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Abstract. – We present an acoustical method, based on time reversal, for simultaneous
characterization of temperature and velocity profiles. The method is numerically validated
in a case of free convection; the acoustic propagation is obtained from calculations of ray
propagation and the convective flow is described by analytical profiles or by fields stemmed
from numerical simulation. The ray theory approximation, used to solve the inverse problem,
is discussed.

Introduction. – Most of the usual techniques for temperature measurement are local and
intrusive (hot-wire probe, hot-film sensors, thermocouples). Some optical techniques such as
low-contrast shadowgraphy, visualization with thermal camera or induced fluorescence mea-
surement are examples of non-intrusive methods but can be used only for translucid fluids.
Furthermore, simultaneous measurement of the velocity field is not possible, or requires the
use of another technique. Among these techniques, acoustic waves provide a direct, non-
intrusive and non-localized way of probing hydrodynamic flow fields. Several approaches have
been proposed in the literature, e.g. ultrasound scattering [1, 2] or tomography [3]. When
the acoustic wavelength is small compared with the characteristic length of the flow and for
small Mach numbers, the description of the sound flow interaction is restricted to geometrical
acoustics; in this context, an ultrasonic technique, based on the time reversal process, has
been developed recently to study the structure and dynamics of localized vortices [4, 5]; the
presented work extends this method by including a simultaneous measurement of a tempera-
ture profile. The aim of this paper is to develop and to numerically validate the method, that
can be used as an investigation tool on an experimental set-up.

Principle. – In the limit where the frequency of the sound wave is very large compared
to the typical frequencies of the problem, a Hamiltonian system can be derived from the wave
equation for sound ray propagation [6]:


dr

dt
=
∂ω

∂k
,

dk

dt
= −∂ω

∂r
,

(1)

c© EDP Sciences



A. Maurel et al.: Simultaneous characterization of temperature etc. 585

Transducer

Transducer

φd

φr

x

x

x

y

U(x,y); T(x,y)
0

Fig. 1 – Configuration of the study.

where ω(r,k) is the wave pulsation, r the sound ray position and k the wave vector. In a
fluid at rest with uniform temperature T0, the usual relation ω0 = c0k describes a straight ray
propagation. With a fluid flowing with velocity u(r) in a non-uniform temperature field with
a thermal fluctuation of magnitude T , the pulsation writes ω(r,k) = c(T )k+ u(r) ·k; c(T ) is
the sound speed with temperature dependence, written at first order in T : c(T ) = c0(1+αT ),
where α is the thermal expansion coefficient. System (1) becomes


dr

dt
= c0(1 + αT )

k

k
+ u ,

dk

dt
= −c0αk∇T − (k · ∇)u − k ∧ (∇ ∧ u) .

(2)

This system can be integrated to determine the ray trajectories (see section Numerical exper-
iment). However, it is useful to simplify system (2) for small values of u/c0 and αT ; in this
latter case, two main effects of the flow on the sound ray can be isolated, with v = ∂tr = vn:

1) the fluid motion and temperature inhomogeneity result in a local modification of the
sound speed:

v = c0(1 + αT ) +
u · k
k

; (3)

2) the flow vorticity and the thermal gradients locally modify the direction of the wave
propagation:

dn

dt
= −c0α∇T + (∇ ∧ u) ∧ n . (4)

In an experiment of time reversal, we use two transducer arrays placed in front of each other
on both sides of the flow as shown in fig. 1. The first array sends a plane wave in the y-direction
across the flow (direct way). The second array records the signal φd(x), corresponding to the
direct time of flight td(x). Then time reversing the wave consists for each transducer of the
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second array in re-emitting the recorded signal after the sign of time has been changed, or
in other words, in emitting first the last part of the received signal. Finally, the first array
receives the “time-reversed” signal φr(x), corresponding to the time denoted tr(x). A “blank”
time of flight is defined in the fluid at rest at uniform temperature, leading to t0d(x) and t0r (x).
The time reversal procedure is known to compensate scalar inhomogeneities of the medium:
in the experiment described above, the wave, distorted after crossing a scalar-inhomogeneous
medium and time-reversed, recovers its initial shape after re-propagation through the medium.
On the other hand, it is expected and has been experimentally improved that a vectorial in-
homogeneity, such as the velocity flow field, violates the time reversal invariance [7]. In this
latter case, the effect of the vectorial inhomogeneity on the wave is amplified by the time re-
versal procedure. In the present case with both scalar (temperature fluctuation) and vectorial
(velocity flow field) inhomogeneities, it is expected that the direct time of flight contains both
signatures of T and u while the time-reversed signal only contains the signature of u.

