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The properties of prismatic dislocation loops, generated by radiation in metals, have remained
elusive for decades, and recent advances in computational capabilities as well as transmission
electron microscopy have renewed interest in their study. Acoustic and elastic waves could become
an interesting, nonintrusive, probe to this end, as they have for other dislocation configurations.
What then are the characteristics of elastic wave scattering that would be sensitive to a prismatic
loop signature? In this paper, we report the scattering cross section for an elastic wave by a prismatic
dislocation loop. It differs in significant ways from the analog quantity in the case of pinned
dislocation segments, the most significant being the polarization of the scattered wave. The
properties of a coherent wave traveling through an elastic medium filled with randomly placed and
randomly oriented such loops are also reported. At long wavelengths, the effective wave velocity
and attenuation coefficients resemble those for a similar case with pinned dislocation segments.
© 2009 American Institute of Physics. �doi:10.1063/1.3213338�

I. INTRODUCTION

A series of recent papers1–8 has revisited the issue of the
interaction of elastic waves with dislocations in continuous
media. The interaction with a single dislocation in two1–3,6

and three dimensions, both in an infinite4 and a semi-infinite7

medium, has been studied in detail. Results for an infinite
medium have provided information �such as polarization, an-
gular dependence, and near and far field behaviors� on the
interaction of elastic waves with dislocations, not available
through the classic Granato–Lücke theory,9,10 which is a sca-
lar mean field theory. Results for a semi-infinite medium7

have shed new light on recent experiments using x-ray to-
pography imaging of surface acoustic waves interacting with
subsurface dislocations in LiNbO3.11 Interaction with many
dislocations within the framework of multiple scattering
theory5 has provided a generalization of the Granato–Lücke
theory9,10 that accounts for the vector nature of both the elas-
tic waves and the string that mimics the dislocation. With
this generalization, it became possible to explain quantita-
tively the different attenuations of longitudinal and trans-
verse waves measured in a number of materials.12 Applica-
tion of the theory to low angle grain boundaries8 has
explained the frequency behavior of acoustic attenuation in
polycrystals.13 For a review, see Ref. 14.

One of the motivations for the program described in the
previous paragraph has been to develop nonintrusive tools to
characterize plasticity in metals through the acoustic probing
of dislocation properties. Recent resonant acoustic spectros-

copy �RUS� experiments that measure dislocation densities
in aluminum provide strong encouragement for this
program,15 and in order to continue toward this end, it is
needed to discriminate between the various possible sources
of scattering, as well as among the possible dislocation con-
figurations.

A dislocation configuration that has attracted consider-
able interest recently is the prismatic dislocation loop
�PMDL�, a dislocation loop that has a Burgers vector normal
to its plane. PMDLs have long been observed to arise in
metals subject to radiation.16–20 However, the subsequent ef-
fects in the properties of materials that are important in a
wide variety of applications, from the nuclear industry to the
microelectronics industry, remain a significant challenge to
this day. Recently, increased computational capabilities have
enabled significant progress toward a basic understanding of
this question: For example, their diffusion behavior has been
studied through molecular-dynamics21–24 simulations, a tech-
nique that has also been used to find their production through
a depinning mechanism in fcc copper25 to study their role in
the response of tungsten to nanoindentation26 and in the dy-
namics of the bypassing of impenetrable precipitates.27 Non-
equilibrium molecular-dynamics simulations28 suggest that
shock-induced void collapse in copper occurs by the emis-
sion of shear loops rather than PMDL. Increased transmis-
sion electron microscopy performance has made possible the
study of nanometer sized PMDL in BCC iron29 and in gold,30

and their observation in 4H-SiC when implanted with P.31 In
situ nanoindentation measurements of aluminum films have
identified the formation of PMDL in real time.32 The disso-
lution of a dislocation loop layer under the influence of inerta�Electronic mail: agnes.maurel@espci.fr.
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SiO2 /Si and nitrogen-rich SiO2 /Si interfaces has been
studied33 as well as the size distribution and annealing be-
havior of end-of-range dislocation loops in silicon-implanted
silicon.34 The elastic stress relaxation via the formation of
PMDL in a vicinity of the As–Sb nanoclusters built in a
GaAs matrix has also been studied.35 A recent calculation in
the framework of anisotropic elasticity36 has shed light on
their behavior in bcc iron at high temperatures. It is appro-
priate then to assess in some detail what their interaction
with elastic waves would be like.

In this paper, we compute the scattering cross section for
an elastic wave by a PMDL following the formalism of Mau-
rel et al.5 �hereafter I�.

