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Number of propagating modes of a diffusive periodic waveguide in the semiclassical limit
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We study the number of propagating Bloch modes Ny of an infinite periodic billiard chain. The asymptotic
semiclassical behavior of this quantity depends on the phase-space dynamics of the unit cell, growing linearly
with the wave number £ in systems with a non-null measure of ballistic trajectories and going like ~k in
diffusive systems. We have calculated numerically Ny for a waveguide with cosine-shaped walls exhibiting
strongly diffusive dynamics. The semiclassical prediction for diffusive systems is verified to good accuracy and
a connection between this result and the universality of the parametric variation of energy levels is presented.
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I. INTRODUCTION

According to the Bohigas-Giannoni-Schmit conjecture
[1], a system with chaotic phase-space dynamics is expected
to show universal quantum level statistics in the semiclassi-
cal limit, consistent with the predictions of random matrix
theory (RMT). For instance, the two-point level correlation
of closed chaotic systems has been shown experimentally
and numerically to agree with the Gaussian orthogonal en-
semble (Gaussian unitary ensemble) for systems with (with-
out) time-reversal symmetry [2,3]. Analytical results sup-
porting this universality have also been achieved using the
semiclassical trace formula, first by means of the diagonal
approximation and more recently including nondiagonal
terms verifying full agreement of the semiclassical form fac-
tor with RMT [4].

Much less is known for spatially extended chaotic sys-
tems. In the case of systems that relax by a diffusion process,
the spectral properties deviate from random matrix theory in
a particular way. Dittrich et al. [5,6] considered the statistical
properties of the energy bands E, 4 of a closed periodic dif-
fusive system with N chaotic unit cells and analyzed the
signatures of chaotic diffusion in the form factor (the Fourier
transform of the two-point level correlation function). They
showed that their semiclassical results agree nicely with
those of Simons and Altshuler [7,8] who proposed that the
fluctuations of the energy bands E, 4 or in fact any paramet-
ric variation of the energy levels is universal within the ap-
propriate Dyson ensemble (depending on time-reversal sym-
metry). Simons and Altshuler calculated the universal two-
point level correlation function for a disordered system under
the influence of an external perturbation—for instance, in the
form of an Aharonov-Bohm flux—and showed that the re-
sponse of the spectrum to those parameter variations was
universal after a suitable scaling with two system specific
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parameters. Dittrich et al. [5,6] identified one of these pa-
rameters with the diffusion coefficient of the chain.

These correlation functions or form factors provide a de-
tailed description of the statistical properties of the spectrum.
In this work we consider a particular quantity directly related
to the correlation function and of great practical importance
for wave propagation in periodic media: the number of
propagating modes Ny(E) with energy E. In a periodic sys-
tem the propagating modes are given by the Floquet-Bloch
modes, which are quasiperiodic solutions of the Schrodinger
equation. They propagate ballistically through the system
with constant (group) velocity and are the only modes al-
lowed to transport energy. For instance, the dimensionless
Landauer’s conductance of a long periodic sample fluctuates
closely to the number of these modes propagating in a given
direction. In [9], Faure studied this quantity for quasi-one-
dimensional periodic systems in the small Plank constant
limit 2=27% — 0. He showed that if the phase space displays
tori in the transverse stroboscopic Poincare section, corre-
sponding to trajectories that propagate ballistically through
the system, then N3~h‘1 but, on the other hand, for fully
chaotic and diffusive systems Nz~ h~"2.

We study Nz(E) numerically for periodic waveguides
with diffusive classical dynamics and finite horizon in the
semiclassical regime. The paper is organized as follows. In
Sec. IT we review Faure’s derivation of the number of propa-
gating Bloch modes in a waveguide. In Sec. III we define the
billiard where the predictions are tested. The results are sum-
marized in Sec. IV Then in Sec. V we discuss in further
detail our results and its relation to previous works and
present some conclusions.

II. NUMBER OF BLOCH MODES FOR 7 —0

In order to be self-contained, we start reviewing the es-
sential results of [9]. First, in an infinite periodic waveguide,
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FIG. 1. (Color online) Part of the spectrum k,,(6) for the billiard
studied in Sec. IV. Note that for the statistics of Ng(k) the compu-
tation considers values of k considerably larger than the ones of this
figure.

the distribution of quantum velocities P;(v,E) determines
the number of propagating modes Ng(E) with positive veloc-
ity [see Eq. (5)]. Second is the asymptotic form of the aver-
age (Ng(E)) for A—0, obtained using a semiclassical ap-
proximation of (P;(v,E)) [see Eq. (13)].

