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An overview of recent work on the interaction of elastic waves with dislocations is given. The
perspective is provided by the wish to develop non-intrusive tools to probe plastic behavior in
materials. For simplicity, ideas and methods are first worked out in two dimensions, and results in
three dimensions are then described. These results explain a number of recent, hitherto unexplained,
experimental findings. The latter include the frequency dependence of ultrasound attenuation in
copper, the visualization of the scattering of surface elastic waves by isolated dislocations in LiNbO3,
and the ratio of longitudinal to transverse wave attenuation in a number of materials.

Specific results reviewed include the scattering amplitude for the scattering of an elastic wave
by a screw, as well as an edge, dislocation in two dimensions, the scattering amplitudes for an
elastic wave by a pinned dislocation segment in an infinite elastic medium, and the wave scattering
by a sub surface dislocation in a semi infinite medium. Also, using a multiple scattering formal-
ism, expressions are given for the attenuation coefficient and the effective speed for coherent wave
propagation in the cases of anti-plane waves propagating in a medium filled with many, randomly
placed screw dislocations; in-plane waves in a medium similarly filled with randomly placed edge
dislocations with randomly oriented Burgers vectors; elastic waves in a three dimensional medium
filled with randomly placed and oriented dislocation line segments, also with randomly oriented
Burgers vectors; and elastic waves in a model three dimensional polycrystal, with only low angle
grain boundaries modeled as arrays of dislocation line segments.
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I. INTRODUCTION

The interaction of acoustic waves with dislocations was
the subject of many detailed studies in the period from
the early 1950’s to the mid 1980’s, with the theory of
Granato and Lücke [1956 a;b] (hereafter GL) widely held
as the standard theory to this day. To be sure, the
GL theory has had many successes that have withstood
the test of time [Granato & Lücke, 1966]: It describes
particularly well damping, internal friction and modu-
lus change in solids. However, it is less successful in the
explanation of, say, thermal conductivity measurements
[Anderson, 1983].

From a theoretical point of view, the GL theory builds
on the string model of Koehler [1952] in which a pinned
dislocation segment is treated as a scalar string that vi-
brates around an equilibrium, straight, position. Also,
it is a mean-field theory that looks for an effective ve-
locity and attenuation coefficient for a coherent scalar
wave that propagates in a medium filled with many such
dislocations. Since it is a scalar theory, it cannot treat
simultaneously the three polarizations of an elastic wave,
of which the acoustic wave is but one, the longitudinal.

Also, being a mean field theory, it cannot describe the
interaction of an acoustic wave with a single, isolated
dislocation. Recently, however, experiments have been
able to distinguish quite clearly the attenuation of longi-
tudinal waves from that of transverse waves, using Reso-
nant Ultrasound Spectroscopy—RUS [Ledbetter & For-
tunko, 1995; Ogi et al., 1999; 2004; Ohtani et al., 2005].
Also, stroboscopic X-ray topography experiments have
been able to visualize quite clearly the scattering of 500
MHz surface elastic waves on LiNbO3 off single disloca-
tions [Shilo & Zolotoyabbko, 2002; 2003; Zolotoyabko et
al., 2001]. How is one to make quantitative sense of these
experiments? GL theory needs to be extended.

From a different point of view, plasticity in crystals,
particularly in metals, is widely understood to depend on
dislocation behavior, and there are important problems
in materials science, such as the brittle to ductile tran-
sition [Roberts, 2002], and fatigue [Suresh, 1998; Kende-
rian et al., 2003a; 2003b], where there is wide agreement
that dislocations play a significant, possibly determinant,
role. From an engineering design point of view the issue
is well controlled in the sense that structures can be, and
are, successfully constructed. From a basic physics point
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of view, however, those phenomena are far from being
understood, in the sense that current theoretical mod-
eling has no predictive power: If a new form of steel,
say, is fabricated, current theory cannot, to the best of
our knowledge, make quantitative predictions concerning
its mechanical properties as a function of temperature or
cyclic loading. It is our opinion that one important cause
for this lack of basic knowledge is the paucity of experi-
mental measurements (as opposed to visualizations) con-
cerning dislocations. This is so because dislocations need
to be seen through transmission electron microscopy of
samples that must be specially prepared [Xu et al., 2005;
Arakawa et al., 2006; Robertson et al., 2008]. It stands
thus to reason that it would be desirable to have quantita-
tive measurements carried out with non invasive probes.
Is this possible? We believe acoustic, or ultrasonic, mea-
surements may provide such quantitative data. In the
pursuit of this research program, we found that the com-
paratively simple and basic theory problems of the behav-
ior of elastic waves traveling through an elastic medium
full of dislocations, or the interaction of an elastic wave
with a single dislocations, were not well understood.

This paper provides a brief overview of our work in the
past few years on the interaction of sound with disloca-
tions.

II. THEORETICAL FRAMEWORK

We consider an homogeneous, isotropic, continuous
elastic medium of density ρ and elastic constants cijkl =
λδijδkl + µ(δikδjl + δilδjk). The experimental results we
have in mind for the theoretical framework to explain are
performed in three dimensions, so indices will take three
values: i, j, k, · · · = 1, 2, 3. It is instructive however, as
will be discussed below, to develop a theory in the sim-
pler case of two dimensional solids, in which case indices
will take the values a, b, · · · = 1, 2. The state of such a
system is described by a vector field ~u(~x, t), of (small, so
that equations will be linear) displacements ~u, at time t,
of points whose equilibrium position is ~x. Dealing with
a continuum means that we shall consider length scales,
particularly wavelengths, that are long compared with
interatomic spacing. We shall consider both infinite and
semi-infinite media, where wave propagation is governed
by the usual wave equation

ρ
∂2ui

∂t2
− cijkl

∂2uk

∂xj∂xl
= 0 (1)

with appropriate boundary conditions.

The elastic medium jus described supports the prop-
agation of longitudinal (acoustic) and transverse waves

that propagate with velocities cL =
√

(λ + 2µ)/ρ and

cT =
√

µ/ρ, respectively. We shall call γ their ratio:
γ = cL/cT . It is always greater than one.

