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Abstract. Propagation in perturbed one-dimensional phononic or photonic crystals, with both composi-
tional and positional disorder, is considered. The coherent potential approximation is used to obtain the
band structure and the Floquet normal form of the periodic-on-average perturbed crystal, which is modified
differently with respect to the two kinds of disorder. For finite size crystals, the transmission amplitude is
calculated and compared to direct numerical simulations and to an estimate based on localization length.
The transmission spectrum is found to be better described using the full expression of the Floquet modes
of the disordered, but periodic on average, medium.

1 Introduction

Disordered photonic and phononic crystals have experi-
enced an increasing interest in recent years because of
their potential applications to acoustic filters [1,2], the
control of vibration isolation [3], noise suppression, and
the possibility of building new transducers [4]; for a re-
view see [5]. It is thus of interest to understand which
properties of such structures are sensitive to inherent im-
perfections in their design and which are not.

Disorder is known to produce localization. In quan-
tum mechanics, localization is discussed in terms of the
Lyapunov exponent and spatially localized solutions of
the Schrödinger equation. These localized modes always
appear in an infinite disordered medium, and they can
appear in a disordered medium of finite size. In classical
waves, it is usual to characterize the medium in terms of
an effective medium. One finds that the dispersion rela-
tion K(ω) departs from the dispersion relation k(ω) in the
absence of disorder, and the imaginary part of the effec-
tive wavenumber K equals the inverse of the localization
length in most cases. In the case where the unperturbed
medium is free space, the imaginary part of the effective
wavenumber K is only due to the introduced disorder.
In the case of photonic or phononic crystals, the band
structure of the unperturbed medium is more complicated,
with a wavenumber Q of the Bloch Floquet mode being
either purely real (pass band) or purely imaginary (stop
band). Thus, the modification of the band structure when
disorder is introduced is more involved [6,7]. Recently,
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some unexpected behaviors have been observed, such as
the suppression of localization in layered left- and right-
handed structures perturbed in the optical indices [8,9]
and the conversion of stop bands into pass bands in opal-
type systems [10].

In this paper, we consider the propagation of a wave
described by the wavefield u(x) in a one-dimensional pho-
nonic/photonic crystal made of point scatterers (Kronig-
Penney system) [11,12]. The wavefield u satisfies

u′′(x) + k2u(x) = 2k
∑

n

Vnδ(x − xn)u(x), (1)

with Vn being dimensionless and purely real to ensure
energy conservation. This model has a range of appli-
cations including low frequency propagation of guided
waves [13–16] and propagation in crystal lattices [17,18].
The perfect periodic situation occurs when xn = nd and
Vn = V . Here we consider the case of both compositional
disorder and positional disorder, namely

Vn = (1 + ξn)V, with |ξn| ≤ ξ/2,

xn = (n + εn)d, with |εn| ≤ ε/2.

In our derivation, we are restricted to the cases where
ε < d. This is of importance since we can define a unit
cell, say [(n − 1/2)d; (n + 1/2)d] that contains a single
scatterer for any realization of the disorder. This means
that the case of scatterers randomly distributed with all
space available is inaccessible in our study: our reference
configuration is the perfect periodic configuration.

We apply the coherent potential approximation (CPA)
to derive the form of the Floquet normal form of the
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perturbed phononic crystal, assuming that the effec-
tive medium behaves as a periodic-on-average medium.
This means that the full characterization of the wave
is obtained, beyond the determination of the effective
wavenumber K only. Namely, we find

v(x) = f(x)eiKx + g(x)e−iKx, (2)

with g(x) = f(d − x), f(x) a d-periodic function,

f(x) = ei(k−K)x + Be−i(k+K)x,

and

B =
ei(k−K)d − 1 − iV [1 − sinc (εkd)]
1 − e−i(k+K)d − iV [1 − sinc (εkd)]

with sincx = (sin x)/x. In equation (2), v = u in the per-
fect periodic case and v = 〈u〉 refers to the wavefield aver-
aged over all realizations of disorder when the perturbed
periodic case is considered.

