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Experimental realization of a water-wave metamaterial shifter
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We demonstrate by quantitative experimental measurements that metamaterials with anisotropic properties
can be used in the context of water waves to produce a reflectionless bent waveguide. The anisotropic medium
consists in a bathymetry with subwavelength layered structure that shifts the wave in the direction of the
waveguide bending (10◦, 20◦, and 30◦). The waveguide filled with such metamaterial is tested experimentally
and compared to a reference empty bent waveguide. The experimental method used to characterize the wave field
allows for space-time resolved measurements of water elevation. Results show the efficiency of the shifter. Modal
treatment of the experimental data confirms that the metamaterial prevents higher modes from being excited in
the waveguide.
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The design of metamaterials has generated in the past
10 years a completely new, ever-changing field of study for
electromagnetic, acoustic, elastic, and seismic waves [1–3].
Novel ways of applying wave field control have appeared
such as the flat lens, the invisibility cloak, or the near zero
index materials. The principle behind these metamaterials is
to imagine a subwavelength structure specifically designed in
order to procure certain material parameters for which the
required wave propagation is obtained. The actual materials
that have been built range widely depending of the original
wave medium they are based on, as do the mathematical
approaches. Amongst these different approaches, coordinate
transformation theory (CTT) [4–6] allows us to find an
anisotropic distribution of parameters that deviates waves
without reflection. A medium with this particular anisotropic
distribution of parameters can then be realized with homog-
enized microstructure by invoking effective medium theory
(for the particular case of layered microstructure, see [7,8]).
Structured media of propagation for water waves have been
inspired mainly by photonic crystals, with emphasis on band
gap properties [9–12]. Less attention has been generated
by media with subwavelength microstructures leading to
metamaterial behaviors [13–16]. This new type of wave control
by metamaterials can be applied to, and is appealing in, every
domain of wave physics. In particular, control of surface water
waves might encourage applications in ocean and coastal
engineering, which can include shore protection or energy
harvesting.

In this paper, achievement of water-wave control using
a transformation medium is demonstrated experimentally.
The anisotropic medium is designed and developed to get
a reflectionless bent waveguide which offers the capability to

deviate the trajectory of water waves. We begin by considering
the shallow-water-wave equation in a virtual (X,Y ) space

∇ · (h0∇η) + ω2

g
η = 0, (1)

where η(X,Y ) is the vertical displacement of the water surface,
ω is the angular frequency, g is the gravitational acceleration,
and h0 is the depth of water, assumed to be constant. We
take here the shallow water limit kh0 " 1, which implies
that surface water waves will follow a dispersion relation
ω =

√
gh0k.

According to the theory of transformation media, mapping
of the coordinates (X,Y ) → (x,y) (Fig. 1) results in a change
of the parameters appearing in the wave equation (1). Denoting
J the Jacobian tensor of the geometrical transformation, we
obtain in the (x,y) real space [6]

∇ · [Jh0
t J ∇η] + ω2

g
η = 0, (2)

where we have considered a volume preserving transformation
[det(J ) = 1]. Indeed, as already noted in [14], the wave
equation can only support such transformations, given that the
gravitational acceleration can not be tuned in usual situations.
Amongst these kinds of transformations, the rotator system
received particular consideration, including the publication
of an experimental validation [8,14]. The transformation of
the reflectionless wave shifter is also nonmagnetic (volume
preserving) and corresponds to the change of coordinates
x = X, y = tan θX + Y (Fig. 1), leading to the Jacobian

J =
(

1 0
tan θ 1

)
. (3)
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FIG. 1. Coordinate transformation of the shifter, from the virtual
space (X,Y ) to the real space (x,y).

Using the homogenization theory of layered medium,
the anisotropy of the effective height he ≡ Jh0

t J can be
reproduced using a layered structure composed by alternating
layers of different heights, with some particular orientation
in (x,y). In particular, with a structure consisting in layers of
heights h1 and h2 and rotated by an angle α with respect to the
x axis (Fig. 1), we obtain an anisotropic medium satisfying

∇ ·
[

tRα

(
h‖ 0
0 h⊥

)
Rα ∇η

]
+ ω2

g
η = 0, (4)

where h‖ ≡ 2h1h2/(h1 + h2) and h⊥ ≡ (h1 + h2)/2 and with
Rα the conventional rotation matrix for a rotation by an angle
α. Identifying Eqs. (2) and (4), we obtain h‖,h⊥ as the roots of
h2 − (2 + tan2 θ )h0h + h2

0 = 0 and sin 2α = 2/
√

4 + tan2 θ .
Thus, for a given angle θ of the shifter, the complete layered
structure can be designed.

