
N−4.5. Moreover, it can be seen that two modes and the boundary mode achieve an excellent
accuracy that is reached for a truncation around 40 modes using the classical modal method.
This is what we call the superconvergence. As a rule of thumb, this excellent accuracy appears to
be obtained as soon as the truncation includes the first evanescent mode. In our example, with
one propagative mode, this means that the computation includes the propagative mode 0, the
first evanescent mode 1 and the boundary mode. Figure 7 illustrates this accuracy in the whole
range of frequency below the first cut-on frequency of the termination kc = γ1/h0 (γ1 � 3.83). The
error |T − Tex| is plotted as a function of the dimensionless frequency kh0 in three cases: with and
without the boundary mode using N = 2 in (4.2) (modes 0, 1 and the boundary mode) and in (4.6)
(modes 0, 1 and 2). When comparing the usual and improved multimodal methods with the same
number of transverse modes (a total of Nm = 3 modes in each case), the accuracy is improved by
one order of magnitude. Thus, it is observed that the superconvergence of the improved method
works uniformly with respect to the frequency.

(a) On the convergence and the superconvergence
Following the idea of the remainder error and of the coefficient error presented in the toy model
section, we examine the partition of the error when using the usual or the improved multimodal
method. Let us consider the expressions of the pressure field without the boundary mode (usual
method)

pnoBM(z, r) =
N∑

n=0

pn(z)ϕn(r; z), (4.7)

with the boundary mode (improved method)

p(z, r) =
N−1∑
n=0

pn(z)ϕn(r; z) + p−1(z)ϕ−1(r; z), (4.8)

and the converged field, considered as an exact solution

pex(z, r) =
∞∑

n=0

pex
n (z)ϕn(r; z). (4.9)
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Figure 7. Error on the computed transmission coefficient |T00| as a function of the frequency. In (a) the transmission coefficient
|T00|without the boundary mode (green points), with the boundary mode (red circle) and the converged solution (blue line).
In (b) the error without the boundary mode (dotted) and with the boundary mode (blue line). (Online version in colour.)

To analyse the convergence of the pressure field, the error |p − pex| is split into three parts

pnoBM − pex =
Np∑

n=0

(pn − pex
n )ϕn

︸ ︷︷ ︸
ε1∝N−1

+
N∑

n=Np+1

(pn − pex
n )ϕn

︸ ︷︷ ︸
ε2∝N−1

−
∞∑

n=N+1

pex
n ϕn

︸ ︷︷ ︸
ε3∝N−1.5

, (4.10)

and with the boundary mode

p − pex =
Np∑

n=0

(pn − pex
n )ϕn

︸ ︷︷ ︸
ε1∝N−4.5

+
N−1∑

n=Np+1

(pn − pex
n )ϕn

︸ ︷︷ ︸
ε2∝N−3.5

+ p−1ϕ−1 −
∞∑

n=N

pex
n ϕn

︸ ︷︷ ︸
ε3∝N−3.5

, (4.11)

with Np + 1 the number of propagating modes. ε1 refers to the error on the propagative field and
ε2 + ε3 refers to the error on the evanescent field. The rates of convergence indicated for each term
have been obtained numerically. For ε3, these rates of convergence can be obtained analytically
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by using the behaviour of pex
n for large n, namely pex

n ∝ 1/n2 and pex
n − (χ , ϕn)p−1 ∝ 1/n4. Also, it

appears that without the boundary mode, ε1 and ε2 are dominant, whereas with the boundary
mode ε2 and ε3 are dominant.

These rates of convergence are observed in the varying part of the waveguide but in the
straight parts of the waveguide, only ε1 subsists there because ε2 and ε3 become exponentially
small (they are associated with evanescent modes). Consequently, the error in the straight parts is
given by ε1 and the rate of convergence can be different inside and outside the scattering region.
Importantly, it turns out that the addition of the boundary mode improves more significantly
the rate of convergence of the propagative part of the field (from N−1 to N−4.5) than that of the
evanescent part of the field (from N−1 to N−3.5). This explains the superconvergence observed
for the scattering coefficients as they are defined from the propagative modes outside the
scattering region.