Dislocations are modeled as one dimensional objects

(“strings”) ~X(s, t), where s is a Lagrangean parameter
that labels points along the line, and t is time. They

are characterized by a Burgers vector ~b. In the present
work, in three dimensions, we shall consider only dislo-
cations whose motion consists of slight deviations from
an equilibrium position that is a straight line, of length
L, joining two fixed (“pinning”) points, i.e., pinned dislo-

cation segments. When ~b is parallel to the straight line,
we have a screw dislocation; when it is perpendicular,
an edge dislocation. They are endowed with mass per
unit length m, and line tension Γ. Their (unforced) mo-
tion will be described by a conventional vibrating string
equation

m
∂2Xi

∂t2
+ B

∂Xi

∂t
− Γ

∂2Xi

∂s2
= 0 (2)

with an ad-hoc friction term characterized by a first or-
der time derivative with a phenomenological coefficient
B. This term takes into account internal losses such as
dislocation interaction with phonons and electrons. The
coefficient B cannot be determined within the framework
of continuum elasticity, and is a parameter to be adjusted
by the data. Expressions for the mass per unit length m
and line tension Γ can however be found [Lund, 1988].
For an edge dislocation they are

m =
ρb2

4π

(

1 + γ−4
)

ln

(

δ

δ0

)

Γ =
ρb2c2

T

4π

(

1 − γ−2
)

ln

(

δ

δ0

)

(3)

where δ and δ0 are external and internal cut-offs. The
internal cut-off is roughly related to the distance from
the dislocation core at which linear continuum elasticity
ceases to be valid and the external cut-off is the distance
to the nearest defect, or the sample size if there are no
other defects. There are a number of assumptions needed
to get these expressions, they have been spelled out in de-
tail in Lund [1988], and will not be violated in the present
work (see however the discussion in Section IVD) Note
that the speed of propagation of perturbations along the
string

√

Γ/m (when the Lagrangean parameter s has di-
mensions of length) does not differ very much from the
speed of propagation of elastic perturbations in the bulk.

Why should a dislocation scatter sound (more gen-
erally, elastic waves)? This question was addressed by
Nabarro [1951] who identified two basic physical mech-
anisms: One, the stress associated with the wave would
load the dislocation, to which the latter would respond
by moving, which would in turn generate outgoing radi-
ation. This mechanism is sometimes addressed in the lit-
erature as “secondary radiation generated by dislocation
flutter”. The second mechanism is through the nonlin-
ear interaction generated by the probing of the wave of
the region inside the dislocation core, where Eqns. (1)
and (2) no longer hold. We expect this mechanism to be
negligible when wavelengths are long compared to core
radius, an assumption we have already made.
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The motion of the dislocation under external loading
is described by Eqn. (2) with a right hand side [Lund,
1988]:

m
∂2Xi

∂t2
+ B

∂Xi

∂t
− Γ

∂2Xi

∂s2
= Fk (4)

where

Fk(~x, t) = ǫkjmτmbiσij(~x, t)

is the usual Peach-Koehler [1950] force. All velocities are
supposed to be small by comparison with the speed of
wave propagation, so it is not necessay to worry about
Lorentz-like forces. ǫkjm is the completely antisymmetric
tensor of rank three (in two dimensions we shall use ǫab,
the antisymmetric tensor of rank two), τm is a unit tan-
gent along the (moving!) dislocation line, and σij(~x, t) is
the space- and time-dependent external stress which, in
Eqn. (4) is supposed to be evaluated at the dislocation

position, ~x = ~X(s, t). As has been noted, in three di-
mensions we shall consider pinned dislocation segments,
so the boundary conditions needed to solve (4) are fixed
endpoints. In two dimensions the dislocation is a point,
the equation is an ordinary differential equation and no
boundary conditions are needed. The solution is found
using standard techniques [Maurel et al., 2005a]: go to
the frequency domain and write the solution as a super-
position of the normal mode of the string.

Once the dislocation moves, it will generate waves.
How will it do it? By way of Eqn. (1) suitably modi-
fied by a right hand side source term. It was found by
Mura [1963] that this behavior was best described not in
terms of particle displacement ~u but in terms of particle
velocity ~v = ∂~u/∂t:

ρ
∂2vi

∂t2
− cijkl

∂2vk

∂xj∂xl
= si (5)

where the source term si is, when a single dislocation is
present,

si(~x, t) = cijklǫmnk

∫

L

ds Ẋm(s, t)τnbl
∂

∂xj
δ(~x − ~X(s, t)).

When many dislocations are present, it is enough to take
a sum over all of them.

In the deterministic case, i.e. when the right hand
side of (5) is precisely known, its solution is given by
a convolution of the Green’s function G0

im (also called
impulse response) of the medium with the source si:

vi(~x, t) =

∫

d3x′

∫

dt′G0
im(~x − ~x′, t − t′)sm(~x′, t′), (6)

the Green function G0
im being the solution to the equa-

tion

ρ
∂2

∂t2
G0

im(~x, t) − cijkl
∂2

∂xj∂xl
G0

km = δimδ(~x)δ(t) (7)

with appropriate boundary conditions. We shall consider
infinite two dimensional space, infinite three dimensional
space, and semi-infinite three dimensional space with a
stress-free boundary.

When very many dislocations are present, it is not
practical to consider a deterministic approach, a statisti-
cal one been more profitable and it will be discussed in
Section IV.

III. SCATTERING BY A SINGLE

DISLOCATION

As it was mentioned above, the ideas and methods
are best explained in a step-by-step way, starting in two
dimensions. There is one caveat in this case, namely
that wave propagation is qualitatively different in two
dimensions from wave propagation in three dimensions:
the impulse response in two dimensions has an infinitely
long tail in time.