II. BACKGROUND AND NOTATION

We consider an infinite isotropic homogeneous three di-
mensional continuum linear elastic medium of density � and
elastic constants cijkl=��ij�kl+���ik� jl+�il� jk�. Waves can
propagate in such a medium with two characteristic veloci-
ties: longitudinal �acoustic� waves with cL����+2�� /� and
transverse �shear� waves with cT��� /�. We shall denote
their ratio by �=cL /cT. The state of the system is character-
ized by �small� displacements u�x , t� of points whose equi-
librium position is x at time t. The stress tensor � is given in
terms of the displacement vector u by �ij =cijkl�uk /�xl.

A circular, prismatic, dislocation loop �Fig. 1� of radius
R and axis ez at equilibrium will be considered. The disloca-
tion position is denoted as X�s , t�, and it is locally oriented
with a unit vector ��X� / �X��, where the prime denotes the
derivative with respect to the Lagrangian parameter s. Time
derivatives will be denoted by an overdot. The Burgers vec-
tor for the edge dislocation line is b=bt, and a glide motion
is considered. For a small displacement of the dislocation
line with respect to R, we will consider at dominant order
��e�1

, with e�1
the orthoradial unit vector, and t=ez. Thus,

the glide motion is restricted to the displacement Z along the
ez-axis parallel to the Burgers vector. As a function of time
then, the loop is described by

X��1,t� = Rer1
+ Z��1,t�ez, �2.1�

where �1 is the polar angle and er1
is the radial unit vector in

the plane of the circle.

A. Response of a dislocation loop to external loading

The response of an edge dislocation to external loading
is described by the equation37

�

�t	 �L

�Ẋk


 +
�

�s
	 �L

�Xk�

 = �kjmXm� bi��ij + �Ẋju̇i� − BẊk,

�2.2�

with

L = �X��	mX2˙

2
− 	
 , �2.3�

where �kjm is the completely antisymmetric tensor. The first
term on the right hand side of Eq. �2.2� is the usual Peach–
Koehler force. The second term can be neglected when the
dislocation velocities are small compared with the speed of
sound, and the third term is a phenomenological drag. The
mass per unit length m and the line tension 	 are given by

m �
�b2

4

ln	R

�

	1 +

1

�4
 , �2.4�

	 �
�b2

2

ln	R

�

	1 −

1

�2
 , �2.5�

where � is the short cutoff length.
We shall make the following assumptions: �i� subsonic

glide �thus we neglect the velocity dependent force in Eq.
�2.2��, �ii� low accelerations in order to neglect the back-
reaction of radiation on the dislocation, and �iii� small am-
plitudes for the external stress, so that the model is linear and
the possible generation of dislocations under the Frank–Read
mechanism is not considered.

The equation of motion for the displacement Z��1 , t� is
easily found from Eqs. �2.3� and �2.2� to be

−
	

R2

�2Z��1,t�
��1

2 + mZ̈��1,t� + BŻ��1,t�

= �bMlk��1��luk�X,t� , �2.6�

where Mlk��1�� tlnk+ tknl, with n��� t�er1 �the last equal-
ity comes from the assumption of a low amplitude of the
dislocation motion�. If we assume in addition that the dislo-
cation displacement has a low amplitude of motion com-
pared to the wavelength, the Peach–Koehler force can be
evaluated at the equilibrium position of the loop: uk�X , t�
�uk�X0 , t� and Eq. �2.6� becomes, in the frequency ��� do-
main,

�2Z��1,��
��1

2 +
R2

	
�m�2 + i�B�Z��1,��

= − �b
R2

	
Mlk��1��luk�X0,�� . �2.7�

This equation can be solved with Fourier analysis, and in the
long wavelength limit, we get

Ż��1,�� = −
�b

m

S���
�2 Mlk��1��lvk�X0,�� , �2.8�

where vk��uk /�t is the particle velocity, and with

e1

e2

ez

er

b

eθ

X
Z

θ1

R

1

1

FIG. 1. Configuration of the PMDL. R denotes the radius of the loop at
equilibrium, X is the current position, and Z is the displacement in the ez

direction. The Burgers vector is in the ez direction.
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S��� �
�2

��2 − �1
2 + i�B/m�

�2.9�

and

�1 =� 	

mR2 . �2.10�

At ultrasonic wavelengths, the denominator of S��� in Eq.
�2.9� will be dominated by �1

2. Equation �2.8� thus leads to a
loop response of amplitude,

X �
R2

�b
u ,

at wavelength �. Taking R�100 nm, ��1 cm �as in a typi-
cal ultrasound experiment15�, and b�1 nm, we get

X � 10−3u .