Consider a periodic waveguide in the Cartesian (x,y)
plane, with xe ]-o,+[ (the propagation axis) and y
bounded for every x between the wave boundaries that we
define as hard walls. The waveguide is composed of cells
with length L. In the waveguide particles are free; hence,
Schrodinger’s equation reduces to Helmholtz equation, i.e.,

2+ ) gx,y) =0, (1)

with ¢(x,y) satisfying Dirichlet boundary conditions at the
walls. The reader can have in mind several physical contexts
where this is valid such as optical, microwave, or acoustic
cavities or degenerate electron gases in mesoscopic devices.
The classical analog of the quantum system under consider-
ation is given by the free particle Hamiltonian
H(x,py,y,py)= (P +pv)/ 2 (we consider particles of unit
mass), plus perfect elastic walls as the waveguide bound-
aries. The results we present below hold for general periodic
Hamiltonian systems (not only billiards) where the confining
potential in the transversal direction y could be soft. Equa-
tion (13) is the general result for that case whereas the par-
ticular result for hard-wall billiards is given by Eq. (15),
which is the expression we use in the rest of the paper.

Let us consider the phase-space surface of constant en-
ergy in one unit cell 2={(x,p,,y.p,)/0=x=L, h(x)=y
=h,(x), H(x,p,,y,p,)=E}, where h(x) and h,(x) define
the lower and upper walls of the waveguide, respectively.
Since the boundaries of the guide are periodic and g is
compact, we have from Bloch theorem that the solutions of
Schrodinger’s equation [Eq. (1)] form bands, i.e., its spec-
trum has the form E, 4 with n e N as the band index and 6
=gL e [—, ], where ¢ is the Floquet-Bloch wave number.
Figure 1 illustrates this spectrum for a chaotic periodic wave-
guide. An important consequence of Bloch theorem is that
the propagation in a periodic system is ballistic with a group
velocity [10]
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Since szga'xﬁ(C—f(x))(f’(x))i[C is the number of points
such that f(x)=C with positive derivative in the interval
(a,b), Faure expressed the number of Bloch modes with en-
ergy E propagating with positive velocity, Ng(E), as

& d
NB(E) = 2 J dea(E_ En,0)®(vn,0) 5;’6’ (3)

where &(-) is the Dirac delta function and ©(-) is the Heavi-
side step function. Considering the distribution of quantum
velocities P;(v,E) defined as [9,11]

de
Pﬁ(st) = h22 f ;T&U - Un,ﬂ) ‘%E_ En,ﬂ)v (4)

with v, 4 defined in Eq. (2), one obtains

1 o]
Ny(E) = Ef vP;(v,E)dv. (5)
0

The normalization over v of Py(v,E) is

f dvPy(v,E) = hzf j—j_p(E, 0), (6)

with p(E, 6)=2,8(E-E, 4) as the density of states. We note
that Eq. (5) is an exact result, a particular case of the Kac-
Rice formula [12], valid for quasi-one-dimensional periodic
systems [9].

The number of propagating Bloch modes is a rapidly fluc-
tuating quantity as a function of E at scales near the mean
level spacing AE=1/pg, where pg is the mean density of
states. These fluctuations are eliminated by considering the
average of Ng(E) over an energy interval SE such that E
> SE> AE (i.e., quantum mechanically large but classically
small), which is the same definition used to determine pg
from p(E, ). This procedure is supposed to play a similar
role to the ensemble average for disordered systems. Note
that we can write

o) = [Pyt B, )
0

As follows from Eq. (6), (P;(v,E)) is normalized to h’pg
=vg, where v is the Liouville measure of the constant en-
ergy surface 25 (Weyl law).