A. Two dimensions, anti-plane case

The anti-plane case is a two dimensional elastic solid
whose displacements have only one nonvanishing compo-
nent, u(xa, t), a = 1, 2, perpendicular to the (flat) equi-
librium position. There is a screw dislocation that is also
perpendicular to the plane, as is its Burgers vector (see
Figure 1), with only one nonvanishing component b. The
cut of the dislocation line by the plane is a point Xa(xb, t)
[Maurel et al., 2004a].

u

b

k

FIG. 1: Scattering of an anti-plane wave by a single screw
dislocation: The motion occurs on a plane, along which the
wave propagates with wave vector k. The motion u however
is perpendicular to the plane, as is the Burgers vector of the
screw dislocation

This is a scalar wave problem, with the dynamics of the
dislocation being given by the appropriate specialization
of Eqn. (2):

m
d2Xa

dt2
= −µǫab

∂u

∂xb
( ~X(t), t) (8)

To keep things as simple as possible, we have omitted the
internal friction term.
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Concerning the anti-plane wave, it is described by the
appropriate specialization of (5), which is

ρ
∂2v

∂t2
− µ

∂2v

∂xa∂xa
= µbǫabẊb

∂

∂xa
δ(~x − ~X(t)) (9)

Its solution is found by the appropriate special case of
Eqn. (6):

v(~x, ω) = µbǫabẊb(ω)
∂

∂xa
G0(~x, ω) (10)

where an overdot means time derivative and the Green’s
function G0(~x, ω) for the wave equation in two dimen-
sions in infinite space with outgoing wave boundary con-
ditions is well known to be a Hankel function of the first
kind:

G0(~x, ω) =
i

4µ
H

(1)
0

(

ω|~x|
cT

)

We are assuming small displacements, so the disloca-
tion will move little, and the right hand side of Eqn. (8)
will be evaluated at the equilibrium position of the dis-
location, which we shall take to be the origin. Also, the
right hand side of that equation involves particle displace-
ment u. As mentioned above, the generation of waves by
a moving dislocation is best analyzed in terms of particle
velocity v = ∂u/∂t. So, taking the time derivative of (8)
and going to the frequency (ω) domain we obtain

Ẋa(ω) = −ǫab
µb

mω2

∂v

∂xb
(0, ω) (11)

Now comes another approximation: it is assumed that
the sound-dislocation interaction is sufficiently weak that
the scattered wave will be small compared to the incident
wave. In this case a Born approximation is appropriate
and the wave in the right hand side of (11) can be taken
to be the incident wave:

Ẋa(ω) = −ǫab
µb

mω2

∂vinc

∂xb
(0, ω) (12)

Substitution of (12) into (10) gives the solution for
the wave scattered by the screw dislocation. Taking the
asymptotic behavior of the Hankel function for distances
from the dislocation large compared to wavelength, we
finally get the scattered wave vs:

vs(~x, t) = f(θ)
eiωx/cT

√
x

e−iωt (13)

where we have taken an incident plane wave of frequency
ω propagating along the x1 direction:

vinc(~x, t) = eiω(x1/cT−t)

and the scattering amplitude comes out to be

f(θ) = −µb2

2m

eiπ/4

√

2πωc3
T

cos θ (14)

with θ the angle between the direction of incidence x1

and the direction of observation ~x. Expression (14) was
found by Eshelby [1949] and Nabarro [1951] on the basis
of thinking by analogy with electromagnetism. This anal-
ogy is no longer available in the more complicated cases
to be examined below. Note the, at first sight, unintu-
itive behavior of scattering: it grows with wavelength.
This behavior does not carry over to three dimensions,
where the finite length of a dislocation segment provides
an additional length scale to compare wavelength with.

B. Two dimensions, in-plane case

The two dimensional in-plane case corresponds to an
elastic wave propagating in two dimensions and inter-
acting with an edge dislocation whose Burgers vector
ba lies along the plane. Particle displacements ua(xb, t)
now occur along the plane as well (see Figure 2). There
are two possible polarizations for the wave: longitudinal,
with particle displacements along the direction of mo-
tion, with speed of propagation cL, and transverse, with
particle displacement perpendicular to the direction of
propagation, with speed of propagation cT .

b

kL

kT

FIG. 2: Scattering of an in-plane wave by a single edge dis-
location. The wave propagates along a plane, with two wave
vectors: kL for longitudinal polarization, and kT for trans-
verse polarization. The Burgers vector of the edge dislocation
lies within the plane

We only consider dislocation glide: that is, dislocation
motion along the direction of the Burgers vector. Dislo-
cation climb would involve mass transfer and falls outside
the scope of the problems for which the response of a dis-
location to an external load can be discussed within the
framework of continuum elasticity.

The main difference between the physics of anti-plane
and in-plane wave scattering from a dislocation is mode
conversion: a longitudinal incident wave can be partially
scattered as a longitudinal wave, and partially as a trans-
verse wave. Similarly, a transverse incident wave can also
be partially scattered as a longitudinal wave, and par-
tially as a transverse wave. The vector nature of the
problem introduces a need for a more cumbersome nota-
tion but does not add other physical difficulties. There
are thus four scattering amplitudes. The algebra was
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worked out in detail by Maurel et al., [2004a] and we
shall give here their expressions:

fLL(θ) =
µb2

2m

eiπ/4

√

2πωc3
L

(

cT

cL

)2

sin 2θ0 sin(2θ − 2θ0),

fLT (θ) =
µb2

2m

eiπ/4

√

2πωc3
L

cos 2θ0 sin(2θ − 2θ0),

fTL(θ) = −µb2

2m

eiπ/4

√

2πωc3
T

(

cT

cL

)2

sin 2θ0 cos(2θ − 2θ0),

fTT (θ) = −µb2

2m

eiπ/4

√

2πωc3
T

cos 2θ0 cos(2θ − 2θ0), (15)

where the first sub index indicates the polarization of the
scattered wave, and the second indicates the polarization
of the incident wave. For example, fTL is the amplitude
for the scattering of an incident longitudinal wave into a
transverse wave. The angle θ0 is the angle between the
direction of propagation of the incident (plane) wave and
the Burgers vector. Note that Eqns. (15) indicate a scal-
ing, particularly with wavelength, much the same as in
the anti-plane case. Since cT < cL, both longitudinal and
transverse waves have a larger amplitude for scattering
into transverse waves.

C. Three dimensions, pinned dislocation segment

in infinite space

We now go back to Eqn. (4) for a line segment ~X(s, t)
of length L (|s| ≤ L/2) that represents small deviations of
the position of an edge dislocation from an equilibrium

position ~X0(s, t) that is a straight line, with fixed end

points: ~X(±L/2, t) = 0 [Maurel et al., 2005a].

