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In a recent paper �D. Torrent, A. Hakansson, F. Cervera, and J. Sánchez-Dehesa, Phys. Rev. Lett. 96, 204302
�2006�� inspected the effective parameters of a cluster containing an ensemble of scatterers with a periodic or
a weakly disordered arrangement. A small amount of disorder is shown to have a small influence on the
characteristics of the acoustic wave propagation with respect to the periodic case. In this Brief Report, we
inspect further the effect of a deviation in the scatterer distribution from the periodic distribution. The quasi-
crystalline approximation is shown to be an efficient tool to quantify this effect. An analytical formula for the
effective wave number is obtained in one-dimensional acoustic medium and is compared with the Berryman
result in the low-frequency limit. Direct numerical calculations show a good agreement with the analytical
predictions.
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In recent papers, Torrent et al.1,2 used homogenization
theory to characterize a cluster made of cylinders with peri-
odical or weakly disordered arrangement. The authors
showed that a small amount of disorder does not affect sig-
nificantly the effective parameters of the perfect ordered sys-
tem. It is the interest of this Brief Report to quantify the
effect of a deviation from a periodic system on the effective
wave propagation.

The one-dimensional �1D� configuration is under consid-
eration in the present Brief Report. The simplicity inherent to
one-dimensional media on the one hand permits us to gain
insights of wave propagation in random media and allows us
to perform complete numerical computations. On the other
hand, the results obtained from the 1D problem can be ap-
plied directly to the physical problems of propagation in dis-
ordered media: layered systems,3,4 transmission lines,5 nearly
periodic beaded strings,6,7 electromagnetic waveguides,8

acoustic ducts,9 and elastic rods.10

Starting from a periodic set of scatterers, each scatterer is
allowed to move randomly in each cell. This 1D configura-
tion has been studied in Ref. 11 in the low-frequency ap-
proximation and for scatterers moving with maximum ampli-
tude ��=1 in the following�. In this Brief Report, analytical
calculations are performed using multiple-scattering theory
in the quasicrystalline approximation,12,13 hereafter referred
to as QCA. The dispersion relation for the effective wave
number K�k ,�� is derived, where k is the wave number in
free space and � is a measure of the disorder. This 1D con-
figuration with isotropic point scatterers is chosen because it
allows us �i� to derive a simple analytical expression for
QCA and �ii� to perform complete numerical computations to
compare with the QCA results. Our main result is to show
that the obtained dispersion relation agrees with direct nu-
merical calculations. In the low-frequency limit, the Berry-
man prediction14 is recovered at leading order and the devia-
tion from this static law is derived.

In the literature, perturbative methods have been exten-
sively used to study the effective propagation through scat-
terers. These methods are based on the knowledge of the
wave propagation in a reference or unperturbed medium, say

the unperturbed wave number k. The wave number K char-
acterizing the wave propagation in the perturbed medium is
then determined perturbatively close to the k value. In gen-
eral, the reference medium is the medium free of scatterers,
which implicitly assumes that the scatterers have a weak ef-
fect on the wave. Among the pertubative theories, the QCA
by Lax12,13 has been extensively used to study random dis-
tributions of scatterers in the approximation of dilute media.
In general, QCA is unreliable since it used a closure assump-
tion that is not clearly justified. However, this assumption
being exact for a periodic distribution of scatterers, QCA is a
candidate to be an efficient method to study configurations of
scatterers weakly disordered with respect to a periodic con-
figuration.

In the following, we consider an ensemble of N discrete
isotropic scatterers. The scattering strength of each scatterer
can be measured by the quantity M. For the ensemble of
scatterers located at xn, the total field u is the solution of the
wave equation,

�� + k2�u�x� = Mk�
n

��x − xn�u�x� , �1�

where the right-hand side term describes the effect of the
scatterers on the wave u�x�.

Equation �1� describes for instance the propagation of
waves through an acoustic duct with Helmholtz resonators,
which has been experimentally studied in Ref. 9, or also the
vibrations in beaded strings.7,10 In order to take into account
the effect of finite-size scatterers, we will also consider Eq.
�1� as the limit for small scatterer of size a having a contrast
in the sound speed c̃ with respect to the sound speed c of the
background medium. In that case, Eq. �1� describes the so-
lution u�x� for a→0 of the problem for finite-size scatterers,

�� + k2�u�x� = k2�1 − c2/c̃2��
n

�a�x − xn�u�x� , �2�

where �a�x�=1 for �x��a /2 and �a�x�=0 for �x��a /2. The
relation between M and the contrast in sound speed is then
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M = �1 − c2/c̃2�ka . �3�

Equation �1� �with Eq. �3�� and Eq. �2� �that accounts for
finite-size effects� will be used for numerical calculations.

