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a b s t r a c t

A surface acoustic wave can interact with dislocations that are close to the surface. We characterize this
interaction and its manifestations as scattered surface acoustic waves for different orientations with
respect to the surface of an edge dislocation. For dislocations that are parallel or perpendicular to the free
surface, we present an analytical result for short dislocations with respect to the wave-length that repro-
duce qualitatively the main features observed for dislocations of various sizes.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Dislocations determine many properties of metals. For instance,
they play a significant role in phenomena such as fatigue [1–3] and
in the brittle to ductile transition [4]. However the physics of dis-
locations is not completely understood. In part, this deficiency is
due to the lack of experimental measurements (as opposed to visu-
alizations) concerning dislocations. Dislocations are currently seen
through transmission electron microscopy of specially prepared
samples [5–7]. It would be of high interest to have quantitative
non invasive measurements and ultrasonic probe may provide
such quantitative data. In the pursuit of this research program, it
seems pertinent to characterize the interaction of surface acoustic
waves with dislocations. There are several advantages in this situ-
ation: while technically difficult, it is possible to visualize simulta-
neously the propagation of a surface acoustic wave (SAW) and the
response of a nearby dislocation [8,9]. It is also nowadays possible
to measure surface deformations with high precision [10]. Such
conditions will be difficult to meet in the bulk of the medium. In
this respect, SAW measurements seem to provide the best condi-
tions for the development and the validation of acoustic technique.
All rights reserved.
The interaction of acoustic waves with dislocations was the
subject of many studies in the period from the early 1950’s to
the mid 1980’s, with the theory of Granato and Lücke (GL)
[11,12] widely accepted as the standard theory to this day [13]
due to its success to describe damping, internal friction and mod-
ulus change in solids. It is a model based on mean-field concepts
where effective quantities such as velocity and attenuation coeffi-
cient are obtained. The interaction of a bulk acoustic wave with a
single, isolated dislocation is outside the scope of that theory.

In previous works we have studied the interaction of an elastic
wave with a single dislocation [14,15]. From this knowledge we
were able to study the propagation of an elastic wave in a medium
with a random distribution of dislocations [16,17] and in a medium
with particular arrangement of dislocation walls for application to
propagation in polycrystals [18–20]. This description takes fully
into account the vectorial character of the elastic waves and of
the dislocations in the solid. Moreover, we showed that after some
simplifications appropriate to recover scalar quantities, the GL the-
ory follows from our formulation [17]. Later we described the
physics of the interaction of a single dislocation with a SAW [21].
Here we dwell on this topic and study the scattering amplitudes
for dislocations with different orientations with respect to the
surface and provide an analytical expression valid in the long
wave-length limit for the scattering amplitude of dislocations

http://dx.doi.org/10.1016/j.ultras.2009.09.020
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http://www.sciencedirect.com/science/journal/0041624X
http://www.elsevier.com/locate/ultras


Fig. 1. A subsurface dislocation segment lying in a semi-infinite half space with a
stress-free boundary is excited by a surface Rayleigh wave. It responds by
oscillating, and reradiating. At the free surface, these secondary waves will interfere
with the incident wave [21].

1 G0
im satisfies an equation similar to Eq. (5) but with right-hand side given by

dimdðt � t0Þdðx� x0Þ. See [21] for details.
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perpendicular and parallel to the surface. The formulas provide an
understanding of the main dependence of scattering amplitudes on
the length and depth of the dislocation.

2. Theoretical framework

We consider a single dislocation segment in an isotropic elastic
medium of density q and Lamé constants l and k such that longi-
tudinal waves propagate with speeds cL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
and trans-

versal with cT ¼
ffiffiffiffiffiffiffiffiffi
l=q

p
. The dislocation is represented by a line

Xðs; tÞ in the three dimensional space parametrized by the arc-
length s and time t.