X(s,t)

kT

k
L

k
L kT

FIG. 3: An elastic plane wave is incident upon a pinned dis-
location segment. The latter responds by oscillating like a
string and re-radiating scattered elastic waves. Both incident
as well as scattered waves have longitudinal (kL) and trans-
verse (kT ) polarizations

As in Section III B only glide motion is allowed so Eqn.
(4) is projected along the glide direction t̂, which is a unit

vector along the direction of the Burgers vector ~b = bt̂.
We shall also use a unit (binormal) vector n̂ ≡ τ̂ × t̂,
overdots for time derivatives and primes for derivatives
with respect to s so that Eqn. (4) for X ≡ Xktk becomes

mẌ(s, t) + BẊ(s, t) − ΓX ′′(s, t) = µb Mlk∂luk( ~X, t),
(16)

with

Mlk ≡ tlnk + tknl. (17)

In this subsection we shall assume that the wavelength
is large compared to the length of the dislocation seg-
ment: kL ≪ 1. In this case it is possible to solve
Eqn. (16) evaluating the Peach-Koehler force at a sin-

gle point of the dislocation, say its middle point ~X0:

~u( ~X, t) ≃ ~u( ~X0, t). In the frequency domain, this equa-
tion becomes

−(mω2 + iωB)X(s, ω)−ΓX ′′(s, ω) = µbMlk∂luk( ~X0, ω),
(18)

whose solution, using the particle velocity ~v(~x, ω) =
−iω~u(~x, t), is

Ẋ(s, ω) = − 4

π

µb

m
S̃(s, ω)Mlk∂lvk( ~X0, ω), (19)

with

S̃(s, ω) =
∑

oddN

1

N(ω2 − ω2
N + iωB/m)

sin

[

Nπ

L
(s + L/2)

]

,

(20)
and

ωN ≡ Nπ

L

√

Γ

m
(21)

Taking Eqn. (6) to the frequency domain and substi-
tuting (19) into it gives

vs
m(~x, ω) =

8L

π2

µb

m

S(ω)

ω2
cijkl ti nj

× ∂

∂xl
G0

km (~x, ω)Mnp∂nvp( ~X0, ω), (22)

where we have used ǫjnhẊnτh = −Ẋnj and with

S(ω) ≡ πω2

2L

∫ L/2

−L/2

ds S̃(s, ω) ≃ ω2

ω2 − ω2
1 + iωB/m

.

(23)
The Green function G0

km for an infinite, homogeneous
and isotropic elastic medium in three dimensions is well
known [Love, 1944]. In a Born approximation, the in-
cident wave is replaced on the right hand side of Eqn.
(22) and to obtain the scattered wave the limit of G0

km
for distances large (compared to both wavelength and
dislocation size L) from the dislocation is used.



6

We shall consider an incident plane wave of frequency
ω that is the superposition of a wave with longitudinal

polarization, along the propagation direction k̂L, and a
wave with linear transverse polarization along a direction

k̂T , k̂L · k̂T = 0, with amplitudes AL and AT respectively:

~vinc(~x, ω) = ALei~kL·~xk̂L + AT ei~kT ·~xk̂T (24)

where kL = ω/cL and kT = ω/cT . Substitution of this
expression into (22) leads to longitudinal, ~vs

L, and trans-
verse, ~vs

T , scattered waves, far away from the dislocation:

~vs
L(~x, ω) = [fLLAL + fLT AT ]

eikLx

x
x̂,

~vs
T (~x, ω) = [fTLAL + fTT AT ]

eikT x

x
ŷ, (25)

with the scattering amplitudes

fLL = − 2

π3

(

ρb2

m

)

γ−4 L S(ω) fL(k̂0)gL(x̂)

fLT = − 2

π3

(

ρb2

m

)

γ−3 L S(ω) fT (k̂0)gL(x̂)

fTL = − 2

π3

(

ρb2

m

)

γ−1 L S(ω) fL(k̂0)gT (x̂)

fTT = − 2

π3

(

ρb2

m

)

L S(ω) fT (k̂0)gT (x̂)

(26)

where fL, fT , gL and gT are dimensionless functions that
depend on the geometry. Note that for long wavelengths
λ, all four scattering amplitudes scale like

f ∼ L

(

L

λ

)2

so that they vanish as the ratio of dislocation length to
wavelength, squared, leading to scattering cross sections
inversely proportional to wavelength to the fourth power
as in Rayleigh scattering. The direction of the transverse
polarization is found from the geometry of the problem.
Since γ > 1, both longitudinal and transverse incident
waves prefer to be scattered as transverse waves, just as
in two dimensions.

D. Three dimensions, pinned dislocation segment

in a half space

The experiments of Shilo and Zolotoyabko, [2002; 2003]
and Zolotoyabko et al., [2001] provide strong motivation
to tackle this problem. They have visualized the sur-
face waves scattered by a subsurface dislocation segment
in LiNbO3. From a theoretical point of view, Eqn. (6)
holds just as well for a half space as for a whole space,
the difference being that G0

im is now the impulse response
function of an elastic half-space with a stress-free bound-
ary. Finding this function is a well posed problem and has
been widely studied (see Maurel et al. [2007a] and refer-
ences therein). However, there is no expression available

that compares in simplicity or ease of analytical manip-
ulation with the expression for the impulse response for
a whole space. The differences with the whole-space re-
sponse are obviously especially important near the free
surface. Notably, in that region, in addition to poles
corresponding to the usual transverse and longitudinal
waves, there is an additional singularity that corresponds
to surface (Rayleigh) waves, whose speed of propagation
is cR = ζcT , where ζ ∼ 0.9 is the zero of the Rayleigh
polynomial P (ζ) = ζ6−8ζ4+8ζ2(3−2/γ2)−16(1−1/γ2).
These waves are not dispersive, and they have an ellip-
tical polarization, a combination of the longitudinal and
transverse perpendicular to the free surface [Landau &
Lifshitz, 1981]. They penetrate the medium for a dis-
tance comparable to their wavelength. Consequently, for
a dislocation to feel their presence it must be located at
a distance from the free surface that is less than a few
wavelengths.

In this subsection we are interested in the behavior of
the secondary radiation emitted by a dislocation excited
by the incident surface wave near the dislocation itself.
So the concepts of scattering amplitude and cross sec-
tion will not be used, they being tailored to the far-field
behavior of the secondary radiation.

u inc

z0

x1

x2

z

S

b α

α

ξ

FIG. 4: A subsurface dislocation segment lying in a semi-
infinite half space with a stress-free boundary is excited by a
surface Rayleigh wave. It responds by oscillating, and reradi-
ating. At the free surface, these secondary waves will interfere
with the incident wave [Maurel et al. 2007a].

