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Acoustic scattering by an ensemble of scatterers whose positions are close
to the positions of a periodic arrangement (with small and random
perturbations in the position of each scatterer) is considered in one
dimension. Three methods are compared to obtain the effective wavenum-
ber of the coherent field. The first two methods, the quasi-crystalline
approximation (QCA) and the coherent potential approximation (CPA),
give the exact Floquet solution in the periodic case. However, in a
perturbed almost periodic configuration, they give different dispersion
relations. These methods are compared to a perturbation approach and
confronted with the results obtained from direct numerical calculations. It
is shown that CPA is able to get the first correction to the Floquet
dispersion relation due to the introduced perturbation, in agreement with
the perturbation approach and with direct numerical results, while QCA is
unable to get this correction.

1. Introduction

The description of a multiple scattering medium in terms of an effective medium for
the coherent part of the wave is attractive: instead of solving the whole problem, the
medium is described in terms of an effective wavenumber K which depends on the
parameters of the scatterers (typically, the density and the strength of the scatterers).
In many cases, the effective wavenumber is derived perturbatively using a reference
medium. When the reference medium is the medium free of scatterers, with k the
wavenumber of free space, it is expected that K� k or, in other words, the expression
for K is expected to be valid for weak scattering effects. To reach strong scattering
effects (thus K not close to k), the reference medium has to be changed, and a good
candidate is a medium with a periodic set of scatterers.
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In one dimension (1D), the dispersion relation gives the wavenumber Q of the

Floquet mode ([1], equation (6)), ([2], equation (49.9))

cosQd ¼ cos kdþ iM sin kd, ð1Þ

for a wave satisfying the Helmholtz equation with point scatterers

u00ðxÞ þ k2uðxÞ ¼ 2ikM
X
n

�ðx� xnÞuðxÞ: ð2Þ

Here, d is the spacing between scatterers (xn¼ nd in the periodic case) and M is the

scattering strength. Equation (2) describes the propagation of a wave through

scatterers at positions xn (the wave is described by a continuous field u, the effects of

the scatterers being encapsulated in the condition u 0ðxþn Þ � u 0ðx�n Þ ¼ 2ikMuðxnÞ). It

represents, for instance, the propagation of waves through an acoustic duct with

Helmholtz resonators [3] or the vibrations in beaded strings [4]. It can also be seen as

the limit for small scatterers of size a having a contrast in the sound speed ~c with

respect to the sound speed c of the background medium: M ¼ �ði=2Þð1� ~c2=c2Þka.
In this paper, we examine the possibility of describing a medium (hereafter

referred to as the perturbed periodic medium) close to the periodic medium but

where some randomness has been introduced. Unlike previous studies that focus on

the phenomenon of localization [5,6], we are interested in the coherent (effective)

waves that propagate in such a medium. These waves experience attenuation when

they propagate, so they can be measured in practice for sufficiently small slabs (with

respect to the localization length). This problem has applications to the design of

electromagnetic devices using periodic structures (which are susceptible to some

disorder in the periodic material) and has been studied experimentally [7,8].
In the present case, randomness is introduced into the position of the scatterers

xn¼ (nþ �n)d, where �n is the random variable (other sources of disorder have been

considered in [6] and reference herein). Then, the perturbed periodic medium refers

to the (effective) medium averaged over all realizations of randomness. Here, this

means the medium averaged over all �n values, with j�nj � �/2. A similar configu-

ration has been considered in [9] with perturbations in the scatterer positions

except for one scatterer xn¼ xpþ (nþ �n)d, xp at a fixed position (see also [10] in

two dimensions). Two methods are studied: the quasi-crystalline approximation

(hereafter referred to as QCA) due to Lax [11,12] and the coherent potential

approximation (hereafter referred to as CPA) [13]. Both the QCA and the CPA are

simple to use, and both have been used widely in the literature on waves in random

media (see for instance, a comparison of the two methods in a Green function

formalism for 1D uncorrelated point scatterers in [14]). However, both are difficult

to justify mathematically. The QCA introduces a certain closure assumption into an

infinite hierarchy of equations. The CPA starts from the physical argument that a

cell embedded in the effective medium should be transparent (in terms of acoustical

properties) if it satisfies statistically the same properties as the effective medium.
Compared to these two empirical methods, some deductive methods are

available. The Dyson approach gives a formal exact solution for the effective

propagation. However, it is much more involved and, usually, the exact solution is
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not possible. Another possible approach has been proposed by Parnell and

Abrahams [4,15] in the form of an expansion of the solution in the small parameters

�n. We use this expansion as the reference calculation to compare with the QCA and

CPA results. Our conclusion is that the CPA dispersion relation agrees with the

perturbation expansion result whereas the QCA result does not. Namely, we find the

following dispersion relations for the effective wavenumber K

cosKd ¼ cosQdþ
M2

2ð1�M Þ
eikd 1� sinc2�kd

� �
, using QCA, ð3Þ

cosKd ¼ cosQdþ
M2

2
eiKd 1� sinc2�kd

� �
, using CPA, ð4Þ

with sinc x� sin x/x. The validity of CPA and of the perturbation calculation is

confirmed using direct numerical calculations.
The paper is organized as follows. In Section 2, direct numerical calculations of

the effective wave propagating in a perturbed periodic medium are presented and

three illustrative examples are given, in terms of the effective wave behaviors and in
terms of the dispersion relations when varying the deviation from the periodic

situation (i.e. the parameter �). Section 3 presents the derivation of the exact solution

for a row of periodic point scatterers; the result is shown to be correctly recovered by

using QCA and CPA approaches with �n¼ 0 (Section 4). There is a pedagogic

interest in explaining the ideas behind the QCA and CPA derivations in the (simpler)

periodic case, ideas that are then adapted in Section 5 to the more involved case of

the perturbed periodic configuration. Then, we present the perturbation approach,

where an expansion in the small deviations �n with respect to the periodic situation is

used. The obtained result in �2 to leading order agrees with the CPA result, not with

the QCA result. Section 6 ends the paper by confronting the dispersion relations
given by QCA and CPA with the dispersion relations obtained from direct numerical

calculations. This confirms that CPA gives the first correction in the dispersion

relation due to the considered deviation (correction in �2) while QCA is unable to do

that. Technical calculations are collected in four appendices. In the paper, the

assumed time dependence is e�i!t.

2. Numerical results

Direct numerical calculations of the exact wavefield u(x) with N scatterers are

performed. Then, hui(x) is deduced by averaging the fields u(x) calculated for Nr

realizations of the disordered configurations. A configuration consists of N scatterers

xn¼ (n� 1þ �n)d, n¼ 1, . . . ,N, each �n being randomly chosen with j�nj5�/2. All the

scatterers have the same scattering strengthM. We consider an incident wave coming

from the left, u(x)¼ eikx. At each scatterer, we apply [u]xn
¼ 0 and [u0]xn

¼ 2ikMu(xn).