The expression at the right-hand side of Eq. (7) will be
used for the theoretical semiclassical analysis of (Nz(E)) but
not as a recipe to implement a numerical computation be-
cause it is difficult to properly sample small velocities to
generate the velocity distribution. However, we are not con-
cerned with the numerical evaluation of this distribution but
with the average of Ngz(E) which can be computed in differ-
ent ways. In Sec. III B we describe a numerical method that
allows us to compute (Ng(E)) accurately bypassing the com-
putation of P;(v,E). (See in particular the last paragraph at
the end of the aforementioned section.)
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We now turn to obtain the leading-order term of the semi-
classical expansion of (Ngz(E)). Asch and Knauf [11] proved
the asymptotic convergence of (P;(v,E)) toward the classi-
cal asymptotic velocity distribution P,(v,E), i.e.,

Py(v,E)=P,(v,E) when A — 0, (8)

which holds for test functions independent of 7%, i.e., over
intervals of order dv ~ 1, 6E ~ 1, a coarse graining consistent
with Eq. (7). In the right-hand side of Eq. (8) P,(v,E) is the
probability density of the asymptotic mean velocity,

~lim x(t) ©)

t—oo 1

where x(z) is the longitudinal position at time 7 of a free
particle in the waveguide whose initial condition was taken
randomly with a uniform probability distribution on the sur-
face X;. When the classical dynamics is not purely ergodic,
i.e., there are some tori associated with ballistic trajectories
in the stroboscopic Poincare section, the leading-order term
in the semiclassical limit of Ny can be obtained just using
equivalence (8) in the integrand of Eq. (7). On the other
hand, in the case when the dynamics is completely ergodic,
P,(v,E)dv is a punctual measure at v=0 because v,=0 al-
most surely. To obtain the leading semiclassical contribution
in (Ny(E)), it is necessary to quantify more precisely how the
quantum level velocity distribution approaches the classical
asymptotic velocity distribution as 2 — 0, that is, we need a
refinement of Eq. (8).

When the classical dynamics is fully ergodic and the mix-
ing rate is rapid enough, we expect that (almost) any initial
ensemble of particles in the system will relax by diffusion,
with a Gaussian density profile spreading according to
(x(t)?)=Dyt for large times, with D, as the diffusion coeffi-
cient for 3. Hence, the mean velocity distribution at time 7
is given by

2
P,(v,E)= \y;ﬂ;ﬁxp( 253>, (10)

where E'tz:DE/t. In the limit 7—, P(v,E) converges to a
punctual measure at v=0. It has been shown [13], using the
Gutzwiller trace formula and also with RMT arguments, that
in systems with hyperbolic classical dynamics the variance
of a quantum operator in the semiclassical limit is equal to
the variance of the associated classical observable at time ¢
=tylg, with ty=h/AE=vg/h as the Heisenberg time of the
unit cell and g as a factor depending on the antiunitary sym-
metries of the system. For the billiard we study in Sec. III the
factor g=2 due to the transversal mirror reflection symmetry
of the unit cell [28] (see the discussion in Sec. V). Then, we
have a relation between the variance a%:(vi o of the quan-
tum level velocity and the variance of the classical mean
velocity &,

2=t

0 " for A — 0. (11)
This relation between level velocity variance and the classi-
cal diffusion coefficient D for the energy shell % was stud-
ied in detail for the kicked rotor [14] where the diffusion
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coefficient displays a nontrivial behavior as a parameter is
varied. In a different context, [15] explores the relation be-
tween classical diffusion coefficient and quantum evolution
properties.

Inspired by Eq. (11), Faure conjectured a higher-order
semiclassical equivalence between the averaged distribution
of quantum velocities (P;(v,E)) and the classical mean ve-
locity distribution at time t=ty4/g, i.e.,

Py(v,E)=P,., ,,(v,E) when fi—0, (12)

/8
over widths of order SE~1, v~ h. This conjecture is
based on result (11) and the quantum ergodicity theory [16].
It can also be seen as a consequence of the universality in the
parametric variation of energy levels discovered by Simons
and Altshuler [8], as we discuss in Sec. V Using Eq. (12) in
the integral of Eq. (7) we have, for a purely diffusive wave-

guide,
1 vgD
Nu(E)) = =S 2 + o). (13)
\J

Equation (13) was derived in [9] without the factor g and
was checked numerically for the kicked Harper model.