We consider the configuration of Figure 4, and the first
order of business is to find the response of the disloca-
tion to the surface wave. This is given by the solution
of Eqn. (4) with the Peach-Koehler right-hand side com-
puted from the resolved shear stress generated by the
incoming surface wave at the position of the dislocation.
Importantly, it is possible to find such a solution without
assuming that wavelength is large compared to disloca-
tion length. Indeed, in the case at hand the wavelength is
small compared to dislocation length. The said response
is a straightforward but cumbersome expression that can
be found in Eqn. (3.7) of Maurel et al. [2007a]. In partic-
ular, we find that, for the conditions of Shilo & Zolotoy-
abko [2003] (wavelength λ ∼ 6 µm, dislocation depth of
2/kR) the amplitude of dislocation motion is of order 500
times the amplitude of the incident wave: X ∼ 500uinc

z

which gives about 25 nm for an incident wave of ampli-
tude 0.05 nm. The dislocation velocity Ẋ ∼ ωX thus
comes out around 90 m s−1, and we infer a, not unusual,
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drag coefficient B ≃ 10−5 Pa s.

Once the motion of the dislocation has been found, the
free surface vertical displacement us

z(~x)can be computed
from Eqn. (6). As already mentioned this involves the
Green function for a half space and the task is best done
numerically. This result can then be superposed with
the incident wave uinc

z (~x) to obtain the total displacement
uinc

z (~x)+uinc
z (~x), as is shown on Figure 5, and compare it

with the X-ray images of Shilo & Zolotoyabko [2003]. The
comparison appears satisfactory [Maurel et al. 2007a].

FIG. 5: The upper panel shows the interference pattern be-
tween incident and scattered waves generated at the free sur-
face by subsurface dislocation segments whose surface trace
is given by the dashed lines. The lower panel is a close up at
three times the magnification of the upper panel. The dashed
line is the direction of the main dislocation segment and the
dotted line indicates the direction of propagation of the inci-
dent wave [Maurel et al. 2007a].

IV. MULTIPLE SCATTERING

Acoustic attenuation experiments are typically per-
formed with samples that have a high dislocation density.
A wave that is incident upon a dislocation-filled medium
will interact with many dislocations and, in general, the
resulting wave behavior will be quite complex. Under cer-
tain circumstances however, special cases may arise: the
(multiply) scattered waves may interfere so as to gen-
erate a coherent, forward propagating, wave described
by a complex index of refraction whose real part gives a
renormalized speed of propagation, and whose imaginary
part gives an attenuation (see Figure 6). The origin of
this attenuation is that energy is taken away from the
incident wave by the radiation that is redirected in all
directions other than the incident one by the scattering:
this incoherent radiation may obey, in turn, a diffusion

equation characterized by a diffusion coefficient D, in-
troducing thus a different character for energy transport.
And further, it may happen that the diffusion coefficient
vanish, D = 0, in which case, we are in the presence of
Anderson localization [Sheng, 1990; 1995]. In the remain-
ing of this paper we shall deal with coherent elastic wave
propagation in an elastic continuum with many pinned
dislocation segments.

k

K

Coherent radiation
("Propagation")

n = nr + i ni

Incoherent radiation
("Diffusion")

D
(D = 0, "Localization")

MULTIPLE SCATTERING

FIG. 6: An elastic plane wave is incident on a medium filled
with randomly located scatterers. Part of it will propagate
coherently with a complex index of refraction n = nr + ini.
This implies a renormalized velocity, and an amplitude that
exponentially decreases with distance. Another part of it will
propagate incoherently, and may obey a diffusion equation
with a diffusion constant D, whose value may, under certain
circumstances, vanish, signaling Anderson localization.

When many dislocations are present, the behavior of
elastic disturbances is governed by the wave equation (5)
with a source term si that now reflects the presence of
many dislocations:

si(~x, t) = cijklǫmnk

N
∑

n=1

∫

L

ds Ẋn
m(s, t)τnbl

× ∂

∂xj
δ(~x − ~Xn(s, t)). (27)

Replacing the solution of the string equation (4) in this
source term leads to an equation of the form

ρ
∂2vi

∂t2
− cijkl

∂2vk

∂xj∂xl
= Vikvk (28)

where

Vik =
8

π2

(µb)2

m

S(ω)

ω2
L

N
∑

n=1

M
n
ij

∂

∂xj
δ(~x − ~Xn

0 ) M
n
lk

∂

∂xl

∣

∣

∣

∣

∣

~x= ~Xn

0

.

(29)
Equations of this type, when V describes a random index
of refraction have been much studied [Ishimaru, 1997].
Our case, however, is considerably different.
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A. Two dimensions, anti-plane case

In the two-dimensional, anti-plane case, the special
case of Eqn. (28) is

ρv̈(~x, t) − µ∇2v(~x, t) = µ

N
∑

n=1

bnǫabẊ
n
b

∂

∂xa
δ(~x − ~Xn).

(30)
where Xn is the solution of Eqn. (11) for the n-th dislo-
cation. Going to the frequency domain this gives

(

∇2 + k2
T

)

v(~x, ω) = −V (~x, ω)v(~x, ω), (31)

where the “potential” V is the appropriate special case
of (29):

V (~x, ω) =

N
∑

n=1

µ

M

(

bn

ω

)2
∂

∂xa
δ(~x − ~Xn

0 )
∂

∂xa

∣

∣

∣

∣

~Xn

0

. (32)

where kT ≡ ω/cT . In this expression, the positions ~Xn(t)
of the screw dislocations have been replaced by their

mean values (positions at rest) ~Xn
0 . The screw dislo-

cations in the right hand side of (31) are randomly, and
uniformly, placed. This is all the randomness we shall
consider in this subsection.

x

x

k0

1

2

v

σ

K

X0

b
n

n

FIG. 7: Anti-plane wave propagating through a medium filled
with many screw dislocations [Maurel et al., 2004b]. k is
the wave vector in the abscence of dislocations, and K the
effective wave vector for coherent propagation.

In the absence of scatterers, plane waves propagate
with a wave vector kT . The exercise is to find an effec-
tive wave vector KT , if it exists, for the propagation of
coherent plane waves.