5. Coupled formulation of the improved method
Our improved multimodal decomposition is

p(z, r) =
N−1∑
n=0

pn(z)ϕn(r; z) + p−1(z)

[
χ (r; z) −

N−1∑
n=0

(χ , ϕn)ϕn(r; z)

]
, (5.1)

where p−1 is found to be an evanescent mode, with an imaginary wavenumber k−1 that tends
to infinity as N → ∞. Also, it can be noted that an uncoupled system of equations on the (pn) is
obtained in the straight parts of the waveguide (namely p′′

n + k2
npn = 0, for n = −1, . . . , N that can

be written p′′ + K2p = 0).
Previous works on improved multimodal methods used also a boundary mode [7,11].

Nevertheless, the decomposition was written differently, with a boundary mode non-orthogonal
to the first N ones

p(z, r) =
N−1∑
n=0

qn(z)ϕn(r; z) + q−1(z)χ (r; z). (5.2)

For the same function χ (r; z), the two modal decompositions coincide owing to equation (4.3) and
p−1 = q−1. The decomposition, equation (5.2), leads to coupled mode equations on q ≡ (qn)

Bq′′ + Cq′ + Dq = 0. (5.3)

In the straight parts of the waveguide, C= 0 but B and D remain non-diagonal matrices, inducing
a coupling that makes the implementation of the admittance method not straightforward, if not
problematic. The approach chosen in [7,11] is to pose the coupled mode equations as a boundary
value problem with Dirichlet boundary condition on q−1. In view of our work, we propose
an interpretation of this boundary condition based on an analogy with the perfectly matched
layers (PML). Indeed, as q−1 is evanescent in the straight parts of the waveguide, the straight
terminations of the waveguide play the role of PML with q−1 ∼ e−|k−1|L decreasing with the size L
of the PML.

If L is large enough, the choice q−1 = 0 at the end of the PML is similar to the outgoing radiation
condition for q−1 that is used in this paper. Also, because |k−1| ∝ N, increasing the order of the
truncation N decreases the necessary size L of the PML.

Results in [7,11]—boundary value problem with Dirichlet boundary conditions on q−1—have
shown an improvement of the convergence inside the scattering region of the same kind as the
one we obtain in this paper. It could be interesting to know if, for small N, the accuracy is the
same as in our method and if the superconvergence for scattering coefficient that we obtain might
be also observed with Dirichlet boundary condition on q−1.
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6. Concluding remarks
The introduction of a boundary mode in the multimodal admittance method has been shown
to improve significantly the efficiency of the method for acoustic waveguides with varying
cross sections. The convergence of the pressure field inside the varying part of the waveguide
increased but, more importantly, a superconvergence is obtained on the scattering coefficients,
from 1/N to 1/N4.5. Moreover, this asymptotic rate of convergence is accompanied by an error
that is already small at small N. It means that a great accuracy can be reached by just integrating
the Riccati equation on the admittance and the evolution equation on the propagator—without
the need of memory storage along the axis—with a small number of modes. Typically, at low
frequency, taking three degrees of freedom achieves an accuracy better than 1% on the reflection
and transmission coefficients (e.g. figure 7). The presented method can be applied to other classes
of problems where the usual modes do not satisfy the right boundary condition; this is notably
the case for the waveguide with Robin boundary condition.
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Appendix A. Coupled mode equations
To obtain the coupled mode equations, equation (2.2) is projected on the (N + 1) modes
ϕn. For the first equation ∂xp = u, the projection is (∂xp, ϕn) =∑m(p′

mϕm + pm∂xϕm, ϕn) = p′
n +∑

m(ϕn, ∂xϕm)pm. That yields the first coupled mode equation

p′
n = un −

∑
m

(ϕn, ∂xϕm)pm.

For the second equation ∂xu = −(∂y2 + k2)p, the calculation is as follows. Integrating by part
leads to

(∂y2 p, ϕn) = [∂ypϕn]h
0 − (∂yp, ∂yϕn) = h′u(x, h)ϕn(h; x) −

∑
m

(∂yϕn, ∂yϕm)pm,

where the boundary conditions ∂yp(x, 0) = 0 and ∂yp(x, h) = h′u(x, h) have been used. Then for
0 ≤ n ≤ N − 1 (and −1 ≤ m ≤ N − 1),

(∂yϕn, ∂yϕm) = [∂yϕnϕm]h
0 − (∂y2ϕn, ϕm) = γ 2

n δnm.

By using the symmetry of (∂yϕn, ∂yϕm), it appears that (∂yϕn, ∂yϕm) = γ 2
n δnm, for any −1 ≤ n ≤ N

and −1 ≤ m ≤ N. Inserting this result into the projection of the second equation gives

u′
n = −(k2 − γ 2

n )pn −
∑

m
(ϕn, ∂xϕm)um − h′∑

m
ϕn(h; x)ϕm(h; x)um.