The CPA calculation is performed for an infinite sys-
tem at second order in both ε and ξ. This allows us to
see how the band structure is modified differently with re-
spect to the two kinds of disorder. The result is compared
with the Lyapunov exponent calculated in [19] using a
Hamiltonian map approach (a discrepancy is found in the
result on the effect of the compositional disorder).

For comparison with our direct numerical calculations,
slabs of finite size (N point scatterers, say) are consid-
ered. Assuming that the decomposition into right- and
left-going Floquet normal modes is still valid in finite
size system, we derive the transmission amplitude TN (see
Eq. (37)), that accounts for the internal reflections in the
slab. Comparisons of the transmission amplitude |TN |CPA

obtained using our CPA approach and numerical results
show good agreement, except near the band edges. When
compared to an usual estimate of the transmission co-
efficient, or localization factor, |TN |loc = e−Nd/Lloc, our
prediction appears to be more precise because it accounts
for the finite size of the slab.

2 Coherent potential approximation
in a perturbed phononic crystal

We apply the coherent potential approximation (CPA),
initially developed in terms of the effective Green func-
tion in the context of electronic transport in disordered
alloys [20] and adapted to the problem of propagation in
perturbed periodic media [21].

In the CPA, the scattering matrix of a unit cell embed-
ded in an effective medium is considered (Fig. 1). When
the unit cell is identical to the cells described by the ef-
fective medium, the scattering matrix is required to be
the identity, and this allows us to derive the properties of
the effective medium. This approach has been extensively
used in periodic media (see e.g., [22,23]) and in random
media (e.g., [24]).

In this paper, we adapt the CPA to characterize the
normal Floquet mode to the case of a disordered system,

nd

(n − 1)d + y nd + yxnnd

a1

a2

b2

b1

Fig. 1. Configuration used in the CPA approach. An isolated
cell (n − 1)d + y < x < nd + y is embedded in a host medium.
Inside the cell, there is a single scatterer located at xn.

periodic on average. To do that, the perfect periodic case
is used. We first derive the system of equations (10) that
will be used in both perfect and perturbed periodic cases.
We consider a unit cell containing a single scatterer. The
cell is embedded in an effective periodic medium (perfectly
periodic or periodic on average) and the medium is charac-
terized by a Floquet mode with normal form for the right-
going wave f(x)eiKx, where f(x) is a d-periodic function.
The left-going wave is g(x)e−iKx with g(x) = f(d − x).

2.1 Scattering matrix of a unit cell embedded
in an effective medium

The scattering matrix of the cell is written
(

b1

a2

)
= S

(
a1

b2

)
(3)

with
S =

(
r t̃
t r̃

)
. (4)

The solution can be written as

v(x) =






a1f(x)eiKx + b1g(x)e−iKx, x < (n − 1)d + y,

A1eikx + B1e−ikx, (n − 1)d + y ≤ x < xn,

A2eikx + B2e−ikx, xn ≤ x < nd + y,

a2f(x)eiKx + b2g(x)e−iKx, x ≥ nd + y,
(5)

with εd/2 < y < (1−ε/2)d. This ensures that the scatterer
remains inside the unit cell for any value of xn = (n +
εn)d, |εn| ≤ ε/2, and does not reach the interfaces of the
cell. Thus, the boundary conditions to be applied at each
interface of the cell are the continuity of the field v and its
first derivative v′. At the scatterer position x = xn inside
the cell, v satisfies

v(x−
n ) = v(x+

n ),

v′(x+
n ) − v′(x−

n ) = 2kVnv(xn),

with Vn = V (1+ξn). The calculations are straightforward
(some technical derivations are collected in the Appendix).
An important immediate result is obtained: the scattering
matrix is not expected to depend on the y-value. Indeed,
the interfaces x = (n − 1)d + y and nd + y are fictitious
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and moving them within the above mentioned limits on
y leaves the problem unchanged. As a consequence, the
form of the function f(x) can be deduced: to do that, it
is sufficient to consider the transfer matrix T1 at the first
interface x = (n − 1)d + y, written as

(
A1eiknd

B1e−iknd

)
= T1

(
a1eiKnd

b1e−iKnd

)
, (6)

with

T1 =

(
F+(y)ei(k−K)d F−(d − y)
F−(y)e−i(K+k)d F+(d − y)