If we take an ultrasonic wave with an associated particle
displacement of 100 nm �as would correspond, for example,
to a strain of 10−5�, this will give a dislocation amplitude of
motion of 0.1 nm. At these very small loop displacements,
we ignore the corrections that would appear due to the dif-
ferent response different portions of the loop would have
because of their different glide planes.

B. Generation of elastic waves by a dislocation loop
undergoing prescribed motion

The particle velocity v��u /�t generated by a disloca-
tion undergoing arbitrary motion X�s , t� is given by Mura’s
integral representation,38

vm�x,t� = � jnhcijkl
 
 dt�dsbiẊn��1,t��
h

�
�

�xl
Gkm

0 �x − X0,t − t�� , �2.11�

where the Green tensor G0 is the solution of

�
�2

�t2Gim
0 �x,t� − cijkl

�2

�xj � xl
Gkm

0 �x,t� = ��x���t��im,

�2.12�

with appropriate boundary conditions.
In Eq. �2.11�, X0 has been used instead of X as an ap-

proximation valid for low amplitude motion. In the fre-
quency domain, this equation becomes

vm�x,�� = � jnhcijkl
 dsbiŻ��1,��tn
h
�

�xl
Gkm

0 �x,�� ,

�2.13�

and far from the loop, the scattered wave is obtained with the
help of the asymptotic form of the Green tensor,

Gij
0 �x,�� �

1

4
�
	Px̂ij

cL
2

eikLx

x
+

�I − Px̂�ij

cT
2

eikTx

x

 , �2.14�

where kL�� /cL and kT�� /cT. Px̂� x̂x̂t and �I−Px̂� �with I
as the identity matrix� are the projectors along the directions

x̂�x /x and perpendicularly to that direction. After some al-
gebra, we get

vm�x,�� = −
i�b�R

4
�

 d�1Mlk��1�Ż��1,��

�
xl

x2	Px̂km

cL
3 eikLx +

�I − Px̂�km

cT
3 eikTx
 . �2.15�

III. SCATTERED ELASTIC FIELD PRODUCED
BY A PMDL

The wave vscatt�x ,��, which is the scattering of an inci-
dent wave vinc by the dislocation loop X, is obtained in the

first Born approximation by replacing the velocity Ż of Eq.
�2.8� in Eq. �2.15�,

vscatt�x,�� =
i

4


�b2

m
RcT

4 S���
�

 d�1Mnp��1��nvp

inc�X0,��

�
x̂t

x
M��1�	Px̂

cL
3 eikLx +

�I − Px̂�

cT
3 eikTx
 . �3.1�

As the incident wave, we take a plane wave propagating in

the direction k̂0,

vinc�x,�� = ALeikLxk̂0 + ATeikTxŷ0, �3.2�

where the index L �T� refers to longitudinal �transverse�.
Substituting Eq. �3.2� in the right hand side of Eq. �3.1�,

we identify the longitudinal polarization with the component
obtained by the projector Px̂ and the transversal polarization
with the component in the perpendicular plane obtained by
I−Px̂. This allows us to decompose the scattered wave into a
longitudinal part and a transverse part,

vL
scatt�x,�� = �fLL�x̂�AL + fLT�x̂�AT�

eikLx

x
x̂ , �3.3�

vT
scatt�x,�� = �fTL�x̂�ALŷL + fTT�x̂�ATŷT�

eikTx

x
, �3.4�

with

fLL�x̂� = −
1

4


�b2

m
RcT

4 S���
cL

4 
 d�1fL�k̂0,�1�gL�x̂,�1� ,

�3.5�

fLT�x̂� = −
1

4


�b2

m
RcT

4 S���
cL

3cT

 d�1fT�k̂0,�1�gL�x̂,�1� ,

�3.6�

fTL�x̂�ŷL = −
1

4


�b2

m
RcT

4 S���
cT

3cL

 d�1fL�k̂0,�1�gT�x̂,�1� ,

�3.7�
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fTT�x̂�ŷT = −
1

4


�b2

m
RcT

4 S���
cT

4 
 d�1fT�k̂0,�1�gT�x̂,�1� ,

�3.8�

where fLT, say, is the scattering amplitude for an incident
wave with polarization T to be scattered with polarization L.