A result that goes back at least to Foldy [1945] states
that, for low densities n of scatterers, this many-body
problem can be reduced to a single body one:

KT = kT + n

√

2π

k
〈f(0)〉e−iπ/4 (33)

where the effective wave vector is given in terms of the
forward scattering amplitude for single-body scattering,
and the brackets denote an average over all internal de-
grees of freedom (absent in the present case). We already

know the scattering amplitude, Eqn. (14), so it is easy
to replace in (33) to get

KT = kT

(

1 − µnb2

2mω2

)

. (34)

A simple minded expression for the attenuation length
Λ is given by

Λ−1 = nσ

where n is the dislocation density and σ is the total scat-
tering cross section for single dislocation scattering de-
fined as:

σ =

∫ 2π

0

dθ|f(θ)|2

Since we know the scattering amplitude for all angles,
f(θ) Eqn. (14), not only in the forward direction, we can
compute the total cross section to get an expression for
the attenuation length:

Λ =
8m2c4

T k

nµ2b4
. (35)

This simple minded approach is not available in more
complicated situations so we describe a more system-
atic approach, based on Green functions [Maurel et al.,

2004b].

The Green function approach is based on the fact that,
in the case when no scatterers are present, the propaga-
tion character of the wave is determined by the poles of

the corresponding Green function G0(~k, ω) in wavenum-
ber space:

G0(~k, ω) =
1

k2
T − k2

The strategy provided by Multiple Scattering theory
is to focus on the impulse response function G of the
medium filled with scatterers, in our case screw disloca-
tions:

(

∇2 + k2
T + V (~x)

)

G(~x, ~x′) = −δ(~x − ~x′). (36)

Then, since this equation involves a random operator V ,

consider the average < G(~k, ω) >, and look for its poles
in the form

〈

G(~k, ω)
〉

=
1

k2
T − Σ(k) − k2

(37)

where Σ(k), the mass operator, is a functional of the “po-
tential” V . Assuming (a big assumption) that there will
be a coherent wave whose (effective) wave vector does not
differ very much from the wave vector in the absence of
scatterers, the problem becomes finding the mass oper-
ator Σ perturbatively, treating the “potential” V as the
perturbation. To second order in V , the result is

Σ = 〈V 〉 + 〈V G0V 〉 − 〈V 〉G0〈V 〉. (38)
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The result of this calculation in the current, antiplane
case, is

Σ(k) =
µnb2

mω2
k2

[

−1 +
iρb2

8m

]

. (39)

to leading order in the real part, as well as the imaginary
part, of the mass operator. This expression can be read-
ily generalized [Maurel et al., 2004b] to the case when
the dislocations have random Burgers vectors, as well as
random masses.

We are now in a position to obtain the effective wave
number KT , the pole of 〈G〉 in Eqn. (37). Since KT is
supposed to be close to kT we get

KT ≃ kT

(

1 +
Σ(kT )

2k2
T

)

, (40)

≃ kT

(

1 +
µnb2

2mω2

[

−1 +
iρb2

8m

])

.

The real part of this expression coincides with (34), and
the imaginary part gives the attenuation length (35)
through:

Λ−1 = 2ℑ(KT )

The effective velocity veff ≡ ω/ℜ(KT ) for coherent wave
propagation is thus

veff = cT

(

1 +
µnb2

2mω2

)

Note that the effective phase velocity is greater than cT ,
although the group velocity is smaller. This is probably
an effect of the bidimensionality, and just like the de-
pendence on wavelength, it does not carry over to three
dimensions.

B. Two dimensions, in-plane case

As already mentioned, the main difference between the
anti-plane and in-plane cases is that the latter is of a vec-
tor nature: a wave with both longitudinal and transverse
polarizations travels in a medium filled with randomly
placed edge dislocations, whose Burgers vectors are ran-
domly oriented (see Figure 8. There will be two effective
velocities and two attenuation lengths, one for each po-
larization. On the technical side, the results of Foldy,
and of the Green function approach, mentioned in the
previous subsection, have to be generalized to this vector
case. The “potential” V , the Green function G and mass
operator Σ become rank-two matrices, and the effective
wave vectors are given by the zeros of the determinant of
< G >−1.

The generalization of the simple-minded approach of

x
2

x1

v
T

v
L

X0

n

b
n

θ
nkL,kT

KL ,KT

FIG. 8: An inplane wave is incident on a medium with many
edge dislocations whose Burgers vectors are randomly ori-
ented. kL and kT are the longitudinal and transverse wave
vectors, respectively, in the absence of dislocations. KL and
KT are the effective longitudinal and transverse wave vectors
of the coherently propagating wave [Maurel et al., 2004b].

Foldy to the anti-plane case gives [Maurel et al., 2004b]

Kc = kc + n

√

2π

kc
〈fcc〉b,θ(0)e−iπ/4,

= kc

(

1 − nµb2Ac

4mω2

)

, (41)

with

AL = γ−2,

AT = 1. (42)

There is no mode conversion into the forward direction
through scattering. The brackets 〈〉b,θ mean taking the
average for the magnitudes and orientations of the Burg-
ers vectors. The second line in Eqn. (41) is obtained
when all Burgers vectors have the same magnitude and
all orientations are equally likely.

The generalization of the Green function method leads
to

Kc = kc

{

1 − µnb2Ac

4mω2

[

1 −
(

1 +
1

γ4

)

iρb2

8m

]}

, (43)

The real part of this expression coincides with (41) and
the imaginary part gives two attenuation lengths, one for
longitudinal and one for transverse wave propagation

ΛL = 16
m2

nρ2b4

γ8

γ4 + 1
kL.

ΛT = 16
m2

nρ2b4

γ4

γ4 + 1
kT .

(44)

The above expression for attenuation length also sat-
isfy

Λ−1
L = n(σLL + σLT )

Λ−1
T = n(σTL + σTT ) (45)

where the scattering cross sections σab are given in terms
of the scattering amplitudes (15) by

σab =

∫ 2π

0

dθ < |fab|2 > (46)
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The effective velocities vc
eff ≡ ω/ℜ(Kc) for coherent

wave propagation are easily read off from (43):

vc
eff = cc

(

1 +
µnb2

4mω2
Ac

)

.

Just as in the antiplane case, the effective phase veloc-
ity, but not the effective group velocity, is larger in the
presence than in the absence of dislocations, an effect
probably due to the bidimensionality of the situation.