)
, (7)

where we have defined

F±(y) = ±[f ′(y) + i(K ± k)f(y)]ei(K∓k)y/(2ik) (8)

(and we have used g(y) = f(d − y)). Because T1 cannot
depend on y, F± have to be constant. Without loss of gen-
erality, we choose F+ = 1 and F− = B, with B a constant
to be determined. The differential system, equation (8),
becomes

[f ′(y) + i(K + k)f(y)] ei(K−k)y = 2ik,

[f ′(y) + i(K − k)f(y)] ei(K+k)y = −2ikB,

which we integrate to obtain

f(y) = ei(k−K)y + Be−i(k+K)y for 0 < y < d. (9)

This result is of importance since it reduces the determina-
tion of the function f to the determination of the constant
B only. Also, it is consistent to find that the function f re-
stores the behavior of the wave within a unit cell: the wave
is described by a combination of Floquet modes f(x)eiKx

and g(x)e−iKx, which, from (9) (and g(y) = f(d − y)),
turns out to be a combination of a right-going wave eikx

and a left-going wave e−ikx propagating in free space as
expected.

Using equation (9), it is straightforward to derive the
scattering matrix (see the Appendix). We report the re-
sults (r, t), expressed as the solutions of the system below






[
1 + iVn + iVnBe−2iεnkd

]
t − Bre−2iKnd = ei(k−K)d,

[
−iVne2iεnkd + B(1 − iVn)

]
t − re−2iKnd = Be−i(k+K)d.

(10)
This system is a pair of equations involving four un-
knowns, r, t, B(ε, ξ) and K(ε, ξ), all dependent on ε and
ξ. In addition to the explicit dependence on εn and ξn

in equation (10), only t and r depend on εn and ξn. We
also report the expression of t = t̃ (see Eq. (4)), solution
of (10),

t(ε, ξ; εn, ξn) =
1 − B2e−2ikd

Ω
ei(k−K)d,

Ω = (1 + iVn) + 2iVnB cos(2εnkd) − B2(1 − iVn), (11)

which will be used in the following.

2.2 The perfectly periodic case

We denote here

r0(εn, ξn) ≡ r(0, 0; εn, ξn), t0(εn, ξn) ≡ t(0, 0; εn, ξn),

the reflection and transmission amplitudes when the host
medium is perfectly periodic. Also, we denote

B0 ≡ B(ε = 0, ξ = 0), Q ≡ K(ε = 0, ξ = 0),

the corresponding Floquet normal mode and wavenumber.
The CPA predicts that the unit cell is transparent for the
wave propagating in the host medium when it is identical
to the cells forming the host medium. The unit cells in
the perfectly periodic medium are composed of identical
point scatterers located at md (εm = 0) and with potential
strength Vm = V , (ξm = 0). We deduce that

r0(0, 0) = 0 and t0(0, 0) = 1, (12)

which gives, from (10),





1 + iV + iV B0 = ei(k−Q)d,

−iV + B0(1 − iV ) = B0e
−i(k+Q)d.

(13)

Eliminating B0 gives the dispersion relation for the
Floquet mode as the condition of solvability, namely,

cosQd = cos kd + V sin kd. (14)

We also find that

B0 =
ei(k−Q)d − 1
1 − e−i(k+Q)d

. (15)

The normal form of the Floquet mode in the perfect peri-
odic case is given by the Floquet wavenumber Q and the
function f(x) in equation (9), with B = B0.

Although we only need here to consider the scattering
matrix for εn = ξn = 0, it will be useful for the following
to derive the expansion of t0(εn, ξn) at first order in εn

and ξn. From equation (11), we obtain

t0(εn, ξn) = 1 − iV
(1 + B0)2ei(K−k)d

1 − B2
0e

−2ikd
ξn + O(ε2n, ξ2

n)

= 1 − iV
sinkd

sinQd
ξn + O(ε2n, ξ2

n). (16)

The error term in equation (16) means all quadratic (or
higher-order) combinations of εn and ξn.