The equation of motion for the dislocation consists of four
terms, one that takes into account the inertia of the dislocation, an-
other one the damping, the third takes into account the tension of
the dislocation line and the last, the force that acts on the
dislocation:

m
@2Xi

@t2 þ B
@Xi

@t
� C

@2Xi

@s2 ¼ Fi: ð1Þ

All but the second term, are derived from the variational principle
[22] that rules the continuous theory of elasticity. Explicit expres-
sions for the mass m and the line tension C are

m ¼ qb2

4p
ð1þ c�4Þ ln d

d0

� �

C ¼ qb2c2
T

4p
ð1� c�2Þ ln d

d0

� �
ð2Þ

where c ¼ cL=cT and b the modulus of the Burgers vector b. These
quantities are obtained in terms of two cutoff lengths: the small
one d0 is used to isolate the core of the dislocation where nonlinear
deformations are important and the large one d represents the size
of the system or the distance to another defect.

In Eq. (1), the second term, proportional to the drag coefficient B
is introduced phenomenologically. Its precise value is difficult to
compute and measure [23] and it is an example of a quantity that
could be measured with an acoustic tool.

The force Fi is the classical Peach–Koehler force

Fkðx; tÞ ¼ �kjmsmbirijðx; tÞ ð3Þ

when the velocities are small in comparison with the speed of wave
propagation, as it will be the case in the sequel. �kjm is the com-
pletely antisymmetric tensor of rank three, sm is a unit tangent
along the dislocation line, and rijðx; tÞ is the external stress which,
in Eq. (1), is evaluated at the dislocation position, x ¼ Xðs; tÞ.

Under the Born approximation, the scattering of an elastic wave
with a dislocation is understood in two steps. First a wave hits a
dislocation and its stress forces the dislocation through the
Peach–Koehler force. The dislocation will move and emit elastic
waves. Before turning to this emission let us mention that we are
neglecting the scattering that the wave could experience by cross-
ing the core of the dislocation where strong deformations of the
crystal exist. This mechanism should be important only for waves
with small wave-length like thermal waves.

Once the dislocation moves, it will generate waves. In fact, the
dislocation motion enters as a boundary condition for the wave
equation that can also be represented as a source term. We explain
this in more detail below.

Neglecting the pre-stress due to the dislocation at rest, the wave
is described by the displacement vector u that is a solution of the
wave equation

q
@2

@t2 uiðx; tÞ � cijkl
@2

@xj@xl
ukðx; tÞ ¼ 0;
where cijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ and with the following two
boundary conditions: (1) on one hand, the displacement has a dis-
continuity equal to the Burgers vector when crossing a time-depen-
dent surface SðtÞ whose contour is the moving dislocation line
LðtÞ : ½ui�SðtÞ ¼ bi, on the other hand the stress is single valued:
½cijklð@ul=@xkÞnj�SðtÞ ¼ 0; (2) the normal stress vanishes at the free
surface S, defined by z ¼ 0 : ½cijklð@ul=@xkÞnj�S ¼ 0. This last condition
is absent in the infinite medium.

The solution for the time derivative of the wave displacement
v ¼ @u=@t, the particle velocity, can be written in the form of a con-
volution with a source localized along the loop, an expression first
given in [24], see also [16]:

vs
i ðx; tÞ ¼ ��jnhcpjkl

Z
L

Z
dt0ds bp

_Xnðs; t0Þsh
@

@Xl
G0

ik½x;Xðs; t0Þ; t � t0�;

ð4Þ

where we denote _X � @X=@t and G0 is the Green function of the half
space with a free surface.1 This expression is a solution of

q
@2v i

@t2 � cijkl
@2vk

@xj@xl
¼ si ð5Þ

where the source term si is

siðx; tÞ ¼ cijkl�mnk

Z
L

ds _Xmðs; tÞsnbl
@

@xj
dðx� Xðs; tÞÞ:

We end this section with the remark that from a theoretical point of
view, the results of this section holds just as well for a whole space
as for half space, the difference being that G0

im is now the impulse
response function of an elastic half-space with a stress-free bound-
ary instead of the response function of the whole space.
3. Pinned dislocation segment in a half space