For xn�1� x� xn, the wavefield can be written

uðxÞ ¼ an eikðx�xnÞ þ Zne
�ikðx�xnÞ

� �
: ð5Þ
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To account for the radiation condition after the Nth scatterer, a ghost scatterer

is added at xNþ1¼ xN with ZNþ1¼ 0. Then, the conditions [u]xn
¼ 0 and

[u0]xn
¼ 2ikMu(xn) give a recurrence relation for Zn,

Zn ¼
Me�i’n þ Znþ1ð1þM Þei’n

ð1�M Þe�i’n � Znþ1Mei’n
, ð6Þ

with ’n� k(xnþ1� xn). Once (Zn) has been computed, the amplitudes (an) are derived

starting from a1¼ eikx1 and using the recurrence

anþ1 ¼ ðMZn þ 1þM Þei’nan: ð7Þ

The Nr wavefields are averaged to produce the effective wavefield hui(x). Because

the scatterers are embedded in a slab, we use the ansatz

huiðxÞ ¼ Tf�ðxÞe
iKx þ Rg�ðxÞe

�iKx, ð8Þ

where f� and g� are two d-periodic functions and (T,R) are the transmission and

reflection coefficients at the entrance and exit of the slab. For the sake of simplicity,

we choose configurations in the forbidden bandgap (Q purely imaginary). In that

case, the right-going wave is evanescent. For a sufficiently large slab, this wave has

decreased in amplitude sufficiently so that its reflection at the end of the slab can be

neglected and we can consider u(x)’T f�(x)e
iKx. The field hui(nd )/ eiKnd is used to

deduce K(�).
Figure 1 shows the results for different values of M and kd. For non-zero �,

between 104 and 105 realizations have been performed and averaged to obtain the

effective, or coherent, field. In each realization, random values of �n were used.
In the three cases shown, the periodic medium (�¼ 0) corresponds to a Floquet

wavenumber Q that is purely imaginary. Let us comment on the first curve at the top

of (a): with a purely imaginary Floquet wavenumber Q, the field u(nd )/ eiQnd

(in black) is exponentially decreasing. In addition in this case, the wavelength being

smaller than the space between the scatterers (kd¼ 14.2�), we observe the wave u(x)
made of left- and right-going waves propagating between two scatterers (in gray),

with e�ikx dependencies (two scatterers are separated by free space). When the

wavelength is decreased (from (a) to (c), where kd� 1) these waves are no longer

visible.
Introducing disorder produces a change in u(nd ), with Q!K. K experiences a

decrease in the attenuation (imaginary part) and may acquire a real part. Finally, in

the first case, the attenuation is not too strong so that the attenuation of the wave

occurs over a significant length (50–100 scatterers). Increasing the M-value (as from

case (a) to (b)) produces an increase in the attenuation.
The figures at the bottom of Figure 1 show the K-value deduced from the curves

at the top (owing to u(nd )/ eiKnd). As will be seen in Section 6, the prediction of the

effective wavenumber K applies for small deviation � with respect to the periodic

case. This implies that K remains close to Q; when the change becomes significant,

this no longer holds (in (a) for �� 10�2, in (b) for �� 10�0.5).
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3. Periodic row of identical scatterers: exact results

In this section, we briefly recall some known exact results for waves through a

periodic row of identical, finite-width scatterers. Suppose that at each point x¼ nd,

n2Z, there is a scatterer of width 2b5d. Between the scatterers, u00 þ k2u¼ 0.

Concentrating on the scatterer at x¼ 0, we can write

uðxÞ ¼
a1e

ikx þ b1e
�ikx, �dþ b5 x5�b,

a2 e
ikx þ b2e

�ikx, b5 x5 d� b,

(

where the coefficients a1 and a2 give the amplitudes of the waves going to the right

and the coefficients b1 and b2 give the amplitudes of the waves going to the left.
To characterize the scattering, introduce the reflection coefficient r0 and the

transmission coefficient t0 for the scatterer at x¼ 0. We assume that r0 and t0 are

independent of the direction of the incident wave: the scatterer is symmetric. Thus,

for an incident wave eikx and a single scatterer at the origin, the total field is

eikxþ r0e
�ikx to the left of the scatterer and it is t0e

ikx to the right. Hence,

b1 ¼ r0a1 þ t0b2 and a2 ¼ r0b2 þ t0a1: ð9Þ

We seek solutions satisfying the Bloch condition,

uðxþ d Þ ¼ uðxÞeiQd: ð10Þ
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Figure 1. Top panels: mean field hui(x) in gray line for different �-value. In black line,

hui(nd )/ eiKnd, used to determined the K-value. Bottom panels: effective wavenumber Kd as a
function of � (open circles show the real part of K and solid circles show the imaginary part of
K ). (a) kd¼ 14.2� and M¼ 0.67/(2i), (b) kd¼ 14.2� and M¼ 3/(2i), (c) kd¼ 2�/5.1 and
M¼ 1.45/(2i).
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This condition implies that

b2 ¼ b1e
iðQþkÞd and a2 ¼ a1e

iðQ�kÞd: ð11Þ

Equations (9) and (11) will have a non-trivial solution provided

cosQd ¼ A cos kdþ B sin kd, ð12Þ

where

A ¼
1

2t0
ðt20 � r20 þ 1Þ and B ¼

i

2t0
ðt20 � r20 � 1Þ: ð13Þ

This result is general: to use it, we merely insert the appropriate reflection and
transmission coefficients. Notice that A and B depend on the scattering properties of
a single scatterer.

In the rest of the paper, we consider point scatterers. For this problem, we have
two possible, exact, formulations. One is in terms of a scattering coefficient g,

uðxÞ ¼ u0ðxÞ þ g
X
n

eikjx�xnjueðxnÞ, ð14Þ

ueðxnÞ ¼ u0ðxnÞ þ g
X
m 6¼n

eikjxn�xmjueðxmÞ, ð15Þ

where xn are the locations of the scatterers and u0(x) denotes the incident wave.
The second formulation is in terms of potentials (see Equation (2)),

uðxÞ ¼ u0ðxÞ þ 2ikM
X
n

G0ðx� xnÞuðxnÞ, ð16Þ

where G0(x)¼ eikjxj/(2ik). The two formulations are equivalent in 1D owing to
Mu(xn)¼ gue(xn) and the relation between M and g can be found easily by
considering a single scatterer: g¼M/(1�M ), M¼ g/(1þ g). The reflection and
transmission coefficients for a point scatterer at the origin are given by

r0 ¼ g ¼M=ð1�M Þ and t0 ¼ 1þ g ¼ 1=ð1�M Þ: ð17Þ

Substituting from Equation (17) in Equations (12) and (13) gives the (known)
dispersion relation, Equation (1).

If energy is conserved, Re gþ jgj2¼ 0 whence g¼ iei’ sin ’ for some real ’, M¼
i tan ’ implying that M is purely imaginary, and Equation (1) reduces to

cosQd cos ’ ¼ cos ðkdþ ’Þ: ð18Þ

Thus, if we assume that Q is real, then k will be real. Alternatively, if we assume that
k is real, then Q could be real (pass band) or imaginary (stop band).