2.3 Derivation of the dispersion relation
for the perturbed phononic crystal

We now adapt the CPA when the host medium corre-
sponds to a periodic-on-average medium. Here, the char-
acteristics of the cells forming the host medium result
from an average (of its position and scattering strength).
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We thus impose the vanishing of the scattering matrix on
average

〈t〉 = 1 and 〈r〉 = 0, (17)

where we define averaging by

〈f〉 =
1
εξ

∫ ε/2

−ε/2

∫ ξ/2

−ξ/2
f(εn, ξn) dξn dεn.

Although it would be possible to deal with the explicit ex-
pressions of t and r, it turns out that it is more convenient
to average the system (10). Thus, using equation (17), we
obtain





1 + iV (1 + tξ) − ei(k−K)d + iV (tε + tεξ)B = 0,

−iV (tε + tεξ) +
(
1 − iV (1 + tξ) − e−i(k+K)d

)
B = 0,

(18)
where we have defined the unknown averaged quantities






tξ ≡ 〈tξn〉,
tε ≡ 〈te±2iεnkd〉,
tεξ ≡ 〈tξne±2iεnkd〉.

(19)

As in the periodic case, we obtain the dispersion relation
by eliminating B in equation (18). The Floquet wavenum-
ber K satisfies

cosKd = cosQd + V tξ sin kd − V 2eiKd T1, (20)

where we have used equation (14) and we have defined

T1 ≡ 1
2

[
(1 + tξ)2 − (tε + tεξ)2

]
. (21)

We can also calculate B from equation (18),

B =
ei(k−K)d − 1 − iV T2

1 − e−i(k+K)d − iV T2
, (22)

with
T2 ≡ 1 − tε + tξ − tεξ. (23)

At this stage, we have not made any approximations. How-
ever, the characteristics of the normal Floquet mode re-
quire that T1 and T2 (defined in Eqs. (21) and (23)) be
determined, and these quantities depend on the value of
t, which is unknown. Thus, we derive an expression for
t, obtained assuming that ε and ξ are small. To obtain
a second-order approximation to equations (20) and (22),
we see that we need only a linear approximation for t.
This is obvious from equation (19) for tξ and tεξ; for tε, it
is sufficient to remark that tε = 1 − 2〈t sin2 (εnkd)〉, and
sin2 (εnkd) is a second-order term in εn. The expansion of
t is

t(ε, ξ; εn, ξn) = a0 + a1ε + b1ξ + c1ξn

+ O(ε2n, ξ2
n, ξ2, ε2); (24)

there is no term linear in εn since equation (11) shows that
t is an even function of εn.

We now derive the coefficients a0, a1, b1 and c1 in the
expansion (24). We first use that t(0, 0; εn, ξn) = t0(εn, ξn)
and then from equation (16) we obtain

a0 = 1, c1 = −iV
sin kd

sin Qd
. (25)

Then, using 〈t〉 = 1 in equation (24), namely 〈t〉 = 1 +
a1ε + b1ξ (since 〈ξn〉 = 0), gives

a1 = b1 = 0.

Thus, correct to first order,

t = 1 − iV
sin kd

sin Qd
ξn + O(ε2n, ξ2

n, ξ2, ε2).

The averages tξ, tε and tεξ in equations (19) are

tξ = − iV

12
sin kd

sin Qd
ξ2 + O(ξ3, ε3),

tε = sinc (εkd) + O(ξ4, ε4),
tεξ = tξ + O(ξ3, ε3),

with sinc x = (sin x)/x. Then, from equations (21)
and (23), we deduce that

T1 = 1 − sinc (εkd) + O(ξ3, ε3) = T2. (26)

Hence the dispersion relation (20) becomes

cosKd = cosQd − V 2 [1 − sinc (εkd)] eiKd

− i
V 2 sin2 kd

12 sinQd
ξ2 + O(ξ3, ε3), (27)

and the function f is defined with B

B =
ei(k−K)d − 1 − iV [1 − sinc (εkd)]
1 − e−i(k+K)d − iV [1 − sinc (εkd)]

+ O(ξ3, ε3). (28)

Obviously, in the absence of disorder (ε = ξ = 0), we
recover that K = Q in (27) and B = B0 in (28).