The physical situation we consider is as follows (see Fig. 1): an
incident Rayleigh wave, with angular frequency x, is launched at
the free surface of a semi-infinite elastic medium containing an
isolated edge dislocation line. The line can have any direction but
we assume it does not touch the free surface. It is assumed that
the dislocation can be represented by a straight segment of length
2L pinned at its extremities so that in equilibrium XðsÞ ¼
ð0;0; z0Þ þ ss ð�L 6 s 6 LÞ and when moving it must satisfy the
boundary conditions Xkð�L; tÞ ¼ 0. Neglecting dislocation climb,
the motion of the dislocation occurs along the direction of the
Burgers vector (gliding edge dislocation).
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We denote t the glide direction, with b ¼ bt; s the unit tangent
along the dislocation line, and n � s� t. We suppose that the dis-
location oscillates with an amplitude which is small compared to
the wave-length, so that its time dependent position can be re-
placed by the static, equilibrium, position Xðs; tÞ ’ XðsÞ in the
expression (4). Also, for a gliding motion, _Xnðs; tÞ ¼ _Xðs; tÞtn and
we use �jnhtnsh ¼ �nj. In the frequency domain ðe�ixtÞ, Eq. (4) be-
comes for the vertical component

v s
zðx;xÞ ¼ �ixlb

Z
L

ds Xðs;xÞMlk@Xl
G0

3k½x;XðsÞ; x�; ð6Þ

where M � n ttþ t tn and cijkltinj ¼ lMlk. Note that uðx;xÞ ¼
ivðx;xÞ=x. We consider only the vertical component of v at the
surface because it is a quantity accessible to experiments. vs

z is
the scattered wave because it is the wave emitted in reaction to
the incident wave. We treat this scattering problem in the Born
approximation, this means that in solving the equation of motion
for Xðs;xÞ, we only consider the force produced by the incident
Rayleigh wave. This is addressed in the next subsection. The deter-
mination of @Xl

G0
3kðx;X;xÞ in Eq. (6) is more involved and was con-

sidered in detail in [21].

3.1. The motion of the dislocation line: Xðs;xÞ

Let us find the response of the dislocation to the surface wave.
This is given by the solution of Eq. (1) with the Peach–Koehler force
at its right-hand side computed from the resolved shear stress gen-
erated by the incoming surface wave at the position of the disloca-
tion. The incoming wave is a surface (Rayleigh) wave, whose wave
vector is kR � x=cR, where cR � fcT ; f � 0:9 being the zero of the
Rayleigh polynomial PðfÞ ¼ f6 � 8f4 þ 8f2ð3� 2=c2Þ�16ð1� 1=c2Þ.
This wave is not dispersive, and has an elliptical polarization, a com-
bination of the longitudinal and transverse perpendicular to the free
surface [25]. For a wave propagating along the x1-direction the dis-
placements associated to this wave are

uinc
1 ðx;xÞ ¼ ðkRAemLz þ mT emT zÞeikRx1 ;

uinc
z ðx;xÞ ¼ �iðmLAemLz þ kRemT zÞeikRx1 ;

ð7Þ

where A � �2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
=ð2� f2Þ, and mL;T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

R � k2
L;T

q
> 0 ðkL;T �

x=cL;TÞ.
Note that the deformation induced by the surface wave

increases from the surface to the interior of the medium, reaches
a maximum and then decreases to zero (see Fig. 2). The deforma-
Fig. 2. The vertical uinc
z and longitudinal uinc

1 displacements associated to the SAW
(here, with c ¼ 1:9).
tion in the x1 direction vanishes for kRzzero
1 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
=f4 ln

½1� f2=2� and reaches its maximum at kRzm
1 ¼ �4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
=f4 ln