An approach to write the wave field resulting from the
multiple scattering comes from the pioneering works of
Foldy.12,13,15,16 It consists in writing a set of consistent equa-
tions,

u�x� = u0�x� + f�
i=1

N

G�x − xi�ue�xi� ,

ue�xi� = u0�xi� + f �
j=1,j�i

N

G�xi − xj�ue�xj� , �4�

where u0�x� is the incident wave and G�x��eik�x� / �2ik� is the
Green’s function of the free space. The first equation gives
the total field u�x�, with ue being the field incident on the
scatterer centered at xi, often referred as the external field at
xi. The second equation takes into account the multiple scat-
tering in a consistent way. In the limit of isotropic point
scatterers, the scattering function f stands for the T matrix. In
that limit, the scattering function f is defined as the solution
for a unique scatterer located at the origin u�x�=u0�x�
+ fG�x�u0�0�. The relation between the scattering function f
and the potential M in Eq. �1� is obtained by identifying the
solutions for a unique scatterer,

f =
Mk

1 + iM/2
. �5�

We now consider Eq. �4� for different configurations of
the scatterer locations �xi�i=1. . .N. Averaging Eq. �4� over all
configurations leads to a set of N equations that involve more
and more information on the statistics of the scatterer distri-
bution. The first two equations of this hierarchy are

�u	�x� = u0�x� + Nf
 dx1p�x1�G�x − x1��ue	1�x1� ,

�ue	1�x1� = u0�x1� + �N − 1�f
 dx2p�x2�x1�G�x1 − x2��ue	2�x2� .

�6�

These equations define successive functions of the form

�ue	n�xi� � 
 dxn+1 . . . dxNp�xn+1, . . . xN�x1 . . . xn�ue�xi� ,

�7�

where i=1, . . . ,n and p�xn+1 , . . . ,xN �x1 , . . . ,xn� defines the
normalized conditional probability of the set of scatterers
centered at the �xn+1 , . . . ,xN� positions when the set of scat-
terers centered at the �x1 , . . . ,xn� positions are fixed. In QCA,
a closure assumption is used in which �ue	1= �ue	2, denoted
as �ue	 in the following. Within this assumption, �ue	 satisfies

�ue	�x1� = u0�x1� + �N − 1�f
 dx2p�x2�x1�G�x2 − x1��ue	�x2� ,

�8�

which constitutes the basic equation in QCA �for details, see,
e.g., Ref. 17�. Basically, QCA assumes that the joint prob-
ability p�x2 �x1� is sufficient to describe the scatterer distribu-
tion. This appears to be exact for periodic distribution; in that
case, p�x2 �x1�=�n�0��x2−x1−nd� / �N−1�, with d being the
lattice spacing, and no additional information can be gained
on the periodic lattice when the position of one scatterer x1
and d are known. The periodic lattice is used now as the
reference medium. The perturbed medium departs from this
reference medium as illustrated in Fig. 1. The embedded lat-
tice is maintained and the scatterer inside each unit cell is put
randomly with amplitude �d around its reference position.
For this distribution, the joint probability is

p�x2�x1� =
1

�N − 1��d
�
n�0

��d�x2 − x1 − nd� . �9�

The dispersion relation is obtained by solving Eq. �8� for
�ue	�xi�=eiKxi and i=1,2 in the absence of incident wave. We
obtain the dispersion relation on the QCA wave number K,

iM/2
1 + iM/2

eikd� sinc��K + k��d/2�
e−iKd − eikd +

sinc��K − k��d/2�
eiKd − eikd � + 1

= 0, �10�

where the sinc function is sinc x�sin x /x. When �=0, the
scatterers are periodically located and the Bloch Floquet
mode K=Q is obtained, leading to

cos Qd = cos kd + M/2 sin kd . �11�

In the limit of nearly periodic structure �→0, the effective
wave number K departs from Q,

Kd = Qd + �2 M

48

�Q2 + k2�d2�1 +

iM

2
� sin kd

sin Qd
− 2kQd2�

+ O��4� . �12�

To test the validity of the analytical QCA result, direct
numerical simulations of the effective propagation through N
scatterers are performed. In the first calculation, hereafter
referred to as C1, the propagation through N point scatterers
is calculated by solving Eq. �1� with Eq. �3�. The wave field
is written u�xn�x�xn+1�=an�eikx+Zne−ikx�. The continuity

d
xε

reference medium

perturbed medium

d

d

FIG. 1. The periodic lattice of scatterers is the reference medium
with the effective Bloch Floquet wave number Q. In the perturbed
medium, the embedded lattice is maintained and the scatterer inside
each cell is put randomly with amplitude �d, with d being the lattice
spacing.
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relations, deduced from Eq. �1�, are �u�xn
=0 and �u��xn

=Mku�xn�, where �u�xn
stands for �u�xn

� lim�→0�u�xn+��
−u�xn−���. These relations allow us to define two recurrence
relations on Zn and on an. The radiation condition Z2N=0 and
the source condition a1=eikx1 at the first scatterer, together
with the two recurrence relations, allow us to numerically
calculate the field u.