These amplitudes are given by fL�k̂0 ,�1�= k̂0
t M��1�k̂0,

fT�k̂0 ,�1�= k̂0
t M��1�ŷ0, gL�x̂ ,�1�= x̂tM��1�x̂, and gT�x̂ ,�1�

= �I− x̂x̂t�M��1�x̂. Note that the last one is a vector and the
first three are scalar functions. At this point, we make the
observation that if AL and AT have a phase difference, then
the transverse polarization will be, in general, elliptic. We
come back to this point in the discussion and comparison of
this problem with the pinned dislocation segment.

To have explicit expressions for the scattering ampli-
tudes and polarization directions, we make the following
choice of coordinates, illustrated in Figs. 2 and 3: We take
the Burgers vector along ez; then, the normal vector of the
dislocation loop is denoted as n= �cos �1 , sin �1 ,0�. Given
this reference frame �e1 ,e2 ,ez�, the directions of the longitu-
dinal and transverse polarizations of the incident wave are
obtained by the rotation matrix R0 associated to the Euler

angles ��0 ,�0 ,�0�: k̂0=R0e1 and k̂0=R0e2 �see Appendix A�.
The scattered wave propagates radially in the direction

x̂, and we used the Euler angles �� ,� ,�� to characterize its

direction of propagation x̂=Re1 and the direction of polar-
ization of the transverse component through ŷL and ŷT.

With the chosen reference frame, the vector and matrix

product that defines the auxiliary functions fL�k̂0 ,�1�,
fT�k̂0 ,�1� and gL�x̂ ,�1�, gT�x ,�1� can be computed, and the
integration over �1� �0,2
� that appears in the scattering
amplitudes is performed. The intermediate steps of this com-
putation are collected in Appendix A. Our final expression
for scattered amplitudes is

fLL�x̂� = −
1

4

�b2

m
R

S���
�4 sin 2� sin 2�0 cos�� − �0� , �3.9�

fLT�x̂� = −
1

4

�b2

m
R

S���
�3 �sin 2��sin �0 cos �0 sin�� − �0�

+ sin �0 cos 2�0 cos�� − �0��� , �3.10�

fTL�x̂�ŷL = −
1

4

�b2

m
R

S���
�

sin 2�0�sin � sin�� − �0�e�

+ cos 2� cos�� − �0�e�� , �3.11�

fTT�x̂�ŷT = −
1

4

�b2

m
RS����sin ��sin �0 cos �0 cos�� − �0�

− cos 2�0 sin �0 sin�� − �0��e�

+ cos 2��sin �0 cos �0 sin�� − �0�

+ cos 2�0 sin �0 cos�� − �0��e�� . �3.12�

As expected, the problem is invariant by rotation around ez

�invariance by the transformation �→�+�� and
�0→�0+���.

Figure 4 shows the typical behavior of the scattering
functions fLL and fLT as a function of the angle. The case of

b

ŷ0 k̂0

ŷ
L ŷ

T

x̂

x1

x2

x3

FIG. 2. Configuration for the PMDL. The dotted circle indicates the position
of the dislocation loop at equilibrium, and the solid circle is the position of

the loop under perturbation. The incident wave with k̂0 wave number has a
transverse polarization along the ŷ0 direction. The scattered wave in the x̂
direction �measured from the center of the loop� has transverse polarization
along ŷL due to mode conversion and along ŷT due to the incident transverse
wave.

ϕ

θ

x̂

y
ξ

eθ

eϕ

e1

e

e
eϕ

ξ
eθ

2

z er
p̂

ŷ
p

p

p

FIG. 3. Definition of the Euler angles �� ,� ,�p� characterizing the scattered
wave. The index p stands for either L and T �the scattered transverse waves
produced by either the longitudinal or the transverse incident waves�. We
have the same definition to characterize the incident wave with ��0 ,�0 ,�0�.

(b)

(a) (c)

(d)

FIG. 4. Angular dependence of the scattering functions fLL �top� and fLT

�bottom�. The left-hand-side panels illustrate the behavior for the case of a
dislocation segment along the x2-axis, indicated here as a solid line with
markers at the end points. The right-hand-side panels illustrate the behavior
for the case of a prismatic loop lying along the �x1 ,x2�-plane, indicated here
by a solid line circle. The incident wave is characterized by �0=
 /4, �0

=
 /8, and �0=
 /3. Its direction of propagation is indicated by a solid line,
and the direction of polarization of the transverse incident wave is indicated
by a dotted line. The Burgers vector is along the x3-axis in all cases.
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the pinned segment is presented as well for comparison
�from Ref. 4, see also Appendix B�. Qualitatively, the sym-
metry of the scattering functions for the pinned dislocation
segment is determined by the directions of the dislocation
line and the direction of the Burgers vector only �labeled x2

and x3 in Fig. 5�, while the symmetry of the scattering func-
tions for the prismatic loop depends on the direction of the
incident wave. A more detailed comparison between the two
configurations is presented in the forthcoming section.

