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We present an experimental study on gravity capillary wave turbulence in water. By using space-time

resolved Fourier transform profilometry, the behavior of the wave energy density j�k;!j2 in the 3D ðk; !Þ
space is inspected for various forcing frequency bandwidths and forcing amplitudes. Depending on the

bandwidth, the gravity spectral slope is found to be either forcing dependent, as classically observed in

laboratory experiments, or forcing independent. In the latter case, the wave spectrum is consistent with the

Zakharov-Filonenko cascade predicted within wave turbulence theory.
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Nonlinear wave interactions are ubiquitous in all do-
mains of physics [1]. Among these, weak nonlinear ran-
dom waves are especially interesting since they are able to
experience an energy cascade through different scales.
This has been described in the framework of wave turbu-
lence theory, which, in contrast to classical hydrodynamic
turbulence, possesses analytical predictions for the power
law scaling of the energy density spectrum [2–4]. Note also
the work of [5] on the interaction of bulk hydrodynamic
turbulence and free surface. There is still debate about
whether the physics of ocean waves is described well by
the wave turbulence theory (WT) even though this appears
to fit the spectra measured for ocean waves in many cases
[6,7]. To gain deeper insight into the concordance between
the theory and measurements, well-controlled laboratory
experiments have been developed in recent years [8–13].
These experiments have raised the question of whether or
not the conditions for the applicability of WT theory can be
in place in such finite systems. Indeed, this theory assumes
weak nonlinearities, low attenuation, and small finite size
effects, and meeting these requirements is particularly
difficult in a laboratory tank [13–16].

In the present Letter, we present space-time resolved
experimental results of different regimes of wave
turbulence.

The joint space-time power spectrum,

j�k;!j2 �
Z

drdth�ðr0; t0Þ�ðrþ r0; tþ t0Þieið!tþk�rÞ; (1)

shows how the nonlinear interactions spread the wave
energy in the 3D (k; !) space. This quantity fills the gap
between the k-space point of view of WT theory and the !
space which is usually more accessible in experiments

(even though the link between the wave action variables
used in the theory and the observable measurable quantities
is not obvious [17]). Note that several attempts have
previously been made to directly compute the wave num-
ber spectra [8,11,18]. The joint space-time power spectrum
allows us to test the validity of the premise of WT theory
that assumes the concentration of the wave energy on the
renormalized dispersion relation (which remains close to
the linear dispersion relation) and it allows us to evaluate
the isotropy of the energy distribution. We obtained
different turbulence regimes by varying the forcing fre-
quency range ½0; !m�. In one case, the wave field is shown
to be composed only of resonant free modes whose energy
is concentrated on the dispersion relation and the spectra
appear to be in good agreement with the Zakharov-
Filonenko (ZF) spectra [19]. In the other case, the wave
field is shared between the free modes and the nonresonant
slave modes [17] (also called bound waves [20]) and our
observations are similar to those of most of the laboratory
experiments, with the existence of an inertial range that is
dependent on the forcing amplitude [10,12,13].
In our experiments, water waves are generated by two

piston-type wave makers (20 cm large and 1 cm immersed)
in a ð177� 61Þ cm2 tank filled with water with depth at
rest h0 ¼ 5 cm. The wave maker motions are controlled by
a random signal within a broadband frequency range
½0; !m� with maximum amplitude A. We use excitations
with typically A between 1 and 30 mm and!m ¼ 25:1 s�1

(4 Hz, the experiment is hereafter referred to as
experiments I) and !m ¼ 9:44 s�1 (1.5 Hz, hereafter
experiments II). Note that the transition between gravity

and capillary waves corresponds to a wave number kc �ffiffiffiffiffiffiffiffiffiffiffiffi
�g=�

p ¼ 369 m�1 (!c ¼ 85 s�1).
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Waves were measured by an optical method (Fourier
transform profilometry) that we recently adapted for free
surface characterization [21,22] and previously used in the
context of wave turbulence in an elastic plate [23] (see also
[24]). A full space-time characterization of the velocity
field is performed. In the direct space, our spatial resolu-
tions in both directions are the size of the projected pixel
(0.2 or 0.4 mm in our experiments) and the temporal
resolution is 1=F, with F the acquisition frequency of the
high-speed camera (F ¼ 250 Hz in experiments I and
40 Hz in experiments II). The inspected field is 45�
45 cm2, with 9682 pixels and the measurements are per-
formed over 6000 successive time steps. The resulting
resolutions in the spectral space are �k ¼ 4:44� m�1