This equation can be simplified owing to the normalization of the modes (ϕn, ϕm) = δnm that when
differentiated with respect to x gives (ϕn, ∂xϕm) + (∂xϕn, ϕm) + h′ϕn(h; x)ϕm(h; x) = 0. Eventually,
the second coupled mode equation is

u′
n = −(k2 − γ 2

n )pn +
∑

m
(ϕm, ∂xϕn)um.
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Appendix B. Expressions for the two-dimensional case

(a) The boundary mode
The function χ is chosen such that χ (y; x) = aNχ̂(y; x), where aN is a normalization factor to be
found and where

χ̂ (y; x) =
√

2
h

cos
πy
2h

.

The projection of χ̂ on the eigenmodes ϕn (ϕn(y; x) =√εn/h cos nπy/h with ∂yϕn = 0 at y = 0 and
y = h and where εn = 2 − δn0) is obtained by an integration by parts

(χ̂ , ∂y2ϕn) = [−∂yχ̂ϕn]h
0 + (∂y2 χ̂ , ϕn).

With ∂yχ̂(0; x) = 0 and ∂y2 χ̂ + γ 2χ̂ = 0 (γ = π/2h), one gets χ̂n = (χ̂ , ϕn) = ∂yχ̂ (h; x)ϕn(h; x)/
(γ 2

n − γ 2). Thus, the explicit expression for χ̂n is

χ̂n = −1
2π

√
2εn(−1)n

n2 − 1/4
.

A function orthogonal to ϕn (0 ≤ n ≤ N) is ϕ̂−1 = χ̂ −∑N
0 χ̂nϕn with ‖ϕ̂−1‖2 = 1 −∑N

0 χ̂2
n . The

boundary mode ϕ−1 is normalized

ϕ−1 = ϕ̂−1

‖ϕ̂−1‖
, with aN = 1

‖ϕ̂−1‖
.

(b) Transverse wavenumber ‖∂yϕn‖2
For the usual modes, 0 ≤ n ≤ (N − 1), we have ‖∂yϕn‖2 = γ 2

n = n2π2/h2.
To compute ‖∂yϕ−1‖2 an integration by parts is used

‖∂yϕ−1‖2 = [∂yϕ−1ϕ−1]h
0 − (ϕ−1, ∂2

y ϕ−1)

= ∂yχ (h)

(
−

N−1∑
n=0

χnϕn(h; x)

)
−
(

ϕ−1, ∂2
y χ −

N−1∑
n=0

χn∂2
y ϕn

)

= −∂yχ (h)
N−1∑
n=0

χnϕn(h; x) + γ 2(ϕ−1, ϕ−1),

so that ‖∂yϕ−1‖2 = γ 2 − ∂yχ (h; x)
∑N−1

n=0 χnϕn(h; x). The explicit expression is

‖∂yϕ−1‖2 = π2

4 h2

[
1 −

∑N−1
n=0 εn/(n2π2 − π2/4)

1 −∑N−1
n=0 χ̂2

n

]
.

(c) The coupling matrix A
The elements of the coupling matrix are defined by

Anm = (ϕn, ∂xϕm) = h′

h
Qnm,
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where Qnm are constant, and with, for 0 ≤ n ≤ (N − 1), 0 ≤ m ≤ (N − 1)

Qnn = − εn

2
,

Q−1,−1 = −1
2

(N−1∑
n=0

χn
√

εn(−1)n

)2

Qnm = −√
εnεm

(−1)n+mm2

m2 − n2 , if n �= m,

Q−1,m = −
N∑

n=0

χnQnm + 1
m2π2 − π2/4

(
π

√
εm(−1)m

‖ϕ̂−1‖
+ 2χmm2π2

)

and Qn,−1 = −Q−1,n + (−1)n√
εn

N−1∑
p=0

χp
√

εp(−1)p.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 1)

In these expressions, εn ≡ 2 − δn0 and

χn = 1√
1 −∑N

0 χ̂2
n

χ̂n, with χ̂n = −1
2π

√
2εn(−1)n

n2 − 1/4
.

