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Abstract – The fluid around a free surface piercing circular cylinder in a long narrow wave tank
can exhibit a local oscillation that does not propagate down the channel but is confined to the
vicinity of the cylinder. This is a manifestation of the so-called trapped modes, bound states
in the continuum occurring in many situations in physics. In this letter, using Fourier Transform
Profilometry, fully space time resolved measurements for the free surface deformation are obtained.
The scattering characteristics of the cylinder and consequently the behavior of the trapped-mode
frequency are determined.

Copyright c© EPLA, 2009

Trapped modes have been studied in many domains of
physics (for a review, see [1]), elastic waves [2,3], water
waves [4–8] or electromagnetic waves [9,10]. They are
finite-energy solutions to the wave equation in infinite
domain with discrete eigenvalues embedded in the contin-
uous spectrum. Trapped modes have to be distinguished
from scattering states whose eigenvalues are in the contin-
uous spectrum and that have infinite energy. Experimen-
tally, trapped modes turn into quasi-trapped modes that
can be evidenced by scattering resonances. This is due to
deviations in the experiments with respect to the theo-
retical configuration: finite-size effect producing radiation
toward infinity or leaking due to dissipative mechanisms.
However, the study of quality factors of the trapped-mode
resonances is of interest. Indeed, high-quality factors in
trapped-mode resonances are decisive for the design of
metamaterials, whose remarkable properties, such as nega-
tive index or cloaking, are underpinned by the resonant
nature of their response.
Among the physical situations giving rise to trapped-

mode resonances, the case of water waves is of particular
interest. Firstly, water wave resonances have many practi-
cal applications in naval and coastal engineering [11,12]. In

(a)E-mail: cobelli@pmmh.espci.fr

addition to their own interest, water waves exhibit similar
properties as electromagnetic and microwaves, e.g. nega-
tive refraction or cloaking [13–15]. From that point of view,
water waves are attractive since the wave field is the free
surface deformation, that is already qualitatively accessi-
ble to the naked eye.
In this letter, we study experimentally the trapped-

mode resonances of water waves interacting with a cylin-
drical obstacle in a waveguide. This configuration has been
studied in linearized water wave theory by [4–7] and very
few experimental results are available [16]. Also, it corre-
sponds to the problem of an infinite set of cylinders where
strong resonances have been numerically observed [12].
Owing to Fourier Transform Profilometry [17–19], we

get a resolution of the surface elevation in time and in
space able to quantitatively describe the trapped-mode
resonances, by means of their patterns and by means of the
reflection and transmission coefficients. A model for the
frequency dependence of the scattering data, influenced by
the proximity of the threshold for propagation, is proposed
and compared favorably with the experimental results.
Our experimental set-up consists of a water tank with

constant water level at rest which is chosen to be fixed
at h0 = 5 cm. The system of interest is placed inside the
tank: a waveguide formed by two parallel vertical walls,
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(a) Scheme of the complete experimental set-up.

(b) Camera’s view.

Fig. 1: (Color online) Experimental set-up (a). Symmetric and
antisymmetric modes are generated at the entrance of the
waveguide by the wavemaker. A free surface piercing circular
cylinder of diameter 2a∈ [2, 10] cm lies in the center of the
waveguide of width 2d= 10 cm. The measurement is performed
using an optical method (Fourier Transform Profilometry).
A videoprojector projects fringes onto the free surface and
the image is collected by a camera. Analysis of the fringe
displacements allows for the reconstruction of the surface
deformation at each pixel. Panel (b) presents a sample of
the camera’s view showing the free surface and the projected
fringes, the waveguide, the cylinder, and a portion of the
wavemaker paddle.

60 cm long, a distance 2d= 10 cm apart, has a free surface
piercing vertical circular cylinder of diameter 2a (a= 1 to
5 cm) located symmetrically between the two walls (fig. 1).
Water waves are generated by a wave maker forming
an angle of around 45◦ with the waveguide axis Ox (so
symmetric and antisymmetric modes are generated at the
entrance of the waveguide) at a frequency f ∈ [2, 3]Hz.
An important specificity in our experiment is the

measurement of the surface elevation. This optical
method, termed Fourier Transform Profilometry, is
originally due to [17] and has been described in [18,19] for
application to water wave measurements. By projecting

Fig. 2: (Color online) Typical instantaneous fields of the surface
elevation hT (x, y, t), here for a/d= 0.50, kd= 1.32. The scale
of the colorbar is in mm.