½ð1� f2=2Þ=ð1� f2Þ�. The deformation in the z direction has it

maximum at kRzm
z ¼ �4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
=f4 ln½ð1� f2=2Þ3=ð1� f2Þ� (where

we have used 2mLkRA ¼ k2
T � 2k2

R or equivalently A ¼ ðf2 � 2Þ=
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2=c2

q
). Note that these values, depend only on f or equiva-

lently only on c, which characterize the material. For positive Pois-
son’s ratio m ¼ ðc2 � 2Þ=2ðc2 � 1Þ, we get kRzzero

1 � �1; kRzm
1 � �3

and kRzm
z 2 ½�1; 0�. Finally, these values, in addition to the depth

of the dislocation and the orientation of the glide plane, will deter-
mine the sensitivity of the dislocation to the wave and therefore
the scattering strength as we show later.

When Eq. (1) is projected to the glide plane, the projected
Peach–Koehler force F ¼ Ft produced by the incident wave at
the dislocation position Xðs;xÞ is given by F ¼ lbMlk@xl

uinc
k ¼

lb½2n1t1@x1 uinc
1 þ 2n3t3@zuinc

z þ ðn1t3 þ n3t1Þð@x1 uinc
z þ @zuinc

1 Þ�. In the
frequency domain, we have to solve

X00ðs;xÞ þ K2Xðs;xÞ ¼ � 1
C

Fðs;xÞ

¼ � CLðxÞeaLs þ CTðxÞeaT sð Þ; ð8Þ

where X00 denotes @2X=@s2;K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx2 þ iBxÞ=C

p
,

CL � 2 lb
C AemLz i n1t1k2

R � n3t3m2
L

� �
þ ðn1t3 þ n3t1ÞkRmL

h i
;

CT � lb
C emT z 2i n1t1 � n3t3ð ÞkRmT þ ðn1t3 þ n3t1Þðk2

R þ m2
TÞ

h i
;

ð9Þ

and aL;T � mL;Ts3 þ ikRs1. In Eq. (9) we used z ¼ z0 þ ss3, the depth of
the dislocation point whose parameter is s. The solution is

Xðs;xÞ ¼ CL

a2
L þ K2 eaLs � cosh aLL

cos KL
cos Ks� sinh aLL

sin KL
sin Ks

� �

þ CT

a2
T þ K2 eaT s � cosh aT L

cos KL
cos Ks� sinh aT L

sin KL
sin Ks

� �
:

ð10Þ

The functions CL and CT that depend on the direction of the glide
plane determine the amplitude of the dislocation motion. These
functions reflect in the amplitude of dislocation motion the fact that
the incident wave has a maximum at some depth. We discuss this
later in the light of numerical results.

3.2. The long wave-length limit: an analytical expression for the
scattered wave

If the wave-length is large compared to the length of the dislo-
cation i.e., kRL� 1, the term that depends on the Green tensor is
approximately a constant on the length scale of the dislocation line
and can be taken out of the integral in Eq. (6)

vzðx;xÞ ¼ �ixlbMlk@xl
G0

3kðx;X0;xÞ
Z

dsXðs;xÞ; ð11Þ

For a vertical dislocation line ðs ¼ ð0;0;1Þ, perpendicular to the free
surface), the Burgers vector is on a plane parallel to the free surface
with an orientation a with respect to x2 i.e., t ¼ ð� sin a; cosa;0Þ in
the ðx1; x2Þ plane. The term with the gradient reduces to

Mlk@xl
G0

3kðx;X0;xÞ ¼
1

2pl
sin 2ðh� aÞIf2 ðr;X0Þ; ð12Þ

with x ¼ ðr; h; 0Þ in cylindrical coordinates and

If2
ðr;X0Þ �

Z þ1

0
dk k3J2ðkrÞf ðk; z0Þ; ð13Þ



Fig. 4. The scattered amplitude for a vertical and horizontal dislocation excited by a
SAW (here, with c ¼ 1:9).
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where f ðk; z0Þ ¼ k2
T � 2k2

� �
enLz0 þ 2nLnT enT z0

h i
=FðkÞ with FðkÞ �

ðk2
T � 2k2Þ2 � 4k2nLnT , which vanishes at k¼ kR and nL;T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

L;T

q
.