4. Rederiving perfectly periodic results using QCA and CPA

In this section, we show that both QCA and CPA do lead to the known exact
dispersion relation when specialized to a periodic row of identical point scatterers.
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4.1. QCA approach

The QCA approach consists of a closure assumption on the hierarchy of averaged

equations coming from Equation (15). Thus, for N scatterers,

huiðxÞ ¼ u0ðxÞ þNg

Z
dx1 pðx1Þe

ikjx�x1jhuei1ðx1Þ, ð19Þ

huei1ðx1Þ ¼ u0ðx1Þ þ ðN� 1Þ g

Z
dx2 pðx2jx1Þe

ikjx1�x2jhuei2ðx2Þ, ð20Þ

where

huei1ðx1Þ �

Z
dx2 . . . dxN pðx2, . . . ,xNjx1Þu

eðx1Þ,

huei2ðx2Þ �

Z
dx3 . . . dxN pðx3, . . . ,xNjx1, x2Þu

eðx2Þ:

The QCA closure assumption is simply huei1¼hu
e
i2 leading to

huiðxÞ ¼ u0ðxÞ þNg

Z
dx1 pðx1Þe

ikjx�x1jhueiðx1Þ, ð21Þ

hueiðx1Þ ¼ u0ðx1Þ þ ðN� 1Þ g

Z
dx2 pðx2jx1Þe

ikjx1�x2jhueiðx2Þ: ð22Þ

In the periodic case, we can take p(x)¼N�1
P

n �(x� nd ) and

pðx2jx1Þ ¼
1

N� 1

X
m 6¼n

�ðx2 �md Þ, x1 ¼ nd: ð23Þ

Then, in the limit N!1, Equations (21) and (22) give

huiðnd Þ ¼ u0ðnd Þ þ g
X
m

eikjn�mjdhueiðmd Þ, ð24Þ

hueiðnd Þ ¼ u0ðnd Þ þ g
X
m 6¼n

eikjn�mjdhueiðmd Þ:
ð25Þ

These equations agree with (the deterministic) Equations (14) and (15) with hui¼ u,

huei ¼ ue and xn¼ nd, from which we deduce that QCA is exact when considering the

periodic case. This is because, for periodic scatterers, the positions of all scatterers

are known as soon as the position of one scatterer is known. We give in Appendix 1

the derivation of the dispersion relation for the Floquet mode and the derivations of

the functions f0 and g0 when solutions are sought in the form

uðxÞ ¼ g0ð yÞe
iQx þ f0ð yÞe

�iQx, x ¼ ndþ y, 0 � y5 d, ð26Þ

where f0 and g0 are d-periodic. We indicate here the main results (for details,

see Appendix 1). The wavenumber Q is given by the dispersion relation,
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Equation (1),

g0ð yÞ ¼ Aeiðk�QÞ y þ Be�iðkþQÞ y and f0ð yÞ ¼ g0ðd� yÞ, ð27Þ

with A¼ (1� ei(k�Q)d)�1 and B¼ (e�i(kþQ)d
� 1)�1. This solution is exact, since it

corresponds to the solution of Equation (15): in the periodic case, the QCA closure is

not an assumption.

4.2. CPA approach

In this case, we consider the cell [(n� 1)dþ z, ndþ z] embedded in the effective

periodic medium (Figure 2). Usually, the cell is assumed to contain a scatterer

located at its periodic position (�n¼ 0 in Figure 2), in which case the cell is equivalent

to the effective medium and it is transparent for the incident wave coming from the

left, say, in the effective medium. No reflection or transmission can occur. Here, we

present a more involved calculation with �n 6¼ 0. Although it is overly complicated for

the resolution of the periodic case, we present it because it is similar to the one used

later in the perturbed periodic case.
In our calculation, the cell embedded in the periodic medium contains one

scatterer at xn¼ (nþ �n)d (Figure 2). The host periodic medium has right-going

waves propagating as g0(y)e
iQx and left-going waves propagating with f0(y)e

�iQx,

where x¼ yþmd with integer m and 0� y5d. The position of the interfaces between

the host medium and the cell can be set at (n� 1)dþ z and ndþ z. The parameter z

can vary in the interval �nd5z5d� �nd: the interfaces can move leaving the problem

under consideration unchanged. This is because the host medium has a part made of

free space (all space apart from the scatterers). When �n is non-zero, reflection and

(a)

εnd    

Periodic host medium                  Periodic host medium}

Cell 

nd 

(b)

(n–1)d+z       nd                nd+z          

εn      d 

g (y) e    +R f (y) e                                                 T g (y) e
iQx                           –iQx                                                                                                iQx

a e   +b e    ikx           –ikx    
1   1   a e   +b e    ikx           –ikx    

2   2   
 0                              0                                                                                                     0      

Figure 2. Configuration considered in the CPA approach. (a) A cell is considered, embedded
in the periodic medium. (b) Enlargement of the cell and its boundaries. If the scatterer,
at x¼ nd when located at its periodic position, is shifted to x¼ (nþ �n)d, reflection
and transmission by the cell are expected. When the cell satisfies the same properties
as the host medium (here, periodic, so �n¼ 0), it is transparent for the incident wave,
R(0)¼ 0, T(0)¼ 1.
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transmission at the interfaces are expected. Thus, we write

vðxÞ ¼

g0ð yÞe
iQx þ Rð�nÞ f0ð yÞe

�iQx, x5 ðn� 1Þdþ z,

a1e
ikx þ b1e

�ikx, ðn� 1Þdþ z � x5 ðnþ �nÞd,

a2e
ikx þ b2e

�ikx, ðnþ �nÞd � x5 ndþ z,

Tð�nÞ g0ð yÞe
iQx, x � ndþ z: ð28Þ

8>>><
>>>:

The functions f0 and g0 are d-periodic and they do not depend on �n. The field v and

its first derivative are continuous at the boundaries of the cell, x¼ (n� 1)dþ z and

x¼ ndþ z. These conditions give

a1 ¼ AeiðQ�kÞðn�1Þd þDRe�iðQþkÞðn�1Þd, b1 ¼ BeiðQþkÞðn�1Þd þ CReiðk�QÞðn�1Þd, ð29Þ

a2 ¼ ATeiðQ�kÞnd, b2 ¼ BTeiðQþkÞnd, ð30Þ

where A, B, C and D depend on the functions f0 and g0 and their first derivatives:

A ¼ ½ g 00ðzÞ þ iðQþ kÞ g0ðzÞ�e
iðQ�kÞz=ð2ikÞ,

B ¼ �½ g 00ðzÞ þ iðQ� kÞ g0ðzÞ�e
iðQþkÞz=ð2ikÞ,

C ¼ �½ f 00ðzÞ � iðQþ kÞ f0ðzÞ�e
iðk�QÞz=ð2ikÞ,

D ¼ ½ f 00ðzÞ þ iðk�QÞ f0ðzÞ�e
�iðkþQÞz=ð2ikÞ:

As previously noted, the position of the interfaces, given by z, can be changed

without changing the problem. Thus, a1, a2, b1 and b2 do not depend on z, which

implies that A, B, C and D do not depend on z. It follows that g0 and f0 have the

forms given in Equation (27). These forms also ensure that g0(z)e
iQz and f0(z)e

�iQz

satisfy the Helmholtz equation.
At the scatterer position xn¼ (nþ �n)d, v satisfies vðx�n Þ ¼ vðxþn Þ and

v 0ðxþn Þ � v 0ðx�n Þ ¼ 2ikMvðxnÞ. These conditions give

a1 ¼ TeiðQ�kÞnd ð1�M ÞA�MBe�2i�nkd
� �

, ð31Þ

b1 ¼ TeiðQþkÞnd MAe2i�nkd þ ð1þM ÞB
� �

, ð32Þ

using the formulas for a2 and b2, Equation (30). Equating the two expressions for a1
and those for b1 in Equations (29) and (31), (32) gives

1�M�MBe�2i�nkd
� �

Tð�nÞ � Be
�2iQndRð�nÞ ¼ eiðk�QÞd, ð33Þ

Me2i�nkd þ ð1þM ÞB
� �

Tð�nÞ � e�2iQndRð�nÞ ¼ Be
�iðkþQÞd, ð34Þ

where B�B/A. This system of equations has four unknowns, R, T, B and Q. Note

that only R and T depend on �n since Q and B characterize the wave propagation in

the periodic (host) medium. We solve Equations (33) and (34) by applying the CPA

idea: when �n¼ 0, the cell satisfies the same properties as the host (periodic) medium

Waves in Random and Complex Media 9
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and therefore it has to be transparent,

Tð�n ¼ 0Þ ¼ 1, Rð�n ¼ 0Þ ¼ 0: ð35Þ

Hence, we obtain

MB ¼ 1�M� eiðk�QÞd, Mþ ½1þM� e�iðkþQÞd�B ¼ 0; ð36Þ

eliminating B then gives the dispersion relation for the Floquet mode, Equation (1),
as the condition of solvability. We also find that B¼B/A satisfies

1� eiðk�QÞd þ B 1� e�iðkþQÞd
� �

¼ 0: ð37Þ

Then, having found Q and B, we can determine R and T from Equations (33) and
(34); for example, we obtain

Tð�nÞ ¼ 1þ iM2 eiQd

sinQd
1� cos ð2�nkd Þð Þ

� ��1
’ 1� 2i�2n

M2ðkd Þ2eiQd

sinQd
ð38Þ

for small �n. This will be used later.
In conclusion, both the CPA and QCA approaches are able to find the solution

for the periodic case, namely the expression of the Floquet wavenumber Q in
Equation (1) and the form of the functions g0(y) and f0(y) in Equation (27) that
characterize the wavefield in the periodic structure.

5. Small deviation in the positions of the scatterers with respect to the periodic case

We apply now the same approaches, QCA and CPA, when the scatterers have small
deviations with respect to the periodic configuration, xn¼ (nþ �n)d. The effective
medium to be characterized corresponds to the average over all realizations of the
�n-values.

5.1. QCA approach

The same procedures as in the periodic case may be applied. Define ��d (x) by

��dðxÞ ¼
1, jxj � �d=2,

0, jxj4 �d=2:

�
ð39Þ

We take

pðxÞ ¼
1

N�d

X
m

��dðx�md Þ ð40Þ

and

pðx2jx1Þ ¼
1

ðN� 1Þ�d

X
m 6¼n

��dðx2 �md Þ, jx1 � nd j5 �d=2: ð41Þ

10 A. Maurel et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
S
P
C
I
]
 
A
t
:
 
0
9
:
3
7
 
1
4
 
O
c
t
o
b
e
r
 
2
0
1
0



As in Section 4.1, start with a doubly-infinite row of scatterers and no incident

wave. Then, letting N!1 in Equations (21) and (22) gives

huiðxÞ ¼
g

�d

X
m

Z
Im

eikjx�x1jhueiðx1Þ dx1, ð42Þ

hueiðx1Þ ¼
g

�d

X
m 6¼n

Z
Im

eikjx1�x2jhueiðx2Þ dx2, x1 2 In, ð43Þ

where In is the interval nd� �d/25x5ndþ �d/2.
Equation (42) shows that hui00(x)þ k2hui(x)¼ 0 for x =2 In, n2Z, suggesting that

the average field hui solves a certain periodic problem, as might be expected.

Equation (43) shows that huei00(x)þ k2huei(x)¼ 0 for x2 In, n2Z. So, write

hueiðxÞ ¼ ane
ikx þ bne

�ikx, x 2 In: ð44Þ

Substituting in Equation (43) and equating coefficients of e�ikx1 gives

an ¼ g
Xn�1

m¼�1

am þ bmSe
�2imkd

� �
, bn ¼ g

X1
m¼nþ1

bm þ amSe
2imkd

� �
,

where S ¼ sinc(k�d ). Looking for a solution of these equations in the form

an ¼ Ce
iðK�kÞnd, bn ¼ De

iðKþkÞnd, ð45Þ

we find that the constants C and D satisfy

C ¼ gðC þ DSÞ
X1
m¼1

eiðk�KÞmd, D ¼ gðD þ CSÞ
X1
m¼1

eiðkþKÞmd:

These bear comparison with Equation (64); under the same conditions, we sum the

infinite series and then put the resulting 2	 2 determinant equal to zero, giving

cosKd ¼ A� cos kdþ B� sin kd, ð46Þ

where

A� ¼ 1þ
g2�ðk�d Þ

2ð1þ gÞ
and B� ¼

ig

1þ g
1þ

1

2
g�ðk�d Þ

� �
,

with �(x)¼ 1� sinc2 x. Making use of the dispersion relation for the Floquet mode,

Equation (65), we can write Equation (46) as Equation (3). The same result is

obtained by considering an incident wave and a semi-infinite row of scatterers,

as in Section 4.1, a configuration that avoids the divergent sum appearing in C

(see Appendix 2 for details). It can also be obtained using a heuristic argument in

which it is assumed that the effective medium is periodic with a row of identical

average scatterers (see Appendix 3 for details).
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5.2. CPA approach

For the CPA approach, it is sufficient to consider the host medium as the effective

perturbed periodic medium instead of the periodic medium considered in Section 4.2.

