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The attenuation of ultrasound in polycrystalline materials is modeled with grain boundaries
considered as arrays of dislocation segments, a model valid for low angle mismatches. The
polycrystal is thus studied as a continuous medium containing many dislocation “walls” of finite
size randomly placed and oriented. Wave attenuation is blamed on the scattering by such objects, an
effect that is studied using a multiple scattering formalism. This scattering also renormalizes the
speed of sound, an effect that is also calculated. At low frequencies, meaning wavelengths that are
long compared to grain boundary size, then attenuation is found to scale with frequency following
a law that is a linear combination of quadratic and quartic terms, in agreement with the results of
recent experiments performed in copper [Zhang et al., J. Acoust. Soc. Am. 116(1), 109-116 (2004)].
The prefactor of the quartic term can be obtained with reasonable values for the material under
study, without adjustable parameters. The prefactor of the quadratic term can be fit assuming that the
drag on the dynamics of the dislocations making up the wall is one to two orders of magnitude
smaller than the value usually accepted for isolated dislocations. The quartic contribution is
compared with the effect of the changes in the elastic constants from grain to grain that is usually
considered as the source of attenuation in polycrystals. A complete model should include this

scattering as well. © 2007 Acoustical Society of America. [DOI: 10.1121/1.2734488]

PACS number(s): 43.35.Cg, 43.20.Hq, 43.20.Fn [RLW]

I. INTRODUCTION

Ultrasonic materials characterization and nondestructive
evaluation need the scattering of elastic waves in polycrys-
talline materials to be precisely understood since ultrasonic
attenuation and backscatter measurements are used widely to
extract the microstructural parameters such as grain size and
also to detect flaws in materials.

Most of the current understanding of the acoustic attenu-
ation in polycrystals is due to models that consider the wave
scattering caused by the variations of the elastic properties
from one grain to the other that result from the different
orientations of the single crystals. Grain boundaries are, at
least implicitly, treated as structureless, as well as passive,
surfaces. Pioneer works from the 1940s to the 1960s' pre-
dicted a quartic dependence of the attenuation on the fre-
quency (Rayleigh scattering) in the low frequency regime.
Further refinements have been considered, mainly to include
the texture or anisotropy of materials’ " (see also the review
in Ref. 11) all producing the Rayleigh scattering solution at
low frequencies.
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Recent improvements in sample preparation and in mea-
surement methods have allowed the comparison, on a quan-
titative basis, of experimental results with theoretical models.
Zhang et al.”? performed accurate measurements of ultra-
sound attenuation in copper and copper-aluminum samples;
they were able to establish a frequency dependence of the
attenuation as a combination of quadratic and quartic terms,
a behavior that is not explained by current theoretical mod-
els. Let us also mention the recent work of Hurley et al.’
where the refraction of surface acoustic waves across a
single grain boundary has been visualized and measured us-
ing optical techniques.

In a previous paper,14 we have proposed a model that
focuses on the grain boundaries as the source of scattering.
This was done by modeling grain boundaries as dislocation
arrays in two dimensions. In the present study, we generalize
the study to three-dimensional configurations: the grains are
assumed to be limited by “walls” formed of arrays of dislo-
cations, as pictured in Fig. 1. We expect that scattering by
such dislocation walls can produce the combination of qua-
dratic and quartic frequency terms for the attenuation in the
low frequency regime, as we have observed this behavior for
randomly distributed dislocation segments.15
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FIG. 1. Schematic representation of two low-angle grain boundaries of size
L X D separated by a distance w. The dislocation segment holds edge dislo-
cations, with Burgers vector b, separated by a distance .

Since Burger516 and Braggl7 in 1940, low angle grain
boundaries are known to be described by arrays of edge dis-
locations. In the 1950s, the works of Shockley and Read'®"
showed that the grain boundary energy can be expressed as
the energy of a suitable periodic array of dislocations with
dislocation spacing & expressed as a function of Burgers vec-
tor b and of the misorientation 6 between two grains in the
so-called Frank formula b=2h sin 6/2.%° The validity of this
model appears to be well established for typical dislocation
spacings larger than about four interatomic distances.”'*

There does not appear the same degree of consensus
concerning the structure of high angle grain boundaries, for
whose modeling different approaches have been proposed.
Most of them belong to, or are derived from, the coincident
site lattice model, from the O-lattice model or from disloca-
tion theories>>° (see also the review in Ref. 27, and refer-
ences herein) and they are based on a geometrical analysis of
the crystallography of the boundary. The experimental works
on grain boundary structure”® ™ contribute to that kind of
analysis. Let us also mention the work of Kobayashi ef al**
that analyzes the energy of a grain boundary in a continuum
model and the work of Meilikhov,35 who recovered super-
conductive features of grain boundaries using a model of
edge dislocations randomly distributed on the boundary, in-
stead of regularly spaced.

The main simplification of this paper is to consider a
polycrystal endowed only with low angle grain boundaries,
pictured as walls holding dislocations distributed in both di-
rections of the walls. The distribution law of the dislocation
lines on the grain boundaries is discussed in the paper, either
periodic or random, discrete or continuous. Otherwise, the
elastic properties of the grains are isotropic and homoge-
neous. Thus, the only source of scattering is the presence of
dislocation lines.