As a complex function of k; f ðk;z0Þ has a pole at kR and other singu-
larities such as branch points at �kL;�kT that forbid an explicit inte-
gration for If2 ; however, it is possible to find an analytical
expression valid in the far field kRr	 1 limit. With this purpose
we rewrite If2 as

If2 ðrÞ ¼
1
2

Z þ1

�1
dk k3Hð1Þ2 ðkrÞf ðk; z0Þ

where we have used the fact that f ðk; z0Þ is an even function of k and
the relation J2ðkrÞ ¼ Hð1Þ2 ðkrÞ � Hð1Þ2 ð�krÞ

h i
=2 between the Bessel

function of the first kind J2 and the Hankel function of first kind
Hð1Þ2 . In the far field kRr 	 1, the contribution of the Rayleigh pole
is expected to be dominant [26] and thus, neglecting other singular-
ities of f ðk; z0Þ Cauchy residue theorem allows us to obtain the fol-
lowing analytical expression

If2
ðr;X0Þ ’ ip

k3
RHð1Þ2 ðkRrÞ

F 0ðkRÞ
k2

T � 2k2
R

� �
emLz0 þ 2mLmT emT z0

� �
; ð14Þ

with F 0ðkRÞ ¼ �8kR k2
T � 2k2

R

� �
� 4kR 2m2

Lm2
T þ k2

R m2
L þ m2

T

	 
h i
=ðmLmTÞ.

In the long wave-length limit, the motion of the dislocation also
simplifies because the Peach–Koehler force that acts on the dislo-
cation is a constant along the line given by

F ¼ lb Mlk@luinc
k ðX0;xÞ ¼ lb sin 2a@x1 uinc

1 ðX0;xÞ
¼ ilbkRðkRAemLz0 þ mT emT z0 Þ; ð15Þ

solving the equation of motion for the dislocation under this force
the following expression is obtained

Xðs;xÞ ¼ �lb
i

CK2 kRðkRAemLz0 þ mT emT z0 Þ 1� cos Ks
cos KL

� �
: ð16Þ

with K defined after Eq. (8). Substituting Eq. (14) in Eq. (12) and
plugging the result in Eq. (11) together with the integral of Eq.
(16) we obtain our analytical approximation for the scattered wave
vs?

z by a dislocation segment perpendicular to the free surface

v s?
z ðx;xÞ ¼ �xkR

lb2

mc2
T

mx2

CK2 sin 2a sin 2ðh� aÞ

f?1 ðkRz0Þ f 2ðLÞ Hð1Þ2 ðkRrÞ; ð17Þ

f?1 ðkRz0Þ � �iðf2�2Þ2

2f2
ffiffiffiffiffiffiffiffi
1�f2
p

hðfÞ
emLz0 þ ðf2=2� 1ÞemT z0
� �2

f2ðLÞ � kRL 1� tan KL
KL

	 

:

ð18Þ

Here hðfÞ�2ð4�f4Þ�ð2� f2Þ2=ð1�f2Þ�16ð1�f2Þ=ð2�f2Þ2� �3
for f�0:9. Note that the scattered wave amplitude v s?

z is proportional
to xkR because uinc/ kR. The coefficient lb2

=mc2
T is of order one and

CK2=mx2 ¼1þ iB=ðmxÞ depends on the drag coefficient.
Fig. 3. The configuration of the dislocation and the angles that define its
orientation. The dislocation line has an angle b with the ðx1; x2Þ-plane and the
Burgers vector lies in the ðx1; x2Þ plane, forming an angle a with the x2-axis.
A similar calculation for a small horizontal dislocation line
(b ¼ 0 with the notations of Fig. 3), whose glide plane is parallel
to the free surface, and ðs; tÞ is deduced from ðx1;x2Þ by a rotation
of angle a, gives the scattered wave v sk

z

vsk
z ðx;xÞ ¼ �xkR

lb2

mc2
T

mx2

CK2 sin a sinðh� aÞf k1 ðkRz0Þ f 2ðLÞ Hð1Þ1 ðkRrÞ;

ð19Þ

where

f k1 ðkRz0Þ �
ðf2 � 2Þ4

2f2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
hðfÞ

emLz0 � emT z0½ �2: ð20Þ

This last result, without the detailed derivation was presented in
[21].