and �! ¼ 0:42 or 2:61 s�1 (with 600 successive time
steps in order to permit 10 averages). Finally, the acces-
sible range of wave numbers is limited by the phase
demodulation by k=2�< 1=�F ¼ 200 m�1, with �F the
wavelength of the projected fringes. The sensitivity is
improved by treating the phase shifts between two succes-
sive images (rather than the phase shift with a reference to
unperturbed free surface), resulting in the measurement of
the velocity of the surface elevation _�ðr; tÞ. Typical fields
and the corresponding renormalized probability density
functions are shown in Fig. 1 for both experiments I and
II. In order to evaluate if it is close to a Gaussian distribu-
tion [25], we calculate the skewness S � h _�ðrÞ3i=�3 and

the kurtosis K � h _�ðrÞ4i=�4 [with � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih _�ðrÞ2ip
the vari-

ance]. In experiments I, the field is typically non-Gaussian
with S ¼ 0:15 and K ¼ 3:54. On the other hand, in
experiments II, it is fairly Gaussian with S ¼ 0:023 and
K ¼ 2:95. This makes a priori experiments II a better
candidate to satisfy the assumption of WT theory, but the
full space-time characterization of the fields will give us
deeper insight into the differences between the two
experiments.

We first report the results obtained for experiments I,
where the forcing is between 0 and 4 Hz. The space-time
power spectra of the velocity j _�k;!j2 (and j _�k;!j2 ¼
j�k;!j2=!2) are computed by a multidimensional Fourier

transform [Eq. (1)]. The isotropy of j _�k;!j2 in the ðkx; kyÞ
space is illustrated in inset (ii) of Fig. 2 (and it has been
checked that the isotropy is preserved at all frequencies. By
averaging over the direction �k of k, one obtains the wave
energy spectrum j�k;!j2 ¼

R
d�kkj�k;!j2 (main plot of

Fig. 2), where the wave energy appears to be mainly
concentrated on the linear dispersion relation !ðkÞ,

!2ðkÞ ¼ gk tanhðkh0Þð1þ �k2=�gÞ: (2)

Nevertheless, as shown in inset (i) of Fig. 2, the wave
energy is shared between the resonant part of the wave
field on the linear dispersion relation !ðkÞ and a nonreso-
nant part composed of slave modes (with ! ! N!, k !
Nk) [17]. These latter modes, also called bound waves,

have already been observed numerically [16] and experi-
mentally [11,20].
The ðk;!Þ power spectra give the usual energy

density spectra j�!j2 ¼
R
dkj _�k;!j2=!2 and j _�kj2 ¼R

d!j _�k;!j2. WT theory for water waves predicts spectra

for gravity waves,

j�!j2 / P1=3!�4; j�kj2 / P1=3k�5=2; (3)

and for capillary waves,

FIG. 1 (color online). Typical instantaneous velocity fields
_�ðr; tÞ (color scale is in m=s). Top: Experiments I (A ¼
22 mm), the variance � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih _�ðrÞ2ip ¼ 0:16 m=s, skewness S �
h _�ðrÞ3i=�3 ¼ 0:15 and kurtosis K � h _�ðrÞ4i=�4 ¼ 3:54.
Bottom: Experiments II (A ¼ 28 mm), � ¼ 0:012 m=s, S ¼
0:023, K ¼ 2:95. The insets show the probability density func-
tions of the normalized wave velocity _�ðrÞ=�: circles for the
presented field, solid line when averaged over six fields at
different times, and dotted line the Gaussian fit with mean
zero and unit variance.
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j�!j2 / P1=2!�17=6; j�kj2 / P1=2k�15=4; (4)

where P is the injected energy. Figure 3 displays the energy
density spectra for experiments I. The inertial ranges for

capillary waves (k > kc) are forcing independent, with a
spectral slope close to the �17=6 value predicted by WT
[Eq. (4)]. For gravity waves (k < kc), the spectral slope is
forcing dependent, with values from �6 to �5 when
increasing the forcing amplitude. Our results are consistent
with most of the results of laboratory experiments: indeed,
similar tendency, with increasing spectral slope values
when increasing the forcing amplitude, has been observed
recently by several authors [10,12,13].
As suggested in [16], it is attractive to make the low

frequency forcing bandwidth as narrow as possible to try
(i) to enlarge the inertial range in the gravity regime and
(ii) to reduce the strong nonlinearities produced near the
injection scale. Therefore, we reduce the frequency band-
width in the series of experiments II with the maximum
frequency !m ¼ 9:4 s�1.
Figures 4 and 5 show the same quantities as for

experiments I (Figs. 2 and 3). Clear differences between
the two wave systems appear: the most significant is the
existence of a forcing independent inertial range with
scaling laws in agreement with the ZF predictions j�!j2 /
!�4. The spectra in the k space are shown in the inset of