2.4 Remarks on the effective wavenumber

Our expressions for K (Eq. (27)), diverge at the band
edges of the underlying periodic medium, where sinQd =
0. This happens when cos kdd + V sin kdd = ±1 for some
non-zero sin kdd. In acoustics, with a potential V ∝ k, the
low-frequency regime corresponds to a pass band with the
first band edge at kd = π. The first stop band appears
for π < kd < kd1d, with kd1d a band edge depending
on V . Thus, we expect our expressions to be valid below
the second band edge, or away from the band edges.

As we expect K to be close to Q, equation (27) can be
written

Kd ( Qd +
V 2(kd)2eiQd

6 sin Qd
ε2 + i

V 2 sin2 kd

12 sin2 Qd
ξ2. (29)
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In a pass band, Q is real and then equation (29) gives

Re(Kd) = Qd +
V 2(kd)2

6 tanQd
ε2, (30)

with no contribution from the compositional disorder.
Taking the imaginary part of equation (29) gives

Im(Kd) =
V 2

6

[
(kd)2ε2 +

sin2 kd

2 sin2 Qd
ξ2

]
. (31)

Thus, in a pass band, both kinds of disorder create an
attenuation.

In a stop band, Q is imaginary and equation (29) yields
Re(Kd) = 0 and

Im(Kd) = Im(Qd) +
V 2

6

[
(kd)2eiQd

sinh (iQd)
ε2 +

sin2 kd

2 sin2 Qd
ξ2

]
.

(32)
Again, both kinds of disorder create an attenuation.

The imaginary part of K is equivalent to the inverse
of the localization length L−1

loc, as calculated in [19] us-
ing a Hamiltonian map approach appropriate for deriv-
ing the Lyapunov exponent in an infinite system (to our
knowledge, this is the only approach able to deal with infi-
nite systems). Specifically, equation (8.37) in reference [19]
gives the localization length in the form

d

Lloc
=

V 2

2

[
sin2 kd

sin2 Qd
〈ξ2

n〉 +
k2

sin2 Qd
〈∆2

n〉K∆

]
. (33)

Here, ∆n is defined as the perturbation in the distance
between scatterers, xn+1−xn = d+∆n, and it is assumed
to satisfy k2〈∆2

n〉 ) 1. The function K∆ refers to possible
correlations; for two-point correlation, we have

K∆ = 1 + 2
〈∆n∆n+1〉

〈∆2
n〉

cos 2Qd. (34)

Our definition of εn concerns the disorder in the position of
the scatterers rather than from their relative distance ∆n.
In the absence of correlation, the probability distribution
of the distance between nearest scatterers is constant while
in our case, it is a triangular distribution with maximum
probability at d and with a length that is a measure of the
ε value [25]. The link between ∆n and εn is

∆n = d(εn+1 − εn) (35)

from which we deduce 〈∆2
n〉 = 2d2〈ε2n〉 and K∆ =

2 sin2 Qd. Substituting in equation (33), using 〈ε2n〉 =
ε2/12 and 〈ξ2

n〉 = ξ2/12, gives

d

Lloc
=

V 2

6

[
(kd)2ε2 +

sin2 kd

4 sin2 Qd
ξ2

]
, (36)

which should be compared with equation (31). Thus, it ap-
pears that our attenuation length Im(Kd) coincides with
the localization length as proposed in [19] in the limit
εkd ) 1 for the positional disorder but differs for the
compositional disorder by an additional factor 2. We do
not have an explanation for this discrepancy.

0 L

eikx

RNe−ikx

TNeikxtNf(x)eiKx

rNg(x)e−iKx

Fig. 2. Reflection and transmission of a wave incident in free
space by a slab made of a effective medium periodic on average;
the slab has finite size L.

2.5 Transmission amplitude through a slab of finite
size

Until now, we have considered the effective medium oc-
cupying the whole space from x → −∞ to x → ∞. We
now focus on a slab of effective medium occupying a finite
region of space, 0 ≤ x ≤ L (Fig. 2). An incident wave eikx

in free space is partly reflected and partly transmitted by
the slab. The reflection and transmission amplitudes, RN

and TN , are determined by applying the continuity condi-
tions of the field vN and its first derivative across the two
interfaces x = 0, L, with

vN (x) =






eikx + RNe−ikx, x ≤ 0,

tNf(x)eiKx + rNg(x)e−iKx, 0 ≤ x ≤ L,

TNeikx, x ≥ L,

f , g and K being known from equations (9), (27) and (28).
It directly follows that