These expressions for the scattered wave by a vertical (b ¼ p=2
with the notations of Fig. 3) and horizontal ðb ¼ 0Þ dislocations are
a priori valid only in the far field but, as shown in [21] for the ver-
tical case, when jkRz0j is small enough, that is, when the dislocation
line is near the free surface, they give a reasonable approximation
of the overall field.

In Fig. 4 we plot the scattering amplitude for both cases as a
function of z0. This dependence appears through the functions f k1
and f?1 . We observe that, for an horizontal dislocation, the scatter-
ing amplitude is maximum when the dislocation is at a depth near
1:5=kR. For a vertical dislocation, the scattering amplitude vanishes
at a depth near 1=kR and reaches its maximum near 3=kR. These
values are determined mainly by the dependence on the depth of
the force acting over the dislocation which in turns depends on
the dependence on the depth of the incident wave. In Fig. 2 we
see that the intensity of the incident wave has a maximum at depth
near 2:5=kR for the horizontal displacement. Because the glide
plane is parallel to the surface it is expected that this component
of the incident wave is more relevant than the horizontal.

The scattering strength increases with increasing L. For small L,
this dependence is L3 as predicted by the function f2 given in Eq.
(18) and departs from this behavior for large L. A similar trend is
observed in larger dislocations [21].

A very interesting difference between perpendicular and verti-
cal dislocation is that the diffraction pattern of the former is quad-
ripolar while the later is dipolar. We have computed the pattern of
the scattered wave to inspect the influence of the orientation of the



Fig. 5. Pattern of the scattered wave, numerically calculated for L ¼ kR=10; z0 ¼ �kR . The Burgers vector is along the direction t ¼ ð� sin a; cos a;0Þ with a ¼ p=7, the
dislocation line is along the direction s ¼ ðcos b cos a; cos b sina; sin bÞwith varying b value. (a) b ¼ 0, the dislocation line is parallel to the free surface, (b) b ¼ p=4, (c) b ¼ p=3,
(d) b ¼ 2p=5, (e) b ¼ 9p=20, (f) b ¼ p=2 the dislocation line is perpendicular to the free surface.
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dislocation line in the transition from dipolar for an horizontal dis-
location to quadrupolar for a vertical one. The dislocation line is
along s ¼ ðcos b cosa; cos b sin a; sin bÞ and the Burgers vector
t ¼ ð� sin a; cosa;0Þwith varying b value and a ¼ p=7. Fig. 5 shows
the result for varying b value.

4. Conclusions

The SAW diffraction pattern induced by a subsurface dislocation
depends on several parameters such as depth of the dislocation,
orientation, Burgers vector and drag coefficient B. We have studied
here mainly the dependence on their orientation, showing that
short dislocation segments have a dipolar radiation for horizontal
dislocations and quadrupolar for vertical dislocations. For large
dislocations segments the analysis can be performed only numer-
ically and this was considered in [21] for dislocations parallel to
the surface.

As we noticed previously the formalism of wave dislocation
interaction applies to bulk waves and to surface waves interact-
ing with dislocations. The difference is mainly due to the re-
sponse function that should be used. Dynamical observations of
dislocation motion on a free surface can help in the task of
increasing the deformations produced by dislocations to levels
accessible to experiments. For instance as shown elsewhere
[27], the vertical displacement generated by an infinite, straight,
dislocation placed at a depth h below the free surface of a semi-
infinite medium, that oscillates along its glide plane with fre-
quency x of the order of the GHz could be as large as 50 times
the displacement induced on a plane at a distance h for a static
dislocation in the bulk.
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