Thus, the form of the solution in Equation (28) still holds with g0! g�, f0! f�,

Q!K, R!R� and T!T�. This means that we still consider a cell containing one

scatterer, the cell being embedded in the effective medium. But here, the effective

medium corresponds to the average over all realizations of the scatterers with

ð p� 1
2 �Þd � xp � ð pþ

1
2 �Þd, for all integers p, except the nth scatterer inside the

isolated cell. Apart from the nature of the host effective medium (which is

encapsulated in K and in the functions f� and g�), the problem to solve is exactly the

same as in the periodic case until the CPA idea is applied. Thus, we recover the same

system as Equations (33) and (34), rewritten here for clarity

ð1�M ÞA� �MB�e
�2i�nkd

� �
T�ð�nÞ � B�e

�2iKndR�ð�nÞ ¼ A�e
iðk�K Þd, ð47Þ

MA�e
2i�nkd þ ð1þM ÞB�

� �
T�ð�nÞ � A�e

�2iKndR�ð�nÞ ¼ B�e
�iðkþK Þd: ð48Þ

The functions g� and f� have the forms in Equation (27),

g�ð yÞ ¼ A�e
iðk�K Þ y þ B�e

�iðkþK Þ y, f�ð yÞ ¼ g�ðd� yÞ, ð49Þ

using the same argument that the positions of the boundaries between the effective

medium and the cell must leave the problem unchanged.
As in Section 4.2, we need more information to solve our system. We achieve this

by adapting the CPA idea from the case of a periodic host medium to the case of an

effective medium with (averaged) perturbed periodic positions. We argue that the cell

will be transparent with respect to the perturbed periodic effective medium if an

average over all possible positions of the scatterer inside the cell is performed. This

leads to the conditions

hT�i ¼ 1, hR�i ¼ 0, ð50Þ

where the average means ��1
R �=2
��=2d�n. We use Equation (50) directly on Equations

(47) and (48), and so we need he�2ikd�nT�(�n)i.

Eliminating R�(�n) from Equations (47) and (48) shows that T�(�n) is an even

function of �n. So, a Taylor expansion gives

T�ð�nÞ ¼ c0 þ c1�þ c21�
2
n þ c22�

2 þ c31��
2
n þ c32�

3 þOð�4, �2n�
2, �4nÞ:

The periodic case is T0(�n), given by Equation (38). This gives c0¼ 1 and c21. Then,

hT�i ¼ 1þ c1�þ �
2ðc22 þ c21=12Þ þ �

3ðc32 þ c31=12Þ þOð�4Þ,

which gives c1¼ 0, c22þ c21/12¼ 0 and c32þ c31/12¼ 0. Hence,

T�ð�nÞ ¼ 1þ c21 �2n �
�2

12

	 

þ c31� �2n �

�2

12

	 

þOð�4, �2n�

2, �4nÞ,

12 A. Maurel et al.
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and he�2ikd�nT�(�n)i ¼S þO(�4), where S ¼ sinc(kd�). Hence, taking the average of the
system (47) and (48) gives

ð1�M� eiðk�K ÞdÞA� �MSB� ¼ 0,

MSA� þ ð1þM� e�iðkþK ÞdÞB� ¼ 0:

We get the dispersion relation from the condition of solvability

cosKd ¼ cosQdþ
1

2
M2eiKd 1� sinc2ð�kd Þ

� �
, ð51Þ

which is Equation (4). We can also calculate A�/B� from Equation (47) or
Equation (48).

5.3. Perturbation method

This method has been developed in [4,15]. Here, we use a modified version.
We consider a semi-infinite row of scatterers, with locations xm¼mdþ �md, where

m¼ 1, 2, . . . and j�mj � �/2. A plane wave, eikx, is incident from the left. The field

v�(x; �) describes the wave propagating through the scatterers; the vector
�¼ (�1, �2, . . .) (Figure 3(a)). The idea is to write the field v�(x; �) as a perturbation
around the field v0(x)¼ v�(x; 0), regarding � as the small parameter. Evidently, v0(x)
corresponds to the periodic situation (which we considered in Section 4.1). Taking
the average of the perturbation expansion makes one quantity appear that we are
looking for, namely, the effective field hv�i(x). In addition, we find averages of fields

u(x, �n): each field u(x, �n) corresponds to the situation of Figure 3(b), where all
scatterers are located at their periodic positions except the nth scatterer at
xn¼ (nþ �n)d.

If we had started with an infinite row of scatterers along the whole x-axis (as in
Figure 2), the field u(x, �n) would correspond to the solution found in Section 5.2.

 0                                   nd       

εn  d     

Free space Periodic host medium             Periodic host medium}Cell 
(b)

(a)

nd

εnd    

Free space

Figure 3. (a) Configuration of interest: the scatterers occupy the half-space x40 and all have
a deviation �nd with respect to the periodic positions. The wavefield is v�(x; �). Averaging
v�(x; �) over all realizations of the �n values leads to the effective medium in x40. (b)
Intermediate configuration needed in the calculation: all scatterers are in their periodic
positions (periodic host medium) except the nth scatterer at xn¼ (nþ �n)d. The wavefield is
u(x; �n).
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Here, we consider a different configuration, where the host periodic medium and the
embedded cell occupy only the half-space x40, and we consider an incident wave,
eikx, coming from the free-space region, x50. We prefer this configuration because it
avoids divergent sums that would appear otherwise, a difficulty already encountered
in Section 4.1. As the problem of Figure 3(b) is more involved, for simplicity, only
those parts of the solution that are useful are given in the following.

We write v� as a perturbation around v0, the field of the Floquet mode,

v�ðx, �Þ ¼ v0ðxÞ þ
X
m

�m
@v�
@�m
ðx, 0Þ þ

1

2

X
m,n

�m�n
@2v�
@�m@�n

ðx, 0Þ þOð�3Þ: ð52Þ

This equation holds where v�(x, �) has continuous derivatives, that is outside the
scatterer positions. The system is now averaged. Starting with N scatterers (the limit
N!1 will be taken shortly), define

hv�iðxÞ ¼
1

�N

Z �=2

��=2


 
 


Z �=2

��=2

d�1 
 
 
 d�Nv�ðx, �Þ: ð53Þ

As the nth scatterer occupies the interval In (defined below Equation (43)), we choose
x outside all such intervals; specifically, we choose x between In0 and In0þ1 so that
(n0þ �/2)d5x5(n0þ 1� �/2)d and all derivatives are continuous there. As h�ni¼ 0,
we get

hv�iðxÞ ¼ v0ðxÞ þ
1

2
h�2ni

X
n

@2v�
@�2n
ðx, 0Þ þOð�4Þ: ð54Þ

In the right-hand side term, the second derivative involves the field uðx, �nÞ ¼ v�ðx, �
0
nÞ

(where �0n ¼ ð0, . . . , 0, �n, 0, . . .Þ is a vector of zeros apart from one entry) in the sense
that the two fields have the same second derivative,

@2unðx, 0Þ

@�2n
¼
@2v�ðx, 0Þ

@�2n
: ð55Þ

The field un describes the wave propagating through a set of scatterers periodically
spaced except for the nth scatterer (Figure 3(b)). This field can be found in a separate
calculation; see Appendix 4 where this ‘u-problem’ is solved.