Billiards are a particular class of systems with the simpli-
fying property that their phase-space dynamics is the same
on every energy shell except for a change of time scale. For
two-dimensional billiards vz=27A,. depends only on A, the
area of the unit cell. Hence, the semiclassical limit #—0 is
equivalent to k—o° due to the relation #%k*= 2E. In 3 the
upper bound of the mean asymptotic speed is \2E. Consid-
ering the change of variables v=\2Eu we have [from Eqs.
(7) and (8)] (Ng(E))= \ZEfouP (u)du with P,(u) as the clas-
sical asymptotic velocity distribution in X, where the par-
ticles move with constant unit speed. Since V2E=#k,

1
Np() = 5= j oP,(0)do. (14)
L J o

Thus, for ballistic waveguides [P,(v) # vgd(v)] the average
number of propagating Bloch modes goes asymptotically for
k going to infinity as ~ u,,k/2m7+0(k), where w,, is the
measure of ballistic trajectories in a stroboscopic cross sec-
tion of the waveguide as defined in [9]. For diffusive billiard
chains, the diffusion coefficient satisfies Dp=|v|D, with
speed |v|=\2E and D, as the diffusion coefficient in the
energy shell X, where particles move with unit speed.
Then, using |v|=%k and v;=27A, in Eq. (13) we have that
the average number of propagating modes in a diffusive
wave guide is

(Ny(K)) = *g;“ i+ o(yk). (15)
AY

In the following sections we will study how well this result
applies to a version of the cosine waveguide, where many
semiclassical results for quantum systems have been tested
[17,18].
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FIG. 2. Portion of the infinite cosine waveguide with a trajecto-
ry’s segment inside.

III. COSINE BILLIARD CHAIN
A. Definition and classical dynamics

We consider a periodic bidimensional waveguide with
cosine-shaped hard walls [19]. The unit cell is defined for
—I=x=1 with the upper boundary given by h,(x)=1
+(A,/2)[1+cos(mx)] and the lower boundary defined by
hl(x):%[1+cos(7rx)]. The waveguide is constructed as an
infinite one-dimensional chain of these unit cells as shown in
Fig. 2. Such a billiard has finite horizon, i.e., it does not have
unbounded collision-free trajectories. Note the aforemen-
tioned unit-cell mirror symmetry in the transversal axis
(x=0). We focus on a few values of A, in the range 0.3
=A,=0.60, where we found that the dynamics is strongly
chaotic. Very small tori are observed for A,=0.38 and 0.45 in
the longitudinal Poincare section over y=h,(x). For the other
values of A, considered the phase space looks fully ergodic
to the naked eye. In all cases the connected ergodic compo-
nent makes up at least about 95% of phase-space volume and
the most important property for our purposes, exponential
decay of the instantaneous velocity autocorrelation
(v,(1)v,(0)), was observed for all values of A, explored (Fig.
3). This implies that the system exhibits normal diffusion,
i.e., that
X= limM = lim X, (16)

t—® \t t—%
is a stationary Gaussian random variable, with zero mean
and variance (¥’)=D,. In Fig. 4 we plot the distribution of
the normalized displacement X for A,=0.3 showing remark-
ably good convergence to a normal distribution. This holds
true for the other values of A, that we consider. Another way
to support our conclusion that X is normal distributed and

C()
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0.6t}
04}

0.2

—0.2L

FIG. 3. Velocity autocorrelation function C(7)=(v(t)v,(0)) for
an ensemble of 20000 particles in three billiards with A,
=0.6,0.45,0.3 (full, dashed, and dotted lines, respectively). The
decay to noise level is quite fast in all cases, at around 7~ 15, which
is approximately 30 collisions.
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FIG. 4. Histogram of the normalized displacement X, for a wave-
guide with A,=0.3 at time =50 000 using an ensemble of 10°
initial conditions. The best Gaussian fit is plotted over it. The inset
shows the same histogram (dots) in logarithmic scale where con-
vergence to a Gaussian (full line) is more evident to be achieved
even deep in the tails.

that there is convergence for at least the first two moments
[20] comes from the fact that 2¢|%|)>=(%;) for large enough
time as observed in Fig. 5. Note that, for instance, an anoma-
lous diffusive system with ergodic phase space but with in-
finite horizon trajectories could have convergence in distri-
bution to a Gaussian for an appropriate normalized
displacement, but it would fail to satisfy this relation be-
tween first and second moments for any finite time approxi-
mation of X [21].