fringes onto the free surface and by analyzing the
fringe displacement, we are able to deduce the surface
elevation in the working window. In the present exper-
iment, the window is 40× 10 cm2 corresponding to
1623× 421 pixels2. The width of the pixel, 0.23mm, sets
the spatial resolution and the resolution on the surface
elevation. The temporal resolution is only limited by the
acquisition rate of the camera since a single picture is
needed to get the measurement. In our experiment, a
high speed camera is used with an acquisition rate close
to 300Hz.
Typical free surface deformation fields hT (x, y, t) near

resonance are shown in fig. 2. The acquisition rate of the
camera is synchronized with the wavemaker in order to
get 200 acquisitions hT (x, y, t) over two periods of the
water wave oscillation. For a perfect fluid, in absence of
dissipation, the dispersion relation for the water waves
is given by ω2 = gk tanh kh0 where ω is the driving
pulsation, k the wave number and g= 9.81m · s−2. For the
purposes of this study, the effects of surface tension will
be neglected.
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Fig. 3: (Color online) Evidence of the trapped-mode reso-
nances: (hT (x, y, t)−hT (x,−y, t))/2 for some fixed y is
displayed in colorscale as a function of x and ω. (a) for
a/d= 0.50, one resonance is visible near the cylinder and
(b) for a/d= 0.85, in addition to the first resonance, a second
maximum near the cutoff frequency can be seen (the cylinder
lies at x= 0). The scale of the colorbar is in mm.

A first direct qualitative evidence of the resonance
phenomenon can already be obtained from these instan-
taneous fields. The symmetry of the geometry decouples
the fields into two families, even and odd with respect
to y. The wave is always propagative for the first family
while it has a non zero cut on frequency for the second
family. This latter gap property enables the existence of
the trapped mode [20]. Figure 3 shows the odd family,
[hT (x, y, t)−hT (x,−y, t)]/2, for some given y and t as a
function of x and ω. Typical spots are visible that are
indicative of the presence of resonances.
In order to obtain quantitative characterics of the

resonance, we extract, at each position, the coefficient
h1(x, y) of the Fourier series

hT (x, y, t) =
∑

n

hn(x, y)e
inωt. (1)

This is achieved owing to the large sampling rate offered
by the camera. In our experiment, the weight of the non
linearities |hT −h1|/|hT | is less than 15%. h1 is then
separated into an even part he and an odd part ho.
Figure 4 depicts the typical situation near resonance: the
trapped mode is isolated in the odd part of the field and
is localized in the vicinity of the cylinder. Depending on
the geometry, it is either symmetric with respect to the
vertical axis, as predicted in ref. [20] or antisymmetric
with respect to the vertical axis as predicted in ref. [21].
This latter trapped mode is expected to exist only for
a/d� 0.81 [21], what we experimentally confirm. The even
field he makes the propagative plane mode to appear.
This field is used to get a direct measurement of the wave
number k. The agreement with the theoretical dispersion
relation is of about 2%.
To go further, we want to get a 1D model. With a

constant water level at rest h0, the free surface eleva-
tion h1(x, y) is governed by the Helmholtz equation
(∆+ k2)h1(x, y) = 0, with Neumann boundary condition
at the walls, where k is given by the aforementioned
dispersion relation [22]. Then, in our analysis, the odd part
ho(x, y) of the field h1(x, y) is modelized in a 1D problem
by projecting the 2D field onto the first transverse mode:

ho(x, y)� h(x) sinπy/2d, (2)

outside of the near field of the cylinder (fig. 5(a)). In the
near field, the higher transverse modes are expected to
contribute to the 2D solution. However, the contribution
of the higher-order modes (with sin(2n+1)πy/2d, n �= 0
dependence) is less than 7% in our experiments. The
typical behavior of h(x) is shown in fig. 5(b). Because we
are working below the first cutoff frequency, at π/(2d), for
antisymmetric modes, the solution is sought as

h(x< 0) =A e−αx+AR eαx,

h(x> 0) =AT e−αx,
(3)

with A the amplitude of the incident wave, α the wave
number of the first evanescent mode and (R, T ) the
reflection and transmission coefficients. Such behavior is
illustrated in fig. 5.
The reflection and transmission coefficients (R, T ) and

α are fitted for each frequency outside the near-field
region. The resonance curves are obtained, as exemplified
in fig. 6 for a/d= 0.50 (the single resonance corresponds to
a trapped mode as in fig. 4(b)) and for a/d= 0.85 (the two
resonances correspond to the two types of trapped modes
in fig. 4(b), (d)).
As is evident from these curves, the classical Breit-

Wigner resonance shape is not well suited as it would
be unable to reproduce their clear asymmetry. We have
checked that this asymmetry is not an experimental
artifact by computing the transmission and reflection
coefficients numerically (numerical calculations have been
performed using the toolbox PDEtool of Matlab; see
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Fig. 4: (Color online) Experimental patterns of the two trapped modes, and the associated even parts. (a) Even and odd fields
of the linear field h1(x, y), for a/d= 0.40 and kd= 1.46. The even part exhibits the form of the trapped-mode localized in the
vicinity of the cylinder. (b) Same representation for a/d= 0.95 and kd= 1.51. The scale of the colorbar is in mm.
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Fig. 5: Top: the problem reduces to a 1D problem along the
x-axis, by projecting the odd field onto the first transverse
mode in sinπy/2d outside the near-field region. Bottom: typical
variation of the measured h(x) along the x-axis: real part of
log[h(x)] as a function of x (a.u.) (the curve has been obtained
for a/d= 0.4, kd= 1.47).