The sum in Equation (54) is approximately hv�i(x)� v0(x), and it is O(�2) (because
h�2ni ¼ �

2=12). The field hv�i(x) describes the wave propagating in the effective
medium with perturbed-periodic positions. On average, the configuration of
Figure 3(a) corresponds to a single interface between the free space x50 with
wavenumber k and the effective medium space with wavenumber K. The effective
wave satisfies the radiation condition at þ1 and only a right-going wave propagates
in x¼ yþ n0d40, so

hv�iðxÞ ¼ t�g�ð yÞe
iKx for x4 0, ð56Þ

with g�(y) a d-periodic function. Similarly, through the semi-infinite periodic row,
we have

v0ðxÞ ¼ t0g0ð yÞe
iQx for x4 0. ð57Þ

14 A. Maurel et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
S
P
C
I
]
 
A
t
:
 
0
9
:
3
7
 
1
4
 
O
c
t
o
b
e
r
 
2
0
1
0



We expand t�, g� and K in powers of �. As �¼ 0 corresponds to the periodic case,

we write

t� ¼ t0 þ �t1 þ �
2t2 þOð�3Þ, g� ¼ g0 þ �g1 þ �

2g2 þOð�3Þ,

K ¼ Qþ �K1 þ �
2K2 þOð�3Þ:

Hence, with an error that is O(�3),

e�iQx hv�iðxÞ � v0ðxÞ½ � ¼ � t0g1 þ t1g0 þ it0g0K1x½ �

þ �2
�
t0g2 þ t1g1 þ t2g0 þ iK1xðt0g1 þ t1g0Þ

þ t0g0ðiK2x� K2
1x

2=2Þ
�
: ð58Þ

In this expansion, the coefficient multiplying � must vanish,

t0g1ð yÞ þ t1g0ð yÞ þ it0g0ð yÞK1yþ it0g0K1n0d ¼ 0,

and this should hold for each choice of n0. Hence, K1¼ 0, t0g1þ t1g0¼ 0 and

Equation (58) reduces to

hv�iðxÞ � v0ðxÞ ¼ �
2 Fð yÞ þ in0dK2t0g0ð yÞ½ �eiQx, ð59Þ

where F(y)¼ t0g2(y)þ t1g1(y)þ t2g0(y)þ iK2yt0g0(y) does not depend on n0 and �d/
25y5d� �d/2. The key point here is the explicit dependence on n0 seen in the last

term in Equation (59): identifying this term in the solution of the u-problem will

enable K2 to be extracted.
Now, returning to Equation (54), let us evaluate hv�i at x¼ n0dþ y, where �d/

25y5z so that we are just to the right of the scatterer at x¼ n0dþ �n0d. To do that,

we use Equation (55) and our solution for un (Appendix 4). We find that

hv�iðxÞ ¼ v0ðxÞ þ
1

24
�2 SleftðxÞ þ ScellðxÞ þ SrightðxÞ
� �

þOð�4Þ

where

SleftðxÞ ¼
Xn0�1
n¼0

@2unðx, �nÞ

@�2n

����
�n¼0

¼ g0ð yÞe
iQx

Xn0�1
n¼0

@2Tðn, �nÞ

@�2n

����
�n¼0

,

ScellðxÞ ¼
@2un0ðx, �n0 Þ

@�2n0

�����
�n0¼0

¼ eikx
@2a2ðn0, �n0 Þ

@�2n0

�����
�n0¼0

þ e�ikx
@2b2ðn0, �n0 Þ

@�2n0

�����
�n0¼0

,

SrightðxÞ ¼
X1

n¼n0þ1

@2unðx, �nÞ

@�2n

����
�n¼0

¼ g0ð yÞe
iQx

X1
n¼n0þ1

@2tðn, �nÞ

@�2n

����
�n¼0

þf0ð yÞe
�iQx

X1
n¼n0þ1

@2Rðn, �nÞ

@�2n

����
�n¼0

:

In these formulas, the quantities T, a2, b2, t and R appear in the solution of the

u-problem; see Equation (71). Making use of Equation (72), we find that Sleft and
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Scell can be combined, giving

SleftðxÞ þ ScellðxÞ ¼ g0ð yÞe
iQx
Xn0
n¼0

@2Tðn, �nÞ

@�2n

����
�n¼0

¼ 2g0ð yÞe
iQx
Xn0
n¼0

T2ðnÞ,

where T2 is the coefficient of �2n in the expansions of T about �n¼ 0 (see Equation
(73)). Hence, using similar expansions for R and t, Equations (74) and (75),

hv�iðxÞ ¼ v0ðxÞ þ
�2

12
f0ð yÞe

�iQx
X1

n¼n0þ1

R2ðnÞ

þ
�2

12
g0ð yÞe

iQx
X1

n¼n0þ1

t2ðnÞ þ
�2

12
g0ð yÞe

iQx
Xn0
n¼0

T2ðnÞ þOð�4Þ: ð60Þ

Inspecting the dependence on n of T2, R2 and t2 in Equations (73)–(75), we see that
only the last sum on the right-hand side of Equation (60) produces a contribution
that is linear in n0, because of the constant term T20 in the expression for T2(n),
Equation (73). That contribution is

ð�2=12Þ g0ð yÞe
iQxðn0 þ 1ÞT20:

When this is compared with the last term in Equation (59), namely
�2in0dK2t0g0(y)e

iQx, we obtain

K2d ¼ ð�i=12ÞT20=t0,

with T20/t0 given by Equation (76). This gives the dispersion relation

Kd ¼ Qd� �2
M2ðkd Þ2

6

eiQd

sinQd
: ð61Þ

5.4. Conclusion for the perturbed-periodic case

The QCA approach gives Equation (3) as the dispersion relation. The same formula
is obtained by a heuristic argument, in which it is assumed that the effective medium
consists of a d-periodic medium in which are embedded scatterers with average
scattering properties (see Appendix 3). Expanding Equation (3) in powers of �
leads to

Kd ¼ Qd�
�2

6

M2

1�M
ðkd Þ2

eikd

sinQd
: ð62Þ

The CPA approach gives Equation (4). Expanding this formula for small � leads to

Kd ¼ Qd�
�2

6
M2ðkd Þ2

eiQd

sinQd
: ð63Þ

Evidently, Equations (62) and (63) differ. However, the CPA estimate (63) agrees
with the perturbation approach, Equation (61), which suggests that QCA has

16 A. Maurel et al.
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failed for our 1D problem. To confirm this, some numerical experiments were

conducted.

6. Numerical experiments

We report the comparison in the effective wavenumber K obtained from the direct

numerical calculations. For each set of parameters (kd,M ) of Figure 1, the �-value
has been changed. The obtained fields (between 104 and 105) have been averaged and

the K-value deduced using hui(nd )/ eiKnd. (We have also checked the periodicity of

the function g�(y).) The computed wavenumber, denoted Kc here, is compared to the

theoretical values of K obtained with the QCA K¼KQCA (plain circles) and CPA

K¼KCPA (open circles) approaches. Figure 4 shows the result jK�Kcj as a function

of � in the three cases of Figure 1.
In the three cases, a range of �-values clearly appears for which the difference

jK�Kcj follows a power law (for instance, in (a), the range is 10�3–10�2): this power

law is as �2 when considering the QCA prediction and it is as �4 when considering the