To solve the inverse problem (td, tr) → (u, T ), we use eq. (3) in the approximation of
geometrical acoustics. The time shifts are defined as ∆td = td(x) − t0d(x) and ∆tr = tr(x) −
t0r (x). Using (3) in the hypothesis of straight line propagation ((4) is not taken into account;
this is discussed in the section Discussion) leads to system (5):


∆td = td(x) − t0d(x) ∼ −H

c0

(
〈uy〉
c0

+ α〈T 〉
)
,

∆tr = tr(x) − t0r (x) ∼
2H
c20

〈uy〉 .
(5)

In this system, it appears that only a mean value of the temperature and velocity field is
obtained, the average occurring along the ray propagation in the y-direction. As expected,
∆tr(x) does not depend anymore on the temperature field since, in system (2), the velocity
field u breaks the time reversal symmetry, i.e. T : t→ −t and k → −k, while the temperature
leaves (2) invariant by this transformation. Finally, the mean velocity and temperature profiles
can be written: 


〈uy〉(x) = − c20

2H
∆tr(x) ,

〈T 〉(x) =
c0
αH

(
∆tr(x)

2
− ∆td(x)

)
.

(6)

Numerical experiment. – We consider a flow induced by buoyancy effect between two
vertical walls of length H (y-direction) differentially heated (∆T between the two walls at
x = 0 and x = L). In this configuration, a horizontal temperature gradient appears in the
x-direction between the walls. This temperature gradient is responsible for the development
of a convection roll. The thermo-gravity force ρα∆Tg (ρ is the density and g the gravity)
induces fluid motion to the top along the hot wall and to the bottom along the cold one.
With ν the kinematic viscosity and κ the thermal diffusivity, it is possible to specify the flow
by three dimensionless parameters: the Rayleigh number Ra = αg∆TL3/(κν), the Prandtl
number Pr =

√
ν/κ and the aspect ratio a = L/H. At low Rayleigh number, the temperature

gradient is constant and the roll invades the whole cell; this regime corresponds to the basic
flow, independent of the y-direction [8]. With increasing further Ra, a secondary regime
appears, associated with the development of a vertical temperature gradient [9]; horizontal
velocity and temperature gradients concentrate in the boundary layers near the walls (S-
shaped profiles). Finally, at high Rayleigh numbers, the flow becomes turbulent. The whole
dynamics occurs in the turbulent boundary layers and the center of the cells is a slack region.
In the following, we consider a configuration where the aspect ration of the cell a is small so
that the flow is mainly vertical with a weak dependence on the y-direction.
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The field variables can be conveniently dimensionless by choosing units of length, temper-
ature and velocity: H, ∆T and c0. We take U =

√
κν/L for the characteristic velocity of the

flow (used in Ma = U/c0). The dimensionless temperature is written as θ and X̃ refers to the
dimensionless form of X. System (2) takes the form

dr̃

dt̃
= (1 +MaT θ)

k

k
+Maũ , (7)

dk

dt̃
= −MaT k∇θ −Ma((k · ∇)ũ − k ∧ (∇ ∧ ũ) . (8)

In the numerical experiment, the following procedure is chosen: the system is numerically
integrated using a fourth-order Runge-Kutta scheme with adaptive step size. The initial
conditions are at t̃ = 0 : r̃ = (x̃(i), 0) with x̃(i) = ia/N and k = (0, 1). The N ray trajectories
are integrated until ỹ = 1 and we denote x̃f (i) and kf (i) the position and the wave vector
at ỹ = 1. The direct time of flight between ỹ = 0 and 1 is denoted t̃d(i); the blank time
of flight is equal to 1. The back way is integrated using the following initial conditions at
t̃(i) = t̃a − t̃f (i), where t̃a is an arbitrary constant such that t̃(i) > 0: r̃ = (x̃f (i), 1) and
k = −kf (i). These conditions correspond to the transformation T of time reversal. Here,
t̃0b = t̃a.

A n a l y t i c a l p r o f i l e s f o r t h e b a s i c a n d s e c o n d a r y f l o w. For low Rayleigh
numbers, the flow is invariant of the ỹ variable and can be described in a dimensionless
form by {

θ(x̃) = x̃/a ,

ũy(x̃) = − Ra

6a3Pr
x̃(x̃− a/2)(x̃− a) . (9)

To take into account the finite dimension of the cavity and to obtain a solution for higher
Rayleigh numbers, a dependence on the y-direction has to be considered. Elder [9] shows
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Fig. 2 – Analytical (–) and reconstructed (◦) profiles for the basic ((a) temperature and (b) velocity)
at Pr = 15, Ra = 103, Ma = 10−7, MaT = 10−6 and for the secondary flow ((c) temperature and
(d) velocity) at Pr = 15, Ra = 104, Ma = 10−6, MaT = 10−5.
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Fig. 3 – Temperature (a) and velocity ((b) ũx, (c) ũy) fields from numerical simulation of Navier-Stokes
equations (Pr = 15, Ra = 104, Ma = 10−6, MaT = 10−5).

that a secondary flow occurs in laminar regime for moderated Rayleigh numbers where the
temperature field depends on the y-direction through the constant coefficient β = dθ/dỹ. The
temperature and velocity fields are given by