A. Discussion

We have calculated the response of a dislocation loop
under the effect of an incident wave �Eq. �2.8�� as well as the
subsequent scattered wave �Eqs. �3.9�–�3.12�� in the long
wavelength limit. As previously said, a similar calculation
has been performed for a pinned dislocation segment,4 and
the question arises on what the similarities and differences
are. The answer to this question depends on the quantity we
look at. For an individual dislocation loop, certain similari-
ties with a dislocation segment �in terms of the scattering
process� can be pointed out, but there are also significant
differences that could be used to discriminate between the
two dislocation geometries. On the other hand, the collective
behavior of an ensemble of prismatic loops �in terms of the
multiple scattering process� resembles those for an ensemble
of pinned dislocation segments. For ease of comparison, we
give in Appendix B the expressions of the dislocation motion
and the expression of the scattering functions in the case of
the pinned dislocation segment using the conventions of Fig.
2 �namely, with b along the ez-axis�.

1. Equivalence of a loop with a dipole

There are two simple cases when a loop behaves as two
pinned segments with opposite Burgers vectors �or dipole�.

�1� The incident wave propagates perpendicularly to the
Burgers vector b in the plane of the dislocation loop,
say, in the x1-direction ��0=�0=0�. Then, the loop reacts
to this incident wave as two dislocation segments �a di-
pole� both oriented perpendicularly to the direction of
the incident wave �x2-direction� and having opposite
Burgers vector. Indeed, we have in that case: for the
loop

Ż � ATb�
R�2 sin �0 cos �1 sin �t , �3.13�

which means that the loop oscillates with two fixed
points along the x2-axis, namely, x2= �R �see Fig. 6�.
Incidentally, note that the longitudinal wave does not
interact with the loop in this geometry. The motion of a
dislocation segment oriented along x2 is given by �see I�:

Żs � ATbL2 sin �0 cos �0 cos�
x2/L�sin �t , �3.14�

and the similarity is clear.

The above expressions for Ż are given in the limit
�→0 �thus, ���1�. Of course, this similarity in the
dislocation motions �the loop and the dislocation dipole�
is recovered in the scattering wave. In both cases, we get
fLL= fTL=0 and

fLT � Cb2 sin �0 sin 2� cos � ,

fTTŷ � Cb2 sin �0�− sin � sin �e� + cos 2� cos �e�� ,

�3.15�

with C as a constant, C= �
R�3 for the loop, and C
= �4 /
�2L3 for the dipole.

�2� The incident wave propagates along the Burgers vector
��0=
 /2�. In that case, the motion of the dislocation
loop is

Ż � ATb�
R�2sin ��1 − �0�cos �t , �3.16�

where �0 denotes the direction of polarization of the
transverse incident wave in the plane of the loop �again,
in this case, the longitudinal wave does not interact with
the dislocation�. A similar motion is mimicked by a di-
pole of dislocation segments oriented perpendicularly to
the transverse incident wave. Without loss of generality,

(b)(a)

FIG. 5. Typical displacement of the loop and corresponding motions of the
two segments forming a dipole. The two arrangements produce the same
scattering patterns independent of d �the same strength is obtained for L
=
R�
 /4�2/3�.

b
b

b

-b

d
L

R

FIG. 6. �Color online� Angular dependence of the scattering function fLT.
Left-hand-side panel: The incident wave propagates in the plane of the loop
along the x1 direction, indicated by a solid line; the direction of polarization
of the incident transverse wave is indicated by a dotted line. The same
scattering pattern is produced by a dislocation segment in the same plane
oriented perpendicularly to the direction of propagation of the incident
wave, indicated by a solid line with markers at the end points. Right-hand-
side panel: The incident wave propagates along the Burgers vector
�x3-direction�, indicated by a solid line; the direction of polarization of the
incident transverse wave is indicated by a dotted line. The same scattering
pattern is produced by a dislocation segment in the plane of the loop ori-
ented perpendicularly to the direction of polarization of the incident trans-
verse wave, indicated by a solid line with markers at the end points.
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we can consider the incident transverse polarization
along x2 ��0=
 /2�, and we get

Ż � ATb�
R�2cos �1 cos �t . �3.17�

The response of one dislocation segment to the same
wave is

Żs � ATbL2 cos 
s/L cos �t . �3.18�

Again, we observe in both cases an oscillatory motion
with two fixed points at x2= �R , �L /2. Also, the cor-
responding scattering functions are similar, with fLL

= fTL=0 in both cases and

fLT � Cb2 sin 2� cos � ,

fTTŷ � Cb2�− sin � sin �e� + cos 2� cos �e�� �3.19�

�with the same convention for C as in the previous case�.