To derive these expressions, the following relations have been used. For diagonal elements,
differentiating the normalization condition (‖ϕn‖2 = 1) with respect to x gives 2(ϕn, ∂xϕn) +
h′ϕ2

n(h; x) = 0. For non-diagonal elements, n �= m, successive integrations by parts have been used.
For non-diagonal elements with n = −1 and 0 ≤ m ≤ (N − 1) (the row number −1), successive
integrations by parts yield can be used. For instance, one finds an intermediate result

A−1,m = −
N∑
0

χnAnm + 1

γ 2
m − γ 2

[∂yχ (h; x)∂xϕm(h; x) − (γ 2
m)′χm].

To obtain An,−1, it is sufficient to use the differentiation w.r.t. x of the mode orthogonality
(ϕn, ϕ−1) = 0 to get (ϕn, ∂xϕ−1) + (ϕ−1, ∂xϕn) + h′ϕn(h; x)ϕ−1(h; x) = 0, which implies

An,−1 = −A−1,n − h′ϕn(h; x)ϕ−1(h; x).

Appendix C. Expressions for the axisymmetric case

(a) The boundary mode
The transverse modes ϕn(r; z) (0 ≤ n ≤ (N − 1)) are defined by

ϕn(r; z) = 1√
πh2(z)

J0(βnr/h(z))
J0(βn)

,

where βn is the (n + 1)th zero of J1 (with five digits: β0 = 0, β1 = 3.8317, β2 = 7.0156,
β3 = 10.1735 . . .), Jn denotes the nth Bessel function and fn = J0(γnr) with γn = βn/h are
eigenfunctions of the transverse eigenproblem 1/r∂r(r∂rfn) = −γ 2

n fn. The definition of the scalar
product is (f , g) ≡ ∫h(z)

0 2πr drf̄ (r)g(r). To build the boundary mode ϕ−1, χ is chosen such as
∂rχ (r = h; z) �= 0 and in the following:

χ (r; z) = aNχ̂ (r; z), with χ̂ (r; z) = J0(βr/h(z))√
πh2

,

where β is the first zero of J0 (with five digits: β = 2.4048) and where aN is the normalization
factor such that ‖ϕ−1‖ = 1. The projection of χ̂ on the eigenmodes ϕn is obtained as in the
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two-dimensional case by an integration by parts: χ̂n = (χ̂ , ϕn) = 2πh∂rχ̂ (r; h)ϕn(r; h)/(γ 2
n − γ 2),

where γn = βn/h and γ = β/h. The explicit expression for χ̂n is thus

χ̂n = − 2βJ1(β)

β2
n − β2

.

A function orthogonal to the ϕn (0 ≤ n ≤ N) is ϕ̂−1 = χ̂ −∑N−1
0 χ̂nϕn with ‖ϕ̂−1‖2 = J2

1(β) −∑N−1
0 χ̂2

n . Therefore, we choose aN = 1/‖ϕ̂−1‖ to normalize the boundary mode

ϕ−1 = ϕ̂−1

‖ϕ̂−1‖
.

(b) Transverse wavenumber ‖∂rϕn‖2
For 0 ≤ n ≤ (N − 1),

‖∂rϕn‖2 = γ 2
n = β2

n

h2 .

To compute ‖∂rϕ−1‖2, integrations by parts give ‖∂rϕ−1‖2 = γ 2 − 2πh∂rχ (r; h)
∑N−1

0 χnϕn(r; h).
With ϕn(r; h) = 1/

√
πh2 and ∂rχ (r; h) = −γ J1(β)

√
πh2, the explicit expression is

‖∂rϕ−1‖2 = β2

h2

[
1 − 4

J2
1(β)

∑N−1
n=0 1/(β2

n − β2)

J2
1(β) −∑N−1

0 χ̂2
n

]
.

(c) The coupling matrix A
As in the two-dimensional case, the coupling matrix can be calculated using integration by parts
and the elements of A are defined by

Anm = (ϕn, ∂zϕm) = h′

h
Qnm,

with, for 0 ≤ m, n ≤ (N − 1)

Qnn = −1,

Q−1,−1 = − (2βJ1(β)
∑N−1

n=0 1/(β2
n − β2))2

J2
1(β) −∑N−1

n=0 χ̂2
n

,

Qnm = −2
β2

m

β2
m − β2

n
,

Q−1,m = −
N−1∑
n=0

χnQnm + 2

β2
m − β2

(
βJ1(β)
‖ϕ̂−1‖

+ χmβ2
m

)

and Qn,−1 = −Q−1,n + 2
N−1∑
p=0

χp.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 1)

In these expressions,

χn = χ̂n√
J2
1(β) −∑N−1

n=0 χ̂2
n

, with χ̂n = − 2βJ1(β)

β2
n − β2

.
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