B. Bloch basis

The propagating states of a periodic waveguide are given
by the Bloch modes with unitary eigenvalues. The Bloch
basis of a given waveguide can be defined by the solutions of
a generalized eigenvalue problem as follows [22]. Consider
only one unit cell between two infinite plane leads. The wave
function can be written as

Px,y) = 2 [ef(x) + 7 (0) ] ilx, ), (17)
i=1

where i € N labels the local transverse modes ¢;(x,y) which
satisfy the waveguide boundary conditions at each x. In the
particular case we are considering (hard-wall billiard chain)
6,0, )=\iegsinfnaly = (/A with  h(x)=hy(x)
—hy(x). Inserting Eq. (17) in Eq. (1), the wave equation be-
comes a system of ordinary differential equations for the
cl-t(x) which after suitable transformation can efficiently de-
termine transmission and reflection matrices [23,24]. Let a
(a;) be the right (left) going wave on the left lead and b; (b;)
be the right (left) going wave on the right lead [identified
with ¢; (x) evaluated at the left x; and right x, boundaries of
the cell, respectively] as illustrated in Fig. 6. If  and r (' and
r') are the left-to-right (right-to-left) transmission and reflec-
tion matrices then outgoing waves are linked to ingoing
waves by

tat+r'b-=b",
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FIG. 5. Finite time approximations of the diffusion coefficient
Dl(t)z(x?)/t for the A,=0.3 cosine waveguide calculated from the
variance (second moment) of the sample’s displacements (black
line) and from the first moment using 2¢|%;)?=(¥;), as expected for
Gaussians (dashed line) for an ensemble of 10° initial conditions.
To obtain the diffusion coefficient D; we average D,(r) for times
after the transient relaxation regime. The diffusion coefficients ob-
tained in this way from the first and second moments of x, are the
same up to standard error.

rat+t'b - =a". (18)

We can recast this (infinite) system of equations as

a* b*
N

0 I -r
Ml:(—tr I)’ MZ:(O t’r ) (20)

Now, we impose Bloch condition, namely, that the wave
function is equal on both lead boundaries up to a complex

factor A,
=\ , 21
a” b~ 1)

where N=exp(if)=exp(igL). Then, the Bloch basis is defined
as the set of modes that satisfy Eq. (21), i.e., they are the
solutions v,, of the unit cell’s generalized transfer matrix ei-
genvalue problem

where

Mlvn = )\anv,,. (22)

The propagating Bloch modes are such that |\,|=1; the other
modes are evanescent and decay exponentially in the direc-
tion of propagation. In practice, this infinite system of equa-
tions must be truncated to a dimension at least equal to the
number of propagating Fourier modes in the leads, but in
most cases it is necessary to include some evanescent Fourier
modes to describe the field adequately. Note that the trans-
mission and reflection matrices used in Eq. (20) are evalu-
ated at the (right or left) entry boundary of the unit cell and
carry information from these decaying modes in the near
field, which in general can couple between unit cells in the
chain. Hence, these matrices do not satisfy the usual (energy)
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FIG. 6. Illustration of a quasi-one-dimensional waveguide com-
posed of one unit cell (gray) connected to two ideal leads going to
infinity. The field [Eq. (17)] at the unit cell’s boundaries is given by
[cf(xo) ¢;j(xo)]=la;] a;] and [c}(x;) c;(x;)]=[b] b;]. Solving the
scattering problem in this geometry we can obtain the Bloch basis
of the infinite periodic chain.

flux conservation relations coming from the unitarity of the
scattering matrix in the far field [25]. Moreover, including
evanescent modes brings about infinitely fast decaying states
(i.e., null eigenvalues \,) [26] making matrices (20) nonin-
vertible. In this case the transfer matrix M=M,'M, cannot
be defined. Only when the geometry of the unit cell is such
that the coupling between evanescent modes is negligible it
is possible to truncate f, r, t', and r’ to the far-field nonde-
caying modes and define the transfer matrix.

Note that our method computes 6 as a function of %, i.e.,
we fix the energy E (or the wave number k) and then we
obtain the set of Bloch quasimomenta 6, for which a propa-
gative solution exists. With this method we can accurately
compute the energy average at the left-hand side of Eq. (7).