footnote 1). The 1D transmission and reflection coefficients
are actually influenced by the proximity of the cutoff
frequency at kd= π/2. It has been already observed for
confined states in bent waveguides in [23] that proposed
the following asymmetric shape for T :

T =
B

1−C/(αd) , (4)

where αd≡√(π/2)2− (kd)2. This equation has to be
understood in the neighbourhood of the resonance in

1The numerics has been performed using the toolbox PDEtool of
Matlab. The equation is the Helmholtz equation (∆+ k2)φ= 0, with
vanishing normal gradient on the cylinder boundary and the lateral
walls. The leading antisymmetric mode (with sin πy/2d transverse
dependence) is imposed at the entrance. Then, the transmitted and
reflected waves are collected in the far field of the cylinder.

the complex plane. The constants B and C have been
numerically computed and we have checked that eq. (4)
is valid in the complex k-plane. Note that (B,C) are
functions of the geometry only. For a/d= 0.50, we have
found B = 1.15 and C = 0.73. For a/d= 0.85, there are two
resonances and the transmission coefficient can be written
as the sum of two shapes, each of them given by eq. (4);
with B1 = 1.85, C1 = 0.8325 and B2 =−1.2, C2 = 0.135.
In the experiment, a small attenuation is present that

is modelized by a small imaginary part of k. This atten-
uation can only be roughly evaluated, because of a low
signal to noise ratio on the imaginary part of α. The
experimental measurements of α gives, through the rela-
tion k=

√
(π/2d)2−α2, an estimation of Im(k)d∼ 0.03.

As shown in fig. 6, a good agreement is observed
between the experiments and the prediction of eq. (4).
For the case a/d= 0.50 in fig. 6(a), a constant attenuation
Im(k)d= 0.025 has been used, a value consistent with our
rough experimental estimate. For the case a/d= 0.85 in
fig. 6(b), the second resonance is visible, a fact that can
be reproduced only assuming a significant decrease in the
attenuation from Im(k)d= 0.033 near the first resonance
to 0.003 near the second resonance.
The behavior of the resonance frequency kcd when

changing the size of the cylinder is shown in fig. 7. There
are two branches: the first corresponds to trapped modes
symmetric with respect to Oy-axis and the second to
trapped modes antisymmetric with respect to Oy-axis.
The experimental results are compared to the theo-

retical predictions of ref. [20] for the first branch and
with the theoretical predictions of ref. [21] for the second
branch. The authors in [21] predicted that the resonances
of the second branch exist for a/d� 0.81. This prediction
is confirmed here. An excellent agreement is observed with
the theoretical predictions for both branches. It is worth

20006-p4



Experimental observation of trapped modes in a water wave channel

(a)

1 1.1 1.2 1.3 1.4 1.5 1.6
0

10

20

kd

|
T|,|

R|

1 1.1 1.2 1.3 1.4 1.5 1.6
−1.5

−1

−0.5

0

0.5

kd

/)
T,

R(elgna
π

(b)

1 1.1 1.2 1.3 1.4 1.5 1.6
0

10

20

30

kd

|
T|,|

R|

1 1.1 1.2 1.3 1.4 1.5 1.6
−1.5

−1

−0.5

0

0.5

kd

/)
T,

R(elgna
π

Fig. 6: Resonance curves for (a) a/d= 0.50 and (b) a/d= 0.85, upper panel |R| (plain circle), |T | (open circle) as a function of
the wave number kd. Lower panels show the corresponding phases. Plain lines correspond to the results obtained from numerical
calculations, indiscernible from the expression in eq. (4).
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Fig. 7: Resonance frequencies kcd as a function of a/d.
Open circles are the experimental values deduced from the
resonance curves and plain lines are the theoretical predictions
from [20, 21].

noting that this is the case even for the largest values
of a/d, for which the effect of a meniscus in the small
region between the cylinder and the waveguide walls would
seem important. This validates our assumption of negligi-
ble effects due to surface tension.
The case of the totally obstructing cylinder a/d= 1

deserves closer inspection. In this case, the trapped mode
becomes an edge mode. It corresponds to the degeneracy of
the symmetric and antisymmetric trapped modes and thus
to the intersection between the two branches of resonance
in fig. 7. Experimentally, the resonance frequency of the
edge mode is found at kd= 1.44. The corresponding
pattern of the edge mode is shown in fig. 8.

Fig. 8: (Color online) Edge mode experimentally observed for
a/d= 1 and kd= 1.44. The scale of the colorbar is in mm.
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