Now, we want to use the above transformation in a waveg-
uide to produce a reflectionless bent guide. The boundary
condition to be applied at the walls of the homogenized
layered medium has been discussed in [17]. It is the same
as the boundary condition in the transformed geometry (2)
(n · J tJ∇η = 0, with n the normal to the wall). Remarkably,
this condition is ∂yη = 0 at the walls y = tan θx and y =
tan θx + H , which is counterintuitive with respect to the
usual slip condition, but it allows the wavefronts to remains
undistorted (along y) after the bend.

Three waveguides were built using rapid prototyping which
were 70 mm in length, with a bend of angles θ = 10◦, 20◦,
30◦, respectively, as well as three reference empty waveguides
of the same deviation angles [Fig. 2(b)]. For each of the three
systems, we have (i) θ = 10◦: h1 = 1.842 h0, h2 = 0.543 h0,
and α = 42.48◦; (ii) θ = 20◦: h1 = 2.467 h0, h2 = 0.405 h0,
and α = 32.84◦; and θ = 30◦: h1 = 3.225 h0, h2 = 0.310 h0,

FIG. 2. (a) Bent waveguide: before the bend, the water height
is h0, and after the bend of angle θ , the metamaterial is realized
with a layered structure with alternating layers of heights h1 and h2.
(b) Designed metamaterial water waveguide.

and α = 36.95◦. As a compromise between the unwanted
attenuation caused by small water depths and the wish to
remain close to the shallow water approximation, we choose
h0 = 10 mm. In our working frequency range between 3 and
6 Hz, this leads to typical wavelengths between 40 and 90 mm.
Obviously, the larger water depths h1 resolve to values of
tanh kh1/kh1 which go down to 0.2, largely out of the shallow
water approximation which assumes tanh kh → kh. We will
see that this does not have a significant impact on the efficiency
of the metamaterial in our experiments. In our geometry, with
such rapid variations of water height, a quantitative theory
would have to include three dimensional, viscous, and weakly
nonlinear effects. Finally, we design layers of 1 mm wide,
sufficiently narrow with respect to the wavelength to expect
the homogenization of the layered structure to be effective.

The waveguides are immersed in a water tank filled up
to the initial water height h0 = 10 mm. Waves of controlled
frequency are obtained using an analog plane wave gener-
ator and they are sent at the entrance of the waveguides
with zero incidence in order to generate only the mode 0
inside.

The experimental method used to quantify the wave field,
Fourier transform profilometry (FTP) [18–23], is a technique
based on fringe pattern projection on a surface and Fourier
transform processing of the deformations of the fringe. A high
resolution video projector (Epson TW5500) has been used
to project over the measurement surface the fringe pattern
whose deformation are recorded by a fast camera (Phantom
v9.0). It allows us for time-resolved measurements of the
water surface elevation at every point of the projected image,
accurate to more than a millimeter. These measurements are
used to build the complex wavefield at each working frequency.
The real part of the wavefields before and after the bend
of the waveguide are presented on Fig. 3 at f = 4 Hz. In
the reference empty waveguides (without metamaterial), the
effect of the bend is visible: even for a small deviation,
the wavefield is composed of a combination of the mode 0
and of the mode 1, which is propagative at this frequency
(the incident wavelength is about 76 mm). Inserting the
metamaterial in the section of the waveguide after the bend
has the expected effect: the scattering produced by the bend
is almost suppressed in all cases. In transmission, the wave
pattern matches our expectations: the wavefronts maintain
their original direction (vertical in the representation of Fig. 3)
and this is visible also near the walls. This means that
the homogenization of the layered metamaterial is efficient
even near the wall. Remark that, even if the shallow water
approximation is questionable in the deeper layer of the
metamaterial structure, the experimental results show that
the whole structure behaves as expected by the homogenized
shallow water theory. Finally, attenuation of the transmitted
field is visible inside the metamaterial waveguide. This is due
to the small water depth h2 above the layered structure which
produces the bottom friction responsible for the observed
attenuation. With smaller and smaller depths h2 needed for
a higher bending angle, the attenuation increases with the
angle θ .