TN = e−ikNd eikd − B2e−ikd

eikd−iKNd − B2e−ikd+iKNd
. (37)

This expression for the transmission amplitude accounts
for all the internal reflections inside the slab. This is be-
cause the complete normal forms of the Floquet modes
have been determined. In the absence of disorder, ε =
ξ = 0, the expression for TN is exact (with K = Q and
B = B0). When disorder is present, we have assumed that
a slab of finite size made of the perturbed periodic medium
behaves as a slab of the same size but made of the effective
medium. This means that we neglect possible boundary ef-
fects near x = 0 and x = L. This point will be discussed
elsewhere.

3 Results

3.1 Numerical implementation

Direct numerical calculations of the exact wavefields u(x)
with N scatterers were performed. A configuration con-
sists of N scatterers located at xn = (n + εn)d, with
strength Vn = V (1 + ξn), n = 0, 1, . . . , N − 1, εn and
ξn being randomly chosen with |εn| < ε/2 and |ξn| < ξ/2
(Fig. 3). An average of Nreal realizations of disordered
configurations is then performed to get v(x) ≡ 〈u〉(x).
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......

Tnum
NRnum

N

nd(n − 1)d0 xn−1 xn

Znan

an

x0 (N − 1)dxN−1

a0

Fig. 3. Convention used in the direct numerical calculations
using the impedance method (Zn).

To calculate u(x), we avoid implementing the transfer
matrix method. Indeed, although the transfer matrix ap-
proach is applicable in principle, numerical algorithms suf-
fer from instabilities [26]. Rather, we implement a method
based on the impedance (denoted Zn) [27,28], similar to
reflection or scattering matrix methods [29].

In each cell, xn−1 ≤ x ≤ xn, the wavefield can be
written

u(x) = an

[
eik(x−xn) + Zne−ik(x−xn)

]
, (38)

where Zn is the impedance (equivalent to the Dirichlet-
to-Neumann operator). The impedance is initiated with
ZN = 0, which accounts for the radiation condition af-
ter the Nth scatterer. Then, at each scatterer, the condi-
tions [u]xn = 0 and [u′]xn = 2kVnu(xn) give a backward-
recurrence relation for Zn,

Zn =
−iVne−iϕn + Zn+1(1 − iVn)eiϕn

(1 + iVn)e−iϕn + iZn+1Vneiϕn
, (39)

with ϕn ≡ k(xn+1 − xn), and ϕN = 0 (for conve-
nience, a ghost scatterer has been added at xN = xN−1).
Once (Zn)n=0,1,...,N have been computed, the amplitudes
(an)0,1,...,N are derived accounting for the source a0 =
eikx0 and using the forward-recurrence

an+1 = (1 − iVnZn − iVn)eiϕn an. (40)

The reflection and transmission amplitudes are deduced
for each realization i, 1 ≤ i ≤ Nreal,

Rnum
N,i = Z0e

2ikx0 , T num
N,i = ZNe−ikxN , (41)

followed by an averaging over all realizations,

Rnum
N =

1
Nreal

∑

i

Rnum
N,i , T num

N =
1

Nreal

∑

i

T num
N,i .

(42)
Results presented in this section have been obtained con-
sidering V = 0.3k (in the acoustic case, the potential 2kVn

in Eq. (1) is proportional to k2).

3.2 Numerical results

Figure 4 shows |T num
N | computed numerically (Nreal = 104

averages have been performed) for a slab of length N = 15.
We observe a clear difference in the resulting extinction
spectra and transmission spectra. In the case of positional
disorder, increasing the disorder makes the transmission
vanish except in the low frequency regime. This includes
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Fig. 4. Converged numerical values of |TN | as a function of
the frequency for (a) various amounts of disorder in position ε
(ε = 0, 0.1, 0.5 and 1) and (b) various amounts of disorder in
strength ξ = 0, 0.5, 1 and 5.

the gradual disappearance of the pass bands. For the max-
imum value of disorder, ε = 1, the phononic crystal has al-
most completely lost its band structure. Remarkably, this
also means that the introduced disorder can produce an
increase in the attenuation length that is a delocalization
in the stop band of the perfect phononic crystal (the trans-
mission increases from ε = 0 to ε = 1 for kd ∈ [1, 1.6]π). In
the presented case, this mechanism is less impressive than
the one presented in [10] where a stop band was found to
become an almost perfect pass band.