θ(x̃) = θm(ỹ) + f [ e−mx̃ cosmx̃− em(x̃−a) cosm(x̃− a)] ,

ũy(x̃) =
2m2

βPr
f [ e−mx̃ sinmx̃+ em(x̃−a) sinm(x̃− a)] , (10)

where θm(ỹ) = 0.5 + β(ỹ− 0.5). f is a numerical constant of order 0.5 and ma = (βRa/4)1/4.
Figure 2 shows the analytical and reconstructed profiles for Pr = 15, in an experiment

performed for the basic flow at Ra = 103, Ma = 10−7 and MaT = 10−6 and for the secondary
flow at Ra = 104, Ma = 10−6 and MaT = 10−5; the aspect ratio of the cell corresponds to
a = 1/4. A good agreement between the analytical and reconstructed profiles is obtained.
This agreement is mainly due to the fact that the temperature and velocity profiles do not
contain strong gradients. This ensures the validity of the straight line propagation hypothesis
and consequently, the validity of the reconstruction technique.

R e a l p r o f i l e s o b t a i n e d f r o m n u m e r i c a l s i m u l a t i o n o f N a v i e r-S t o k e s
e q u a t i o n s. The analytical profiles used above do not include the horizontal velocity com-
ponent that contributes to the recirculation motion near the two horizontal walls at ỹ = 0
and 1. In order to have a real field, we have performed numerical simulations of the Navier-
Stokes equations using a code based on the finite spectral element method. The temperature
and velocity fields obtained for Pr = 15, Ra = 104, Ma = 10−6 and MaT = 10−5 are shown
in fig. 3; fig. 4 compares the reconstructed profiles with the mean profiles obtained from the
numerical simulation. Again, a good determination of the real mean profiles is obtained, even
if, in this latter case, local temperature and velocity gradients produce refraction effects. This
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Fig. 4 – Real mean profile from numerical simulation (−) and reconstructed profile (◦) for (a) the
temperature and (b) the ũy velocity.

refraction is visible on the reconstructed profiles; if the initial shift in x̃ is constant and equal
to a/N , the position x̃f is no regular anymore: rays are concentrated in the profile center.
However, this does not affect significantly the shape of the reconstructed profiles, because the
refraction effects remain small at these Ma and MaT values (see section Discussion).

Discussion. – The presented results have been obtained using a reconstruction technique
based on geometrical acoustics. This approximation is particularly well adapted to such a
technique. Indeed, it is valid as long as the sound frequency f is large compared with the
typical frequencies of the problem. This implies f 
 c/δ, U/δ and U/λ, where λ is the sound
wavelength and where δ ∼ T/∇T,U/∇U is the typical length of the velocity or temperature
gradients. Since the condition Ma � 1 is always satisfied in the considered subsonic flows,
the main limitation occurs when very strong gradients produce very small δ values, such as

Fig. 5 – Diagram of the error between real and reconstructed profile varying Ma and MaT , for the
basic flow ((a) on θ and (b) on ũy) and for the secondary flow ((c) on θ and (d) on ũy).
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localized structures produced by strong gradients in a turbulent flow [10].
On the other hand, the presented technique is possible when the mean velocity profile is

meaningful; of course, if the flow fields need to be determined in the details of y-direction,
tomography methods are to be considered.

Even when the mean profiles are meaningful, the main limitation of the method comes
from the hypothesis —used in the reconstruction— of straight line propagation; in order to
quantitatively estimate this limitation, we have calculated the errors, corresponding to the
mean difference between the reconstructed and real profiles when these latter are analytically
known (basic and secondary flows). Figure 5 shows the results in both cases for the tem-
perature and velocity reconstructions. The error has two origins, both related to the spatial
shift ∆x̃ between the two arrays. Because of the deflection, the real distance covered by the
ray is not equal to 1, as used in the reconstruction, but equal to

√
1 + ∆x̃2 ∼ 1 + ∆x̃2/2.

However, it can be easily shown from (4) that ∆x̃ ∼ θ ∼
∫

S
||n ∧ ∂t̃n|| is of order 1 in Ma,

MaT ; the corresponding error δt on the time of flights is of order 2: δt ∼ Ma2, Ma2T . This
justifies a posteriori that the reconstruction neglects the ray deflection. Another consequence
of the spatial shift comes from an erroneous position for θ(x̃) instead of θ(x̃ + ∆x̃) (or ũ(x̃)
instead of ũ(x̃+ ∆x̃)). From fig. 5, it can be also pointed out that the error observed for the
reconstruction of the basic flow profiles is smaller than for the secondary one. This is easily
understood, since the local velocity or temperature gradients are higher in this latter case,
leading to strong local deflections.

Conclusions. – The results presented in this paper show that a good determination of
velocity and temperature profiles is possible using an acoustical method based on the time
reversal process; the reconstruction of the velocity and temperature profiles, presented in this
paper, is performed in the approximation of geometrical acoustics.

A free convection case is numerically investigated and the limitation of such a technique
is discussed for application to flows depending on the values of Ma and MaT defined in the
paper. Works are in progress to experimentally improve this technique; also, perspectives for
tomography, both in temperature and velocity, are considered.
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