C. Three dimensions, many dislocation segments

We now study the configuration illustrated on Fig. 9
[Maurel et al., 2005b]. A plane elastic wave propagates
through an elastic medium that is filled with edge dis-
location segments whose end points are fixed, and they
are straight lines in equilibrium. The position of these
segments is random, with a uniform distribution through
space. The orientation of the lines is also random, also
uniformly distributed throughout the solid angle. All seg-
ments have the same length L and magnitude of Burgers
vector b. The latter is perpendicular to the line, but,
within that plane, the orientation is random, uniformly
distributed in angle. Dropping the assumptions of uni-
form distribution for the orientation of the lines and of
the Burgers vectors does not lead to significant complica-
tions. Dropping the assumption of constant L, however,
would lead to significant changes, as would dropping the
assumption of uniform distribution in space. Through-
out this subsection, wavelengths will be assumed to be
large compared to dislocation line segment length L.

k  , kL TvL
inc

vT
inc

x3

x2

x1

FIG. 9: An elastic wave with both longitudinal (L) and trans-
verse (T ) polarizations is incident upon a medium filled with
many, randomly placed and oriented, edge dislocations seg-
ments whose Burgers vector are randomly oriented as well.
[Maurel et al., 2005b].

In the Green function approach to multiple scattering
for this system, the starting point for the algebra is the

set of equations

ρω2G0
im(~x, ω)+cijkl

∂2

∂xj∂xl
G0

km(~x, ω) = −δimδ(~x) (47)

for the rank-three Green tensor G0
im that describes the

impulse response function of the elastic medium in the
absence of dislocations, and

ρω2Gim(~x, ω) + cijkl
∂2

∂xj∂xl
Gkm(~x, ω) =

−VikGkm(~x, ω) − δimδ(~x), (48)

where V is the “potential” of Eqn. (28), for the rank-
three Green tensor Gim that describes the impulse re-
sponse function of the elastic medium with a random
distribution of dislocations. Both equations have been
written in the frequency domain.

The exercise now is, as in two dimensions, to find ef-
fective wave numbers Ka (a = L, T ) for longitudinal as
well as transverse coherent wave propagation. In gen-
eral these effective wave numbers will be complex, with
the real part leading to effective speeds of wave prop-
agation, and the imaginary part leading to attenuation
lengths. They are found as the zeroes of the determi-
nant of the three by three matrix for the inverse of the
averaged Green tensor G in wave number space:

< G(~k, ω) >−1= G0(~k, ω)−1 − Σ(~k, ω) (49)

where the mass operator Σ is a functional of the “poten-
tial” V that can be found perturbatively. The result is,
to leading order for both the real and imaginary parts

KL ≃ kL

[

1 − 16

15π2

1

γ4

ρb2

m

S(ω)

ω2
nLc2

L

+i
64

225π5

3γ5 + 2

γ8

(

ρb2

m

)2 ℜ
[

S2(ω)
]

ω
nL2cL

]

,

KT ≃ kT

[

1 − 4

5π2

ρb2

m

S(ω)

ω2
nLc2

T

+i
16

75π5

3γ5 + 2

γ5

(

ρb2

m

)2 ℜ
[

S2(ω)
]

ω
nL2cT

]

.(50)

where S(ω) is given by (23) and n is the number of dislo-
cation segments per unit volume. The magnitude of these
effective wavenumbers is independent of orientation since
the effective medium is isotropic. This is a consequence
that, whenever random vector quantities appear, all di-
rections are equally likely.

The real part of these expressions leads to effective
wave velocities va = ω/ℜ(Ka) that are straightforward
to find. In the long wavelength limit they are

vL ≃ cL

(

1 − 16

15π4

1

γ2

µb2

Γ

nL3

1 + (ω/ωB)2

)

vT ≃ cT

(

1 − 4

5π4

µb2

Γ

nL3

1 + (ω/ωB)2

)

, (51)
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where ωB = mω2
1/B, and ω1 is the fundamental mode for

oscillations of the string-like dislocation segment, given
by (21), the only mode of importance for long wave
lengths.

The imaginary part leads similarly to attenuation co-
efficients αa = ℑ(Ka):

αL =
16

15π6

1

γ2

µb2nL5

cLΓ2

(

Bω2

1 + (ω/ωB)2

+
4(3γ5 + 2)

15π3γ4

ρb2L

cL

ω4[1 − (ω/ωB)2]

[1 + (ω/ωB)2]2

)

,

αT =
4

5π6

µb2nL5

cT Γ2

(

Bω2

1 + (ω/ωB)2

+
4(3γ5 + 2)

15π3γ5

ρb2L

cT

ω4[1 − (ω/ωB)2]

[1 + (ω/ωB)2]2

)

. (52)

Note that, for low frequencies and low damping, ω ≪ ωB,
both damping coefficients scale with frequency as

α ∼ C1(B)ω2 + C2ω
4 (53)

This is a reflection of the fact that the damping of the
coherent wave has two origins: internal losses, scaling like
frequency squared, and originated by disorder, scaling
like frequency to the fourth.

Finally, for fixed total dislocation line density, that is
fixed nL, measured in units of inverse surface, attenua-
tion coefficients scale with segment length L as

α ∼ L4

and the velocity changes ∆v = c − v scale as

∆v

c
∼ L2

just as in the GL theory [Granato & Lücke, 1966]. More
on this below.

1. Comparison of current theory

with attenuation experiments

The results developed in the previous paragraphs can
be put to the test since measurements of longitudinal
and transverse wave attenuation are available. Indeed,
quality factors Q have been measured for copper single
crystals [Ogi et al., 1999], copper polycrystals [Ledbet-
ter, 1995] and LiNbO3 [Ogi et al., 2004] using resonant
ultrasound spectroscopy (RUS), and its electromagnetic
variant (EMAR) for copper single crystals [Ogi et al.,
1999]. The frequency ranges of these experiments fall
into what has been called “low frequencies” in the calcu-
lations above, and it is a simple matter to find the ratio
of the longitudinal to transverse quality factors:

Q−1
T

Q−1
L

≃ 3

4
γ ∼ 1.30 − 1.56, (54)

QL/QT

Polycrystallyne copper using RUS (a) 1.6

LiNbO3 using RUS (b) 1.7

Copper single crystals using RUS (c) 1.4

Copper single crystals using EMAR (c) 2.1-2.3

Current theory 1.3-1.6

TABLE I: The ratio of longitudinal to transverse wave attenu-
ation according to current theory (bottom line) and according
to experiments: (a) Ledbetter & Fortunko [1995]; (b) Ogi et

al., [2004]; (c) Ogi et al., [1999]

Note that γ is just the ratio of longitudinal to trans-
verse wave propagation velocity, a quantity determined
completely by the material at hand. In this ratio there
is no dependence on material density, elastic constants,
or dislocation paramenters such as mass, line tension or
attenuation coefficient. There are thus no adjustable pa-
rameters. The range of values given in Eqn. (54) re-
flects a range in Poisson’s ratio of 0.25 to 0.35. Table
I compares the data with this value. The agreement is
satisfactory.