In the case of compositional disorder, increasing the
disorder produces also a global decrease in the trans-
mission. However, because the phononic crystal keeps its
spatial periodicity, the Bragg resonances at kd = nπ
are still efficient, resulting in a conflict between disorder-
induced localization and periodicity-induced constructive
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interferences at those frequencies. A similar conflict has
been observed in [30] for scatterers made of alternat-
ing dielectric slabs with positional disorder; in that case,
the survival of the Fabry-Perot resonant bands inside the
slabs of constant length was responsible for the observed
delocalization.

The second band edge at k0d with cos k0d +
V sink0d = −1 (here around 1.6π), being sensitive to the
value of the potential at each scatterer, disappears when
the disorder in potential increases. It results in the collapse
of a pass band and a stop band where the localization in-
creases in between two delocalized states at kd = nπ and
kd = (n + 1)π.

3.3 Comparison with CPA approach

Here, the results from direct numerical computation of the
transmission amplitude are compared with the transmis-
sion amplitude |TN |CPA in equation (37),

|TN |CPA =
∣∣∣∣

eikd − B2e−ikd

eikd−iKNd − B2e−ikd+iKNd

∣∣∣∣ , (43)

with K in equation (20) and B in equation (27). In addi-
tion, we report a comparison with a quantity often used
in localization studies,

|TN |loc ≡ e−Nd/Lloc, (44)

with d/Lloc = Im(Kd) in equation (27). It is known that
this quantity is questionable depending on whether the
system is in the localization regime or in the ballistic
regime (for a discussion see, e.g., [19]). However, it has
been shown in a series of papers that, for random systems
that are periodic on average, this analytical expression for
the transmission coefficient reproduces quite well the fre-
quency dependence of the transmission spectra [30–32],
and it is often referred as the “localization factor” in this
literature.

Results are shown on Figures 5 and 6 for kd ≤ 1.5π.
For large positional disorder, we see the expected dif-
ficulties near band edges (appearing in Eq. (27) when
sin Qd = 0 and sin kd -= 0). These regions require spe-
cial treatment [19,33]. Except in those regions, we observe
that the transmission properties of the perturbed periodic
medium are captured reasonably well by |TN |loc. However,
because it disregards the finite size effects of the slab, it is
less accurate than our prediction from the CPA approach,
|TN |CPA. To obtain this accuracy, the Bloch-Floquet mode
has to be fully characterized, beyond the determination of
the effective wavenumber only.

To quantify further the accuracy of both predictions,
we report in Figure 7 the error between the predictions
and the computed transmission as a function of the disor-
der strength and as a function of the frequency. Clearly,
|TN |loc is unable to quantitatively evaluate |TN |, which
can be seen as problematic if inverse problems are to be
contemplated. This is because the small error due to the
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Fig. 5. Transmission |TN | as a function of kd/π in a slab
of length N = 50 for increasing ε, from top to bottom
ε = 0.1, 0.14, 0.34 and 1. Black symbols show numerical cal-
culations with Nreal = 103 ensemble averages, plain red lines
show |TN |CPA from (37) and dotted blue lines show |TN |loc =
e−Nd/Lloc , with 1/Lloc = Im(Kd) in (27).

omission of the internal reflections can be of the same or-
der as the – also small – effect of the disorder that one
wants to capture.

4 Concluding remarks

We have presented a full characterization of the Bloch-
Floquet mode of the periodic-on-average medium resulting
from a one-dimensional crystal perturbed in both position
and potential strength. Assuming that the characteristics
of this mode are still valid when considering a slab of fi-
nite size, the transmission amplitude has been obtained.
The localization factor is an estimate of the transmission
amplitude based on the localization length, which disre-
gards the finite length of the slab. It is a good indicator
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Fig. 6. Same representation as in Figure 5 for increasing ξ,
from top to bottom ξ = 0.01, 0.3, 0.6 and 1.

of the effect of disorder but it is quantitatively unable to
reproduce the effect of the disorder. The CPA approach
gives a prediction of |TN | that accounts for the oscillations
of |TN | due to internal reflections, and it is well adapted
to describe quantitatively the scattering properties of real
systems. It is of interest to consider related inverse prob-
lems, inferring disorder properties from transmission mea-
surements, for example.