Fig. 5, where the ZF prediction j _�kj2 / k�3=2 is displayed
for comparison.
Another clear different feature is the absence of non-

linear branches in Fig. 4, where nonlinear shifts with
respect to the linear dispersion relation are not measurable.
That means that the wave fields are only composed of
resonant harmonics that cascade through smaller scales
remaining on the dispersion relation manifold.

FIG. 2 (color online). Experiments I: Typical spectrum j�k;!j2
at low forcing (A ¼ 3 mm). Inset (i) shows a zoom of j�k;!j2 in
the gravity wave regime at high forcing (A ¼ 22 mm). The solid
line shows the linear dispersion relation!ðkÞ and the dotted lines
the dispersion relation of the slave modes N ¼ 2; 3; 4. Inset (ii)
illustrates the isotropy in the ðkx; kyÞ space by plotting j�k;!j2 for
! ¼ 138 s�1 (A ¼ 3 mm).

FIG. 3. Spectra j�!j2 in experiments I for A ¼ 1:5, 3, 7.5, 15,
22, and 30 mm. Vertical dotted lines at 30 s�1 and at !c ¼
85 s�1 delimitate the inertial range of the gravity regime. Top
inset: Corresponding spectra j _�kj2. Bottom inset: Spectral ex-
ponent as a function of A; open circles in the gravity regime and
plain circles in the capillary regime (multiple symbols corre-
spond to multiple fits in a moving window within the inertial
range).

FIG. 4 (color online). Experiments II: Typical spectrum
j�k;!j2 at forcing amplitude A ¼ 20 mm. Inset (i) shows the

collected dispersion relations for A ¼ 1, 6, 12, 20, and 28 mm.
The dashed line shows the linear dispersion relation and the
dotted line the first nonlinear mode. Inset (ii) illustrates the
isotropy in the ðkx; kyÞ space by plotting j�k;!j2 for ! ¼
27:64 s�1.
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WT theory [Eqs. (3) and (4)] predicts power laws in !
and k as previously discussed and also power laws in the
injected power P. A direct measurement ofP can be done in
decaying turbulence, as in [12]. Otherwise, an estimate is
given by the scaling P / !2

mA
2 obtained in [10]. Another

estimate is the maximum of the energy spectrum j�kj2max

that is shown to be proportional to !2
mA

2 in the inset of
Fig. 6; therefore, we use this latter estimate for P. Figure 6
shows typical values of the spectral amplitudes in the inertial
ranges j�kj2IR as a function of P for both experiments I and
II. In experiments I, we observe the same behavior as in
previous experiments of the literature [10], with a linear
power law with respect to P, both in the gravity and in the
capillarity regimes. More interestingly, in experiments II,

the power law with P1=3 is a better fit than the power law
with P1, in agreement with WT theory.

Our work exemplifies the complexity of determining the
parameters relevant to describe the weak or strong non-
linearities of turbulent wave fields in finite systems as used
in laboratory experiments. Evidently, the loss of sensitivity
to k-space discreteness and the associated resonance
broadening necessary for the approximate four free waves
interaction are expected to occur for large wave intensities.
On the other hand, at large wave intensities, the appearance
of bound modes may produce deviations with respect to the
WT theory. In our experiments, we have changed the wave
intensity for two forcing frequency ranges, and we ob-
served two different regimes of wave turbulence. In
experiments I, with broader forcing bandwidth, the pres-
ence of bound waves at large intensities indeed produce a
deviation with respect to WT theory, but decreasing the
wave intensity to eliminate the bound waves does not
permit us to approach the WT prediction. In
experiments II, with narrow forcing bandwidth, no bound

waves are generated for the intensities accessible experi-
mentally, and the wave system appears to be in good
agreement with WT theory, but we have not been able to
further increase the wave intensity to see the appearance of
bound waves. The difference between these two regimes
remains an open question. Further works are needed to
better understand the transition between both regimes, for
instance, by changing continuously the forcing frequency
bandwidth.
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