CPA prediction.
The range of �-values where the CPA prediction compares well with the

numerical wavenumber coincides with the range of �-values (strength of the

introduced disorder) producing a small change in the Floquet wavenumber Q, as can

be seen in Figure 1 (bottom). In case (a), this is roughly until �� 10�2, in case (b)

until �� 10�1.5 and in case (c) until �� 10�0.5.
Finally, the comparison between direct numerics and the theoretical prediction

confirms that the CPA approach is able to get the first-order correction in �2 in the

wavenumber while QCA is unable to do that.
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Figure 4. Comparison between the wavenumbers Kc obtained from numerical calculation
(see Figure 1) and the wavenumbers given by QCA (open circles) and CPA (plain circles)
for the three cases presented in Figure 1: (a) kd¼ 14.2� and M¼ 0.67/(2i), (b) kd¼ 14.2�
and M¼ 3/(2i), (c) kd¼ 2�/5.1 and M¼ 1.45/(2i). The differences jK�Kcj is plotted as a
function of the disorder � in a log-log scale. Dotted lines are guidelines for the power laws in
�2 and �4.
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7. Conclusion

In this paper, we have considered point scatterers in one dimension, with the nth
scatterer displaced randomly by a small amount (within ��/2) from its periodic
position, x¼ nd. The aim was to calculate the first correction (proportional to �2) to
the Floquet wavenumber. We found that QCA and CPA gave different results. The
QCA result agrees with a heuristic result, the CPA result agrees with an independent
perturbation-based calculation. Moreover, the CPA result agrees with the results
obtained by direct numerical simulations.

It is interesting to ask why the QCA approach does not yield the correct result for
this problem. It is known that QCA does give good results in some two-dimensional
problems, for example. It is also known that the Foldy closure assumption (replace
huei1 by hui in the right-hand side of Equation (19)) does not lead to the correct
dispersion relation for the Floquet mode in a one-dimensional periodic structure.

Further investigations are required. We are looking at the Dyson formalism using
the Green function of the periodic medium as reference so as to explore, to any

desired order, the effect of randomness with respect to the periodic situation.
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Appendix 1. QCA in the periodic case

We give a derivation of the Floquet dispersion relation (1) and the form of the solution for the
wave u(x) propagating in the periodic set of scatterers. Recall that the QCA approach is not an
approximation for the periodic case since the closure is exact. Thus, the solutions for the
wavenumber Q and for the field u(x) are exact. To solve this problem, we can try to consider a
doubly-infinite periodic row of point scatterers with no incident wave (taking the limit N!1
in the correlation functions). Thus, put u0� 0 and ue(nd )¼ eiQnd in Equation (15), with n2Z.
After some calculation, we obtain

1 ¼ g
X1
m¼1

eiðkþQÞmd þ g
X1
m¼1

eiðk�QÞmd: ð64Þ

When the (geometric) series converge, we can sum them, and then we obtain the expected
result,

cosQd ¼ cos kdþ
ig

1þ g
sin kd, ð65Þ

which is Equation (1) asM¼ g/(1þ g). However, Q can be imaginary for a given real k (see the
discussion around Equation (18)), leading to divergent series. This is a well known difficulty.
One way to overcome it is to use a continuation argument, where we suppose that Im k is
sufficiently positive to ensure convergence of the series, and then allow k to become real in the
final result. Another option (not used here) is to use a regularization argument, where G0 is
replaced by another function that decays rapidly; see [2, x51] for details.

Another way is to change the model problem. So, suppose instead that we have a periodic
row of point scatterers along the half-line x40, with an incident wave, u0(x)¼ eikx.
This problem has been considered by Levine [16], [2, x62]. We look for a solution
ue(nd )¼CeiQnd; Equation (15) gives

CeiQnd ¼ eiknd þ Cgeiknd
Xn�1
m¼0

eiðQ�kÞmd þ Cge�iknd
X1

m¼nþ1

eiðkþQÞmd

¼ eiknd þ Cg
eiknd � eiQnd

1� eiðQ�kÞd
þ CgeiQnd

X1
m¼1

eiðkþQÞmd, n � 1: ð66Þ

The last series is convergent for real k and ImQ40. Summing the series and then balancing
the terms proportional to eiQnd gives the dispersion relation of the Floquet mode,
Equation (65). Balancing the terms proportional to eiknd gives C:

Cg ¼ eiðQ�kÞd � 1: ð67Þ

Next, consider Equation (21), which reduces to

huiðxÞ ¼ eikx þ Cg
X1
m¼0

eikjx�md jeiQmd: ð68Þ
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For x40, write hui(x)¼ g0(y)e
iQx, with x¼ yþ nd and 0� y5d (the function g0 being

d-periodic, consistent with Equation (10)). Then, Equation (68) gives

g0ð yÞ ¼ Cg
eiðk�QÞ y

1� eiðk�QÞd
�

e�iðkþQÞ y

1� e�iðkþQÞd

� �
, ð69Þ

with Cg defined by Equation (67). In particular, for 05x5d, we have

huiðxÞ ¼ Cg
eikx þ Le�ikx

1� eiðk�QÞd
with L ¼

eiðk�QÞd � 1

1� e�iðkþQÞd
:

This should be compared with the exact result obtained in Section 3. Specifically, we should
have L¼ b2/a2. Calculating,

a2L

b2
¼

a2e
�iðQ�kÞd � a2

b2 � b2e�iðQþkÞd
¼

a1 � a2
b2 � b1

¼
ð1� t0Þa1 � r0b2
ð1� t0Þb2 � r0a1

¼ 1,

as expected, using Equations (9), (11) and (17).
For backward propagation, with hui(x)¼ f0(y)e

�iQx, the solution for f0 is deduced from
that for g0: f0(y)¼ g0(d� y) for 0� y5d.

Appendix 2. QCA and the perturbed-periodic problem: another derivation

The dispersion relation (3) is also obtained using a more careful derivation, with an incident
wave, u0¼ eikx, and a semi-infinite row of scatterers, as in Section 4.1. Thus, we start from

hueiðx1Þ ¼ eikx1 þ
g

�d

Xn�1
m¼0

Z
Im

eikðx1�x2Þhueiðx2Þ dx2

þ
g

�d

X1
m¼nþ1

Z
Im

eikðx2�x1Þhueiðx2Þ dx2,

with x12 In, n¼ 0, 1, 2, . . .. Put x1¼ y1þ nd and x2¼ y2þmd. Then, looking for a solution in
the form huei(x)¼G(y)eiKx, where G is d-periodic, we obtain

Gð y1Þe
iKðndþy1Þ ¼ eikð y1þnd Þ þ

g

�d
eikð y1þnd Þ

Xn�1
m¼0

eiðK�kÞmd

Z �d=2

��d=2

dy2Gð y2Þe
iðK�kÞ y2

"

þ e�ikð y1þnd Þ
X1

m¼nþ1

eiðKþkÞmd

Z �d=2

��d=2

dy2Gð y2Þe
iðKþkÞ y2

#

¼ eikð y1þnd Þ þ geikð y1þnd Þ
1� eiðK�kÞnd

1� eiðK�kÞd
G� þ ge�ikð y1þnd Þ

eiðKþkÞðnþ1Þd

1� eiðKþkÞd
Gþ, ð70Þ

where

G� ¼
1

�d

Z �d=2

��d=2

Gð yÞeiðK�kÞ ydy:

To find G�, we multiply through by e�iky1 and integrate over jy1j5�/2 giving

Gþ ¼ eiðk�K ÞndS þ gSG�
eiðk�K Þnd � 1

1� eiðK�kÞd
þ
gGþe

iðKþkÞd

1� eiðKþkÞd
,

G� ¼ eiðk�K Þnd þ gG�
eiðk�K Þnd � 1

1� eiðK�kÞd
þ
gSGþe

iðKþkÞd

1� eiðKþkÞd
:
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The dependence on n is eliminated by taking gG�¼ ei(K�k)d� 1, and then

Gþ ¼
1� eiðKþkÞd

1� ð1þ gÞeiðKþkÞd
S

with K given by Equation (46). Equation (70) gives G(y)eiKy¼CeikyþDe�iky with C¼ 1 and
D¼ gSGþ. Having found huei, we can then calculate hui from Equation (42).