One of the authors (AM) acknowledges the financial support
of the Agence Nationale de la Recherche through the Grant
ANR ProCoMedia, Project ANR-10-INTB-0914.

Appendix: Derivation of the scattering matrix

The scattering matrix can be easily calculated owing to
the form of f in equaion (9) and owing to the form of the

(a)

(b)

Fig. 7. Errors in the |TN | estimate as a function of the disorder
strength and as a function of kd. (a) For positional disorder ε
and (b) for compositional disorder ξ. The plots on the top show
the error |TN | − |TN |CPA normalized with |TN |. The bottom
plots show the error |TN |− |TN |loc.

transfer matrices defined as:
(

A1eiknd

B1e−iknd

)
= T1

(
a1eiKnd

b1e−iKnd

)
(A.1)

(
A2eiknd

B2e−iknd

)
= Ts

(
A1eiknd

B1e−iknd

)
(A.2)

(
a2eiKnd

b2e−iKnd

)
= T2

(
A2eiknd

B2e−iknd

)
. (A.3)

The continuity conditions for v and v′ are applied at the
interfaces (n−1)d + y and nd + y. At the scatterer position
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x = xn, v satisfies v(x−
n ) = v(x+

n ) and v′(x+
n ) − v′(x−

n ) =
2kVnv(xn), with Vn = V (1 + ξn). We deduce

T1 =
(

ei(k−K)d B
Be−i(K+k)d 1

)
(A.4)

Ts =
(

(1 − iVn) −iVne−2ikεnd

iVne2ikεnd (1 + iVn)

)
(A.5)

and

T2 =
ei(k−K)d

1 − Be−2ikd

(
ei(k−K)d −Be−i(k+K)d

−B 1

)
. (A.6)

The total scattering matrix is deduced from the transfer
matrix T,

(
a2eiKnd

b2e−iKnd

)
= T

(
a1eiKnd

b1e−iKnd

)
(A.7)

and
T =

(
T11 T12

T21 T22

)
(A.8)

with

T11 =
e−i(K+k)d

1 − B2e−2ikd

[
(1 − iVn)e2ikd − 2iVnB cos(2εnkd)

− (1 + iVn)B2e−2ikd
]
,

T22 =
ei(K−k)d

1 − B2e−2ikd

[
(1 + iVn) + 2iVnB cos(2εnkd)

− (1 − iVn)B2
]
,

T12 =
e−ikd

1 − B2e−2ikd

[
− iVn

(
eikd(1−2ε) + B2e−ikd(1−2ε)

)

+ 2iB(sinkd − Vn cos kd)
]
,

T21 =
e−ikd

1 − B2e−2ikd

[
iVn

(
eikd(1+2ε) + B2e−ikd(1+2ε)

)

− 2iB(sinkd − Vn cos kd)
]
,

gives the scattering matrix, defined by
(

b1

a2

)
= S

(
a1

b2

)
(A.9)

with

S =
(

r t̃
t r̃

)
(A.10)

and

r = −T21

T22
e2iKnd, t =

1
T22

,

r̃ = −T12

T22
e−2iKnd, t̃ =

1
T22

,

where we have used T11T22 − T12T21 = 1. Explicit expres-
sions for r, r̃, t and t̃ can be obtained. Rather than give
these, we give the pairs (r, t) and (r̃, t̃) as the solutions of
two systems of coupled equations





[
1 + iVn + iVnBe−2iεnkd

]
t − Bre−2iKnd = ei(k−K)d,

[
−iVne2iεnkd + B(1 − iVn)

]
t − re−2iKnd = Be−i(k+K)d,

(A.11)
and





[
1 + iVn + iVnBe2iεnkd

]
t̃ + Br̃e2iKnd = ei(k−K)d,

[
−iVne−2iεnkd + B(1 − iVn)

]
t̃ + r̃e2iKnd = Be−i(k+K)d.

(A.12)
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