IV. NUMERICAL RESULTS

We now study numerically the semiclassical behavior of
(Ng(k)) for the cosine billiard chain. In order to compute the
transmission and reflection matrices we employ the admit-
tance multimodal method described in [24], where, for each
value of k, the field is described using the local transverse
modes (Fourier basis) of the waveguide truncated to a finite
number of channels, as described in Sec. III B The number
of propagating modes Ny(k) is obtained by counting the so-
lutions of Eq. (22) with |\,|=1 and positive group velocity.
As a function of k, the above number fluctuates at scales
Ak=21/(kA,) [29]. We consider an average of the form

(Np(k)), = f Np(k")f (k= k")dk', (23)

where f,(k) is a positive function of unit norm in dk with
compact support in an interval of length rAk with r> 1. The
dependence of (Ng(k)), in the width of f.(k) is briefly dis-
cussed at the end of this section but for what follows we drop
explicit reference to r.

In Fig. 7 we show (Ny(k)) for k € [, 1507], for A,=0.3.
For this A, value, the phase space does not show noticeable
tori. In the k interval explored the number of open transverse
modes in the Fourier basis ranges from 1 up to 150 (100
evanescent modes were used for all wave numbers). The
dashed line shows a Gaussian smoothed moving average
with variance 77 of Ny(k) for a uniform sampling of wave
numbers with spacing ok~ 0.377r, which is bigger than the
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FIG. 7. The dashed line is the Gaussian smoothed moving av-
erage (with standard deviation ~r) of the number of propagating
Bloch modes Ng(k) in the cosine billiard chain with A,=0.3 for a
uniform k sampling with increments 6k=0.371 477. The expected
semiclassical result for (Ng(k)), plotted in full line, shows good
agreement with the moving average. The four black points (with
their associated standard error) were computed for the same geom-
etry using a uniform sampling of 153 wave numbers in an interval
300 mean level spacings wide, which constitutes a better statistics
than the moving average (a sampling at least 15 times denser). In
the inset, the diffusion coefficient calculated classically (black dots)
and the one obtained from the best fit following Eq. (15) for the
quantum computation of Ng(k) (circles) for five values of A, are
shown. In all cases, a good agreement with the expected semiclas-
sical behavior [Eq. (15)] is observed.

mean level spacing in the whole k range. The full line is the
expected semiclassical result (15) adjusted with an additive
constant. This constant appears because in the system under
study (Ng(k*))=0 for some k*>0 and we are not sufficiently
deep in the semiclassical regime for its relative value to be
negligible. Ng(k) fluctuates very rapidly with k as expected
but the agreement between the moving average and the semi-
classically predicted curve is quite good in the whole wave-
number interval explored. We observe similar good results
for other configurations of the unit cell with 0.6=A,=0.3
even when there are some small tori in the transverse Poin-
care sections. This is not surprising because the classical
dynamics in those systems is also strongly mixing and for
waves to resolve such small structure wave numbers of order
k=20007 would be needed, a fairly large value compared to
the range considered. In the inset of Fig. 7 we show the
diffusion coefficient calculated classically (from Monte
Carlo simulations) and also the one obtained from the best fit
following Eq. (15) for the quantum computation of Ny(k) for
five values of A,.

As mentioned in definition (23) of the mean number of
propagating Bloch modes, the width of interval rAk over
which we take the average is arbitrary and it is only assumed
to be much larger that the mean level spacing Ak and clas-
sically small. In order to find out how relevant is this choice
we calculate (Ny(k)), for four different values of k as a func-
tion of r € [2,300] using a uniform k sampling of 153 points
around the four wave numbers. In Fig. 8 we see that, after a
transient phase in r~ 200, the value of the average reaches
an approximately stable region in the four cases. The four
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black dots in Fig. 7 show this result for =300, also agreeing
nicely with the expected semiclassical curve.

We end this section by remarking how close to the semi-
classical regime the presented results are. In our calculations
N/ W (the wavelength in units of the waveguide width) is as
small as 0.012. We note that the calculations in [5], which
are also compared with semiclassical results for periodic bil-
liards, were computed with the parameter A/ W~ 0.12.