To quantify the efficiency of the bent metamaterial guide,
we carry out a modal analysis of the measured fields inside
the waveguides, before and after the bend. The modal
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FIG. 3. (Color online) Real part of the measured fields of surface
elevation in the reference empty waveguide without metamaterial
(top) and in the metamaterial waveguide (bottom) at frequency f =
4 Hz. Then, waveguides have a bending angle of (a) 10◦, (b) 20◦, and
(c) 30◦.

decomposition is performed in the virtual space (X,Y ):

η(X,Y ) = η0(X) +
∞∑

n=1

ηn(X) cos nπY/H, (5)

with

η0(X) =
∫ H

0
dY η(X,Y ),

(6)

ηn(X) =
√

2
∫ H

0
dY η(X,Y ) cos nπY/H, n > 0.

Before the bend, we simply have (X = x, Y = y) and after
the bend, the measured field η(x,y) is interpolated on a
grid (X,Y ) built using the optical transformation X = x and
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FIG. 4. (Color online) Modal components ηn(X), n = 0 (black),
n = 1 (red), and n = 2 (green) as a function of X (see text) before
and after the bend. For each angle θ , the reference empty waveguide
(top) and the waveguide with metamaterial (bottom) are shown.

Y = y − tan θx. Figure 4 shows the results at f = 4 Hz (the
first three propagative modes are shown).

Results confirm the qualitative observations drawn from
Fig. 3. In the absence of a metamaterial, the bend produces the
excitation of the higher modes n = 1,2. In the metamaterial
waveguide, this effect is reduced and mode 0 remains largely
dominant. The attenuation is visible in both cases but it is
more acute in the metamaterial waveguide and the increase
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of attenuation as θ increases is clear. For θ = 30◦, the
amplitude of the waves has almost vanished at the waveguide
outlet. Interestingly enough, we note that this makes the bent
metamaterial waveguide a good candidate for an efficient
“absorbing beach” since it behaves as a perfectly matched
layer (i.e., without reflection). Indeed, it allows for the wave to
leave the first part of the guide without backwards reflection
and the attenuation ensures no reflection coming from the end
of the bent part of the guide.

We measure the contribution of mode 0, η0(X), to the total
field in reflection X < 0 and in transmission X > 0. To do
that, we define

|η0| ≡
∫

dX |η0(X)|, |η| ≡
∫

dX

∫ H

0
dY |η(X,Y )|.

The integrals are performed for X < 0 and we denote rR ≡
|η0|/|η| the weight of mode 0 in reflection, and for X > 0 and
we denote rT ≡ |η0|/|η| the weight of mode 0 in transmission.
These weight coefficients verify 0 ! rR ! 1 and 0 ! rT ! 1,
where a weight equal to 1 corresponds to a wave with only
mode 0. Results are shown in Fig. 5 as a function of frequency
for the three angles θ = 10◦,20◦,30◦.

In all cases, the same tendencies are visible: in the low
frequency limit, the mode 0 is always dominant. Moreover, a
frequency increase in the reference empty waveguide results
in the appearance of higher order modes which produce a
decrease in the contribution of mode 0 to the total field.
This appearance of higher order modes indicates that the
scattering strength due to the bend increases. However, in the
metamaterial waveguide, mode 0 remains largely dominant
for all frequencies. This confirms the efficiency of the layered
structure to produce a shifter effect in the bent guide.
Besides, it is observed that the departure from shallow water
approximation has no significant impact.

Our experiments show that it is possible to implement
coordinate transformation metamaterials for surface waves in
simple water. This contrasts with previous experiments where
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FIG. 5. (Color online) Contribution of mode 0 to the total field:
left column, rR in reflection (X < 0) and right column, rT in transmis-
sion (X > 0) as a function of frequency. Red curves for the metama-
terial waveguide and black curves for the reference empty waveguide.

the special liquids used are chosen for their low capillary
effects or their low attenuations [13,14]. The efficiency of the
layered structure to produce the shifter effect is quantitatively
demonstrated owing to the space-time resolved measurements
of the complete water wavefield. The shallow water approxi-
mation imposes nonmagnetic coordinate transformation where
the water depth is the anisotropic parameter. Considering the
full dispersion relation of water waves should allow for the
possibility of using magnetic transformations.
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