In the second calculation �C2�, the finite size of the scat-
terers is taken into account owing to the model of Eq. �2�.
The interfaces between the background medium and the
boundaries of the scatterers are denoted as �yn�n=1. . .2N, with
y2n−1=xn−a /2 and y2n=xn+a /2 for n=1, . . .N in the wave
equation �2�. The wave field is written as u�yn�x�yn+1�
=an�eiknx+Zne−iknx�, with either kn=k or kn= k̃�kc / c̃. The
continuity relations for both u and u� �Ref. 18� at the inter-
faces give the two recurrence relations on Zn and on an,
afterward the calculation is the same in C1.

In the numerical computations, N=60 �for kd /	 ap-
proaching unity� to 200 scatterers are placed in a segment of
length L=Nd and the total field is calculated as described
above �either in C1 or C2 numerical schemes�. Several fields

are calculated and averaged until the convergence is obtained
for �u	�x�. For the results presented here, the convergence is
obtained after an average on 500–1000 realizations. The real
and imaginary parts of K are deduced by estimating, respec-
tively, the periodicity and the exponential decrease in �u	�x�.
Figure 2 shows the relation dispersions K�k ,��. A good
agreement is found between the theoretical predictions in Eq.
�10� and the numerical results, even for � close to unity. For
�=1 /100, the configuration is very close to the periodic case.
In that case, the agreement between the theoretical value and
the numerical value is better than 1.8% �the error is mea-
sured by �Knum−K� / �K��. The agreement for �=1 /2 and 1
remains very good, with an error equal, respectively, to 6%
and 7%, even for the k values corresponding to the band gap
in the periodic case.

Incidentally, from Eq. �12�, the low-frequency limit kd
→0 of the QCA wave number K gives
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FIG. 2. Dispersion relation K�k ,�� of the perturbed periodic
medium. Plain circles correspond to numerical results for the point
scatterer model C1, open circles correspond to numerical results for
the finite-size model C2, and the plain line give the prediction of the
analytical model �Eq. �10��. c / c̃=10 and 
=1%.

0 1 2 3 4 5 6 7 8 9 10
d

H
(d

)
(a

.u
.)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
d

H
(d

)
(a

.u
.)

(a)

(b)

FIG. 3. �Color online� Histograms of the distances between
closer scatterers for �a� a random distribution of scatterers �each of
the N scatterers have been allowed to take any position in �0,L��
and for �b� a distribution of Fig. 1 with �=1.
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K2

k2 = 1 − 
 + 

c2

c̃2 +
�ka�2

24
�1 − c2/c̃2�2�2 + �2�1 + iA�� ,

�13�

where 
�a /d is the filling fraction and A�ka�2 /
− �1
−c2 / c̃2�� /2. In 1D, Berryman14 predicted that the effective-
mass density �e and the inverse of the effective bulk modulus
1 / ��ece

2� are equal to the volume average mass density and
the volume average inverse bulk modulus: De= �1−
�D
+
D̃, with D=� or D=1 / ��c2�. It follows that

1

ce
2 =




c̃2 +
1 − 


c2 , �14�

that coincides with our Eq. �13� at leading order. Also, it can
be seen that the contribution of the disorder at low frequency
is indeed small, as experimentally obtained in Refs. 1 and 2.
We find a contribution in �ka�2�2.

It has been shown in the present Brief Report that QCA is
well adapted to study the effective propagation through scat-

terers having a deviation with respect to reference periodic
positions. Namely, this excludes configurations where many
scatterers occupy the same unit cell, as it is possible for
purely random configurations. This aspect was discussed by
Lax13 in terms of the pertinence of QCA for propagation of
light in crystals, liquids, or gas, which is precisely in terms
of the pertinence of a periodic medium as a reference me-
dium. Of course, the use of QCA is very attractive since it
allows us to account for the strong scattering effect, the small
parameter being the deviation from a periodic medium. Ex-
perimental tests of our results could be performed in 1D
nearly periodic systems such as beaded string systems7 or
acoustic ducts with Helmholtz resonators.9 More generally,
in any disordered system, QCA might be applied by measur-
ing how close the set of scatterers is from a periodic struc-
ture. This is illustrated in Fig. 3 in 1D: from a gas type
situation, where all scatterers can move randomly in the
whole space to a crystal-type situation that has been consid-
ered here, the histogram of the distances between nearest
scatterers goes from a Poisson distribution to a triangular
distribution with a length that is a measure of the � value.
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