Appendix 3. A heuristic argument for the perturbed-periodic problem

We show that the dispersion relation predicted by QCA, Equation (46), is also predicted by
using an intuitive argument. Although our computations indicate that the QCA prediction is
incorrect, the heuristic argument does have some independent interest.

The dispersion relation predicted by QCA, Equation (46), has the form of the exact
dispersion relation for a periodic row of finite-width scatterers, Equation (12), with
coefficients A and B defined by Equation (13). Those coefficients involve reflection and
transmission coefficients for an isolated ‘scatterer’, r0 and t0. Intuitively, we should replace r0
and t0 in Equation (13) by averaged reflection and transmission coefficients, hri and hti. Recall
that r0 and t0 are the reflection and transmission coefficients for a scatterer located at x¼ 0. It
is easy to see that if the scatterer is moved to x¼ c, then the new reflection coefficient is
rc¼ r0e

2ikc but the transmission coefficient is unchanged. Thus, hti¼ t0 and

hri ¼
1

�d

Z �d=2

��d=2

rc dc ¼
r0
�d

Z �d=2

��d=2

e2ikc dc ¼ r0S:

Replacing r0 by hri in Equation (13), and making use of the point-scatterer expressions,
Equation (17), we do indeed recover Equation (46).

Appendix 4. The u-problem

In the sum of Equation (54), we need the solution of the following problem (Figures 3(b)
and 5). There is a fictitious interface at x¼�dþ z0, 05z05d. To the left, there is free space
with an incident wave and a reflected wave. To the right, there is the periodic (homogenized)
medium, apart from a single cell, (n� 1)dþ z5x5ndþ z (05z5d ), in which there is a single
scatterer at xn¼ (nþ �n)d (�dþ z5�n d5z). Thus, we can write

unðx, �nÞ ¼

eikx þ rðn, �nÞe
�ikx, x5�dþ z0,

tðn, �nÞ g0ð yÞe
iQx þ Rf0e

�iQx, �dþ z0 � x5 ðn� 1Þdþ z,

a1ðn, �nÞe
ikx þ b1ðn, �nÞe

�ikx, ðn� 1Þdþ z � x5 ðnþ �nÞd,

a2ðn, �nÞe
ikx þ b2ðn, �nÞe

�ikx, ðnþ �nÞd � x5 ndþ z,

Tðn, �nÞ g0ð yÞe
iQx, x � ndþ z, ð71Þ

8>>>>>><
>>>>>>:

nd+z

Tg0(x)eiQx
a1eikx+b1e–ikx a2eikx+b2e–ikxeikx+r e–ikx

εn d

–d+z0 (n–1)d+z0  ... nd

tg0(x) eiQx+R f0(x) e–iQx

Figure 5. Configuration of the intermediate u-problem.
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with un and its first derivative being continuous across the three interfaces, at x¼�dþ z0,
x¼ (n� 1)dþ z and x¼ ndþ z. Also, at the scatterer position, x¼ xn¼ (nþ �n)d,
unðx

�
n Þ ¼ unðx

þ
n Þ and u 0nðx

þ
n Þ � u 0nðx

�
n Þ ¼ 2ikMunðxnÞ. In these formulas, f0 and g0 are

d-periodic, defined for 05y5d by

g0ð yÞ ¼ Aeiðk�QÞ y þ Be�iðkþQÞ y, f0ð yÞ ¼ Aeiðk�QÞðd�yÞ þ Be�iðkþQÞðd�yÞ:

Applying the eight continuity equations gives the following equations:

1 ¼ tAeiðk�QÞd þ RB, r ¼ tBe�iðkþQÞd þ RA,

a1 ¼ tAeiðk�QÞðd�nd Þ þ RBe�iðkþQÞnd, b1 ¼ tBe�iðkþQÞðd�nd Þ þ RAeiðk�QÞnd,

a2 ¼ ATeiðQ�kÞnd, b2 ¼ BTeiðQþkÞnd,

a1 ¼ TeiðQ�kÞnd ð1�M ÞA�MBe�2i�nkd
� �

,

b1 ¼ TeiðQþkÞnd MAe2i�nkd þ ð1þM ÞB
� �

: ð72Þ

These equations are readily solved. In particular, we find

ATðn, �nÞ ¼ D�1e�2iQnd B
2e�2ikd � 1

� 
,

ARðn, �nÞ ¼ D�1 ½1�M�MBe�2i�nkd�Be�2ikd � ½Me2i�nkd þ ð1þM ÞB�
� 

,

Atðn, �nÞ ¼ D�1e�2iQndeiðQ�kÞd ð1þM ÞB2 þM� 1þ 2MB cos ð2�nkd Þ
� 

with B¼B/A and D(n, �n) given by

D ¼ ½1�M�MBe�2i�nkd�½B2e�2ikd � e�2iQnd� � B½1� e�2iQnd�½Me2i�nkd þ ð1þM ÞB�:

These formulas are exact. They can be expanded in powers of �n. We find that these
expansions have the form (with an error that is Oð�3nÞ)

Tðn, �nÞ ¼ t0 þ �nT1ðnÞ þ �
2
nT2ðnÞ, T2ðnÞ ¼ T20 þ T22e

2inQd þ T24e
4inQd, ð73Þ

Rðn, �nÞ ¼ �nR1ðnÞ þ �
2
nR2ðnÞ, R2ðnÞ ¼ R22e

2iQnd þ R24e
4iQnd, ð74Þ

tðn, �nÞ ¼ t0 þ �nt1ðnÞ þ �
2
nt2ðnÞ, t2ðnÞ ¼ t22e

2iQnd þ t24e
4iQnd, ð75Þ

where t0¼T(n, 0)¼ t(n, 0)¼A�1ei(Q�k)d. All the coefficients in these expansions can be
calculated but we shall not need any of them apart from T20:

T20 ¼
4MBðkd Þ2e2iðQ�kÞd

AðB2e�2ikd � 1Þ
¼ �2iðMkd Þ2

t0 e
iQd

sinQd
, ð76Þ

after using At0¼ ei(Q�k)d and Equation (37) for B.
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