2. Elliptic polarization of the transverse wave

An important qualitative difference between the scatter-
ing by a dislocation loop and a segment is the polarization of
the transverse scattered wave. In the case of a segment,4 a
linearly transversely polarized incident wave �ATŷ0� will be
scattered as linearly transversely polarized as well, namely,
with a direction of polarization p̂s in the �e� ,e��-plane given
by �see Appendix B�,

p̂s = 	cos �

sin �

cos �t , �3.20�

with tan �=−cos 2� / �sin � tan ��.
In the case of the prismatic loop, an incident wave with

a linear transverse polarization will be, in general, scattered
with an elliptic transverse polarization. We denote AL

=C ATei�, with C real. Incidentally, this corresponds to an
incident wave that is, in general, elliptically polarized when
we consider the total displacement: The transverse incident
wave is linearly polarized �along ŷ0�, and the total displace-

ment is elliptically polarized in the plane �k̂0 , ŷ0� �this is
typically the case of Rayleigh waves�. However, in this pa-
per, we focus on the polarization of the transverse wave only.
From Eqs. �3.4�, �3.11�, and �3.12�, the direction of polariza-
tion of the transverse scattered wave in the �e� ,e��-plane is
given by

p̂ = 	 cos � sin �

− sin � cos �

	 cos �t

r sin �t

 , �3.21�

which means that the resulting transverse wave is elliptically
polarized. Here, r is the aspect ratio of the ellipse, and � is
its inclination as in Fig. 7 �we can use as well the Jones
polarization vector39�. In general, the expressions for r and �
are quite intricate. Let us consider the particular case where
the scattered wave is measured in the forward direction only.

Then, the orientation of the incident wave k̂0 and, thus, of the
measured scattered wave x̂ is varied. The whole problem
depends now on �=�0 only �the invariance by rotation

around ez makes the problem independent on �=�0� and de-
pends on �0, the direction of polarization of the incident
transverse wave. We find in this case

p̂ = 	 sin � cos �0 cos �t

C/� cos 2� sin 2� cos��t + �� + cos2 2� sin �0 cos �t

 ,

�3.22�

from which r and � can be deduced. Results are shown in
Fig. 8 for �0=
 /2 �C /�=1� as a function of the direction of
incident wave � for various �-values �this latter value de-
pends on the experimental conditions�. As expected, the po-
larization of the scattered transverse wave is linear for �
=0,
 �in that case, both longitudinal and transverse incident
waves have no phase difference� while any phase difference
� in the incident wave produces the elliptic polarization of
the transverse scattered wave. Some fixed points are �i� �
=0, where the incident wave propagates in the plane of the
loop. The transverse scattered wave is linearly polarized
along e� independently of the polarization of the incident
wave and the phase difference �. �ii� �=45°, the same phe-
nomenon occurs with a transverse scattered wave linearly
polarized along e�. Finally, �iii� the incident wave propagates
along the Burgers vector ��=90°�, in which case the trans-
verse scattered wave is linearly polarized in the same direc-
tion as the incident transverse wave ��=�0�.

3. Attenuation produced by an ensemble of prismatic
loops

A characteristic signature of dislocations in a material is
the acoustic attenuation they produce. We will see that a
significant similarity between dislocation loops and disloca-
tion segments is that both produce a different attenuation on
longitudinal and transverse waves, a fact that has been ex-
perimentally measured.12

In a multiple scattering theory, there may exist a coher-
ent wave propagating with an effective wave velocity and
with its amplitude attenuated due to the energy loss produced
by the viscous force on the dislocations and also by the trans-
fer of energy from the coherent to the incoherent wave that
occurs due to scattering. This coherent wave propagates in an

eθ

eϕ

φr 1

^p

^

^
0k

x1

x2

x3

x
b

eθ

eϕ

ξ
ŷ0

ϕ

0

FIG. 7. �Color online� We consider the polarization of the transverse scat-
tered wave in the �e� ,e��-plane. The particular case of the forward scattering