2. Granato-Lücke theory as a special case of current theory

The theory of Granato & Lücke [1966] is a special case
of the theory developed in the present paragraph. Indeed,
its starting point is the set of equations

ρ
∂2

∂t2
σ(~x, t) − µ

∂2

∂x2
2

σ(~x, t) = −µρ b
Λ

L

∫

ds ξ̈(~x, s, t),

mξ̈ + Bξ̇ − Γξ′′ = µσ. (55)

where Λ is the total length of movable dislocation (Λ =
nL in our notation), ξ is a scalar string (a simplification

of our ~X), and σ is a scalar stress (a simplification of our
σij). This system is solved looking for solutions of the
form

σ(x2, t) = σ0e
−αGLx2eiω(t−x2/vGL), (56)

that is, attenuated waves traveling along the x2 direction,
where αGL and vGL are, respectively the attenuation and
the effective wave velocity in the GL model, and it is
assumed that ξ does not depend on x3.

It is a straightforward exercise to check that Eqns.
(55) are obtained within our multiple scattering formal-
ism when looking at the system of Figure 10. That is,
a purely transverse waves is incident on an ensemble of
dislocation segments randomly placed but not randomly
oriented: they must all be parallel, along the x3 direc-
tion, according to Eqn. (55). Also, all the Burgers vec-
tors must point along the same, x1, direction. In the long
wavelength limit, attenuation length and effective wave
velocity obtained from this calculation coincides with our
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kT
vT

inc

x3

x2

x1

FIG. 10: Applying a multiple scattering formalism to a
shear wave incident upon a medium filled with many, ran-
domly placed but parallel, dislocation segments reproduces
the Granato-Lücke theory [Maurel et al., 2005b].

own, up to numerical coefficients. The distinguishing fea-
ture of our theory is that it can clearly discriminate be-
tween longitudinal and transverse polarizations. Also,
the effective medium corresponding to the situation de-
picted in Figure 10 is anisotropic so that an effective wave
vector will depend on the direction of propagation.

D. Three dimensions, low angle grain boundaries

It is well known that low angle grain boundaries can be
modeled as arrays of dislocations [Bragg, 1940; Burgers,
1940; Read & Schockley, 1950; Shockley & Read, 1949],
see Figure 11.

θ
b

FIG. 11: Low angle grain boundaries can be considered as
arrays of dislocations [Maurel et al., 2006].

On the other hand, Zhang et al. [2004] have measured
the frequency dependence of acoustic attenuation in poly-
crystalline copper with enough accuracy to find that it
scales as a linear combination of quadratic and quartic

terms:

α ∼ c1ω
2 + c2ω

4. (57)

While there appears to be general agreement that the
quartic term arises from Rayleigh scattering by the grain
boundaries, the quadratic term is a surprise. Is it possible
to rationalize these findings within a multiple scattering
framework?

We have already seen that this type of behavior is what
happens, for long wavelengths, when a coherent wave
propagates in a medium filled with many dislocations.
The quadratic term is associated with internal losses, and
the quartic term is associated with losses due to the dis-
order: The multiple scattering takes energy away from
the forward-moving coherent wave.

To proceed, the many dislocations considered in Eqn.
(28) are distributed in two classes: one class is grouped
as a number of parallel segments, that mimic a low an-
gle grain boundary. Then, each such class is randomly
distributed throughout space, see Figure 12. The details
in two dimensions can be found in Maurel et al. [2006],
and, in three dimensions, in Maurel et al. [2007b].

b

D

L

w

h
y

FIG. 12: Dislocation segments grouped in two classes mimic,
at long wavelengths, the response of randomly oriented grain
boundaries to acoustic waves [Maurel et al., 2007b]. Here,
w would be the grain size, D and L the rectangular grain
lengths, and h the spacing between dislocations within a grain
boundary.

This modeling does not capture the topology of the
grain boundaries, in the sense that such walls must meet
at joints, to actually enclose grains. However, long wave-
length propagation should be independent of these char-
acteristics. The result is [Maurel et al., 2007b] that
the prefactor of the quartic term in Eqn. (57) can be
obtained with reasonable values for the material under
study, without adjustable parameters. The usual source
of attenuation in polycrystals, changes in the elastic con-
stants from grain to grain, can be incorporated as an
additive effect, in perturbation theory. The prefactor of
the quadratic term can be fit assuming that the drag on
the dynamics of the dislocations making up the wall is
one to two orders of magnitude smaller than the value
usually accepted for isolated dislocations. As mentioned
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in Section II, the expressions (3) for mass and line tension
are valid for isolated dislocations. More precisely, they
involve a cut off that is the distance to the nearest defect.
In the case at hand, this distance is h, small compared
to wavelength, and these values should be revisited for a
more accurate assessment.

V. CONCLUSIONS AND OUTLOOK

We have provided a fairly complete theory of the inter-
action of elastic waves with dislocations, both in isolation
and in large numbers, leading to the understanding of a
number of quantitative experimental results, as well as
of a number of visualizations. What next?

As stated in the Introduction, one motivation for this
work has been to develop non intrusive probes of plastic
behavior of materials. The next logical step might be to
validate the results obtained with the current theory with
those obtained using conventional techniques. For exam-
ple two identical materials differing only in their density
of dislocations, a situation that appears not impossible to
achieve, would give rise to different speeds of sound, lead-
ing to different resonant frequencies in identically-shaped
samples. The dislocation density so inferred could then
be compared with the density measured through Trans-
mission Electron Microscopy.

Assuming that step to be successful, the next step
would be to develop suitable, hopefully portable instru-
mentation to probe dislocation density in any sample of
interest. The obstacle to be overcome would be to differ-
entiate the contribution of dislocations from the contri-
bution of other scatterers such as inclusions, vacancies,
grain boundaries and so on. This does not look an in-
surmountable job given the specific nature, such as angu-
lar dependence, of the radiation scattered by dislocations
compared to other defects.
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