V. DISCUSSION AND CONCLUSIONS

In Sec. II we closely followed Faure derivation of Eq.
(13). Here, we provide an alternative argument allowing us
to understand better the connection with [6,8]. Proceeding as
in Sec. II, we define the probability distribution of level ve-
locity in natural units w,

1 m dE
p(w,E) = —EJ dOS(E-E, (,)5<w-—""’), (24)
277 ) . ' do
so that
Ny(E) = 27Tf wp(w,E)dw. (25)
0

Then, as was noted in [27], the distribution of level velocities
satisfies p(w,E)=lim,_, #K(w¢,¢) with K(),¢) as the
autocorrelation function

K(Q,8) =(p(E+Q,0+ §)p(E,0))po—pr  (26)

of the energy density p(E,0)=2,8E-E, z). The average is
over 6 and over a classically small energy interval around E
and pg denotes this average for p(E, #). According to Simons
and Altshuler k(w, x)=K(Q, )/ ﬁé is a universal function,
where w=pg) and y= \«"mqﬁ with C(0)= ﬁ%((dE,w/ do)?.
They showed this result for disordered systems and verified
numerically its validity for chaotic systems in the semiclas-
sical limit. It follows from their expression for k(w, x) that
the probability distribution of level velocity p(w,E) is a
Gaussian with variance C(0)/ ﬁé. Thus, from Eq. (25), we
obtain Nyz(E)=\2mC(0). The constant C(0) is system depen-
dent and must be computed, for example, semiclassically. In
our case it is simply related to the average of the square of
the quantum velocity C(0)=(pph>/ Lz)(vﬁ’y that is given in
Eq. (11), leading to Ng(E)= VW- Thus, Faure’s
result (13) can be seen as a consequence of universality in
the parametric level correlations. The validity of the univer-
sal correlation function for periodic systems was studied in
[6] by Dittrich e al. in the semiclassical limit. They com-
puted K(£),¢) by Fourier transforming their semiclassical
expression for the form factor identifying a C(0) that agrees
with the previous result.

The universal correlation function k(w, x) is different for
Gaussian orthogonal ensemble (GOE) and Gaussian unitary
ensemble (GUE). For periodic systems, when y plays the
role of the Bloch parameter, time-reversal symmetry 7 is
broken for all y besides three exceptional points [5]. Thus,
when no further antiunitary symmetries exist, k(w, y) moves
between GOE and GUE at different parts of the band. In our
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FIG. 8. (Color online) (Ng(k)), as a function of r for four energies in the A,=0.3 cosine billiard. A uniform sampling of 153 wave
numbers distributed in a 300 mean-level-spacing wide interval was used. In all cases after r~200 the average fluctuations are notably
reduced and the result for (Ng(k)) is in agreement with the expected semiclassical result (see Fig. 7) indicating that this is a good smoothing

window to eliminate the spectrum fluctuations.

case, the unit cell is invariant under the operator S, that
transforms x— —x (mirror reflection along the transversal di-
rection). So, even though the unit-cell Hamiltonian does not
commute with S, nor with 7, it does commute with the op-
erator 7S, which is antiunitary. Then, as y is varied, the
system always belongs to GOE [28].

As a final comment, we note that Eq. (14) applies also to
classical waves with dispersion relation w=ck propagating in
a waveguide with speed c=1. We can restore ¢ by noticing
that the distribution of group velocities v, y=Ldw, o/d is
related to our previous distribution by pk(v)szk(%). With
this new p,(v) the formula becomes

[

k
Np(k) = —— vp(v)dv, (27)

2arcL 0

with the normalization fdvpk(v)=f'i—?Pk(%)=27TAC for the
group-velocity distribution. The result for the number of
propagating modes also applies for these classical waves.
To conclude, we have studied the agreement between nu-
merical computations and a semiclassical approximation of

the number of propagating modes in a diffusive periodic
waveguide. We also showed the relation between (Ny(E))
and previously studied spectral properties of periodic sys-
tems. The semiclassical results used in our analysis are pre-
vious to the discovery of how to include nondiagonal contri-
butions to correlation functions. Nevertheless, it was noted
[13,14] that their role in the computation of the fluctuations
in velocity should be very limited. Indeed, besides the aver-
age justified by the rapid phase variation, the observable am-
plitude (the velocity in this case) fluctuates around its null
average, further justifying the diagonal approximation.
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