is considered: x̂= k̂0. In the �e� ,e��-plane, the linear polarization of the
transverse incident wave is characterized by �0, and the elliptical polariza-
tion of the transverse scattered wave p̂s is characterized by the parameters �
and r.
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effective medium that corresponds to the average over all
realizations of the disordered medium. The actual computa-
tion for an ensemble of loops is very similar to the case of an
ensemble of segments.5 We have found the phase velocities
vL,T and the attenuations �L,T for both the longitudinal and
transverse waves propagating through many dislocation
loops as the real and imaginary parts of the effective wave
numbers. In the long wavelength limit, we get

va = ca�1 − CanR3� , �3.23�

�a = Ca�
B�2

�b2cT
3 nR5, �3.24�

where a=L ,T, with CL=8
2 / �15�2�, CT=2
2 /5, CL�
=16
3 / �15�3�, and CT�=4
3 /5 for the loop, to be compared
with

va
s = ca�1 − CanL3� , �3.25�

�a
s = C�

B�2

�b2cT
3 nL5, �3.26�

with CL=32 / �15
3�2�, CT=8 /5
3, CL�=64 / �15
4�3�, and
CT�=16 / �5
4� for the dislocation segment �see Eqs. �6.4� and
�6.5� in Ref. 5�.

It follows that loops and segments of similar lengths
produce similar changes in the velocities and similar attenu-
ations. A more significant similarity is the difference in the
attenuations predicted for longitudinal and transverse waves.
This difference is experimentally measured by measuring the
quality factor in RUS or electromagntic acoustic resonance
experiments �Ref. 12; see also Ref. 5�, Qa

−1��aca
2. In both

cases, loops and segments, we have

QT
−1

QL
−1 =

3

4�
� 1.3 – 1.56, �3.27�

where the numerical values are obtained using the typical
values of � in most materials. This ratio is exactly the same
compared to the one obtained for an ensemble of dislocation
segments and is in very good agreement with experimental
measurements.

Resonant ultrasound spectroscopy measurements15 are
sensitive to shifts in the shear wave velocity of about 1%.
Assuming a typical dislocation loop radius of about 100 nm,
this would indicate a loop density of 1018 m−3 as the current
threshold for detection through ultrasonic techniques.

IV. CONCLUDING REMARKS

We have studied the behavior of elastic waves interact-
ing with a prismatic loop in the long wavelength limit. This
interaction is as follows: the incident elastic waves induce an
oscillation of the dislocation loop, and this motion produces
outgoing �scattered� waves. The corresponding scattering
functions have been calculated. Mode conversions are pos-
sible between longitudinal and transverse waves, one pos-
sible consequence of which is to change the polarization of
an incident transverse wave from linear to elliptical.

As we saw in Eqs. �3.13�–�3.16�, the response of a
PMDL X��1 , t� has two nodal fixed points, and therefore it is
natural to compare the results of the pinned dislocation di-
pole with the dislocation loop of similar size. For some di-
rections of incidence, the scattering patterns coincide.

One can also ask about the properties of a coherent wave
propagating through an elastic medium filled with randomly
placed, and oriented, PMDLs, a question that was studied in
detail in Ref. 5 for straight segments. While the individual
scattering properties of a dislocation segment are quite dif-
ferent from those of the dislocation loop, we have shown
that, in a long wavelength limit, averaged quantities such as
effective velocities and attenuation coefficients are roughly
independent of the characteristic geometry of the dislocation.
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APPENDIX A: TECHNICAL CALCULATIONS ON THE
SCATTERING FUNCTIONS

This appendix provides the details needed to obtain Eqs.
�3.9�–�3.12�. The Burgers vector is defined as b=be3; the

vector normal to the dislocation line is denoted as n= R̃e1,
with

R̃ = �cos �1 − sin �1 0

sin �1 cos �1 0

0 0 1
� . �A1�

With this definition, the matrix M defined by Mlk� tlnk

+ tknl takes the form M= R̃e1e3
t +e3e1

t R̃t.
The longitudinal and transverse polarizations of the in-

cident wave were chosen, respectively, as ALR0e1 and
ATR0e2, with R0 as the rotation matrix of Euler angles
��0 ,�0 ,�0� given by

R0 = �cos �0 cos �0 − sin �0 cos �0 − sin �0 cos �0 sin �0 − sin �0 sin �0 − sin �0 cos �0 cos �0

cos �0 sin �0 cos �0 cos �0 − sin �0 sin �0 sin �0 − cos �0 sin �0 − sin �0 sin �0 cos �0

sin �0 cos �0 sin �0 cos �0 cos �0
� . �A2�

Now, we compute the functions that appear inside the inte-
grals in Eqs. �3.5�–�3.8�. The direction of propagation of the

incident wave k̂0=R0e1 is given by the first column of R0

and therefore an explicit expression for fL�k̂0 ,�1�
= k̂0

t M��1�k̂0 is

fL�k̂0,�1� = 2R031
�cos �1R011

+ sin �1R021
� . �A3�

Similarly, because ŷ0=R0e1, an explicit expression for

fT�k̂0 ,�1�= k̂0
t M��1�ŷ0 is

fT�k̂0,�1� = cos �1�R011
R032

+ R012
R031

�

+ sin �1�R021
R032

+ R022
R031

� . �A4�

For gL�x̂ ,�1�= x̂tM��1�x̂, the computation is the same for

fL�k̂0 ,�1� because x̂=Re1, with R as the rotation matrix of
Euler angles �� ,� ,��. Thus,

gL�x̂� = 2R31�cos �1R11 + sin �1R21� . �A5�

Finally, for the vector quantity gT�x̂ ,�1�,

gT�x̂,�1� = �I − x̂x̂t�M��1�x̂

= �e�
t �I − x̂x̂t�Mx̂�e� + �e�

t �I − x̂x̂t�M��1�x̂�e�,

�A6�

where the components are

e�
t �I − x̂x̂t�Mx̂ = cos �1e�1

x3 + sin �1e�2
x3, �A7�

e�
t �I − x̂x̂t�Mx̂ = cos �1�e�3

x1 + e�1
x3�

+ sin �1�e�3
x2 + e�2

x3� . �A8�

Multiplying the previous terms as required by Eqs.
�3.5�–�3.8� and doing the integrals �where only terms multi-

plying sin2 �1 or cos2 �1 survive�, we obtain the scattering
for amplitude functions

fLL�x̂� = −
1

4

�b2

m
RcT

4 S���
cL

4 �4R031
R011

R31R11

+ 4R031
R021

R31R21� , �A9�

fLT�x̂� = −
1

4

�b2

m
RcT

4 S���
cL

3cT

��R011
R032

+ R012
R031

�2R31R11

+ �R021
R032

+ R022
R031

�2R31R21� , �A10�

fTL�x̂�ŷL = −
1

4

�b2

m
RcT

4 S���
cT

3cL

��2e�1
x3R031

R011

+ 2e�2
x3R031

R021
�e� + �2�e�3

x1

+ e�1
x3�R031

R011
+ 2�e�3

x2

+ e�2
x3�R031

R021
�e�� , �A11�

fTT�x̂�ŷT = −
1

4

�b2

m
RS�����e�1

x3�R011
R032

+ R012
R031

�

+ e�2
x3�R021

R032
+ R022

R031
��e� + ��e�3

x1

+ e�1
x3��R011

R032
+ R012

R031
� + �e�3

x2 + e�2
x3�

��R021
R032

+ R022
R031

��e�� . �A12�

Now, the product of rotation matrices can be made explicit.
The results are Eqs. �3.9�–�3.12�.

APPENDIX B: PINNED SEGMENT

In this appendix, we provide the formulas of Ref. 4 for
dislocation segments in a reference frame that facilitates a
comparison with results for dislocation loops provided in this
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work. In Ref. 4, the convention is as follows: The Burgers
vector is oriented along the x1 direction, and the segment is
oriented along the x3 direction. In the present case, the sym-
metry of the loop suggests choosing the Burgers vector along
x3 �leading to an invariance by rotation �−�0�. To make the
comparison with the pinned segment, we give here the result
on the scattering functions for the pinned segment with the
same convention of b along x3, and we arbitrarily choose the
segment direction along x2. The scattering functions now are

fLL�x̂� = −
2


3

�b2

m
�−4LS���fL�k̂0�gL�x̂� ,

fLT�x̂� = −
2


3

�b2

m
�−3LS���fT�k̂0�gL�x̂� ,

fTL�x̂� = −
2


3

�b2

m
�−1LS���fL�k̂0�gT�x̂� ,

fTT�x̂� = −
2


3

�b2

m
LS���fT�k̂0�gT�x̂� , �B1�

with

gL�x̂� = sin 2� cos � ,

gT�x̂�ŷ = − sin � sin �e� + cos 2� cos �e� �B2�

and

fL�k̂0� = sin 2�0 cos �0,

fT�k̂0� = cos 2�0 cos �0 sin �0 − sin �0 sin �0 cos �0.

�B3�

It follows that the direction of polarization of the trans-
verse wave is linear and depends only on the direction of the
observation x̂: In the �e� ,e��-plane, the direction of polariza-
tion of the transverse wave is

p̂ = 	− sin � sin �

cos 2� cos �

 , �B4�

independently of the incident wave.
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