The paper is organized as follows: In Sec. II, we present
the basic relations that allow one to treat the problem of
scattering by a dislocation wall of finite size L X D that is the
picture of a grain boundary. This is accomplished using a
wave equation with a source term that encapsulates the
wave-grain boundary interaction. The formalism of multiple
scattering using the Dyson equation is applied to this differ-
ential equation and calculations, for low scattering strength,
up to second order are given. This leads to a derivation of the
velocity change and attenuation of both longitudinal and
transverse waves, the results of which are presented in Sec.
III. One important aspect of the present study is that we find
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a frequency dependence of acoustic attenuation that is a lin-
ear combination of quadratic and quartic terms, in agreement
with the results of Zhang et al. 12 A more detailed comparison
with those experiments is presented and discussed in Sec. IV.
The quartic contribution found in our model is also com-
pared with the quartic contribution usually found when con-
sidering the changes in elastic constants from grain to grain.
Including this effect in a complete model is easy since both
effects simply superimpose, as shown in Appendix C. Con-
cluding remarks are given in Sec. VI, and technical details
are given in the appendices.

Il. PROPAGATION OF WAVE THROUGH A RANDOM
DISTRIBUTION OF GRAIN BOUNDARIES

In this section, we present the derivation of the wave
numbers for coherent waves propagating in an effective me-
dium that is an elastic medium filled with a random distribu-
tion of dislocation walls of finite size. This is our picture of
the grain boundaries. It does not consider their actual topol-
ogy, an effect that should not be important at long wave-
lengths. These wave numbers have a real part, which differs
from the real wave numbers w/c; r in the absence of grain
boundaries, and an imaginary part, corresponding to the at-
tenuation of the propagating waves.

The derivation is performed using a usual multiple scat-
tering theory, solving the Dyson equation assuming low scat-
tering strength. This approach has been previously developed
for isolated dislocation segments in Ref. 15.

In the paper, we denote (\,u) the Lame’s coefficients
and p the density of the elastic medium that composes the
grains. With an isotropic medium, we use c;;=\&;0y
+ (8 6+ 6, 0;). With w the angular frequency of the inci-
dent wave, the velocities of the transverse and longitudinal
waves are c;=\(N+2u)/p and c;= V’%(yz clcy).

A. Derivation of a wave equation with a source
(“potential”) term

It has been shown in previous papelr%‘37 that the interac-

tion of a single moving edge dislocation with elastic waves is
described by a wave equation with a source term. To do that,
we described the two step scattering mechanism as pictured
in Fig 2.

First, the wave incident on the dislocation segment
(pinned at both extremities) induces it to oscillate. Low ac-
celerations are also assumed, so that the backreaction of the
radiation on the dislocation dynamics can be neglected. Fol-
lowing Ref. 38 and under these hypotheses, the equation of
motion of an edge dislocation takes the form of the equation
of motion for a string endowed with mass and line tension,
forced by the usual Peach-Koehler force®® 4

ka(s,t) + BXk(s,t) =TX[(s,1) = Fi(1), (2.1)

and the associated boundary conditions at pinned ends
X (£L/2,t)=0. In Eq. (2.1), m= pb?* defines a mass per unit
length, I'= pbzc% a line tension, B is the drag coefficient, and
Fy=€,,Tub;0;; the Peach-Koehler force (e denotes the
usual completely antisymmetric tensor). The dislocation is
assumed to be a gliding edge dislocation, so that the motion
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FIG. 2. Two step scattering mechanism of an elastic wave by a dislocation
segment. The incident wave hits the dislocation, causing it to oscillate in
response; the oscillation motion generates an outgoing scattered wave.

X occurs along the direction of the Burgers vector. We de-
note t this direction, with b=>bt, 7 the direction along the
dislocation line, and n= 7Xt.

In previous papersls’37 where interest was in the low
frequency regime, this equation was solved in the limit kL
<1, so that all the points of the segment received a wave
with the same phase. Here, we choose to treat the general
case and the solution is

X(o,y,w) =

lkz < Uk[X(O' ,)’) (1)]|Xn(0")>

Xpp(@)x,(0) (2.2)
with  p,(w)=1/(w*-n w1+sz/m) w =
+tny, X, (o) =sin[(na/L)(c+L/2)] and
= [12 ab denotes an inner product.

In the second step, the moving dislocation emits a scat-
tered wave whose form can be derived using the wave equa-
tion and the discontinuity relation [u]=b, first given in Ref.
41, see also Ref. 14,

WCT/L,MlkEtlnk
where  (a|b)

DI2 L2 .
v, (X,1) = 6jnhcijk1J dy p(y) dodt' bX,(0,y,t")
-D2 -L12
J o ,
X1, —Gp,[x=X(o,y),1 - 1], (2.3)
07)(]
where the Green tensor of free space G* verifies
s >
—G (X,1) = cijy———GL, (%,1) = AX) &1) 5. (2.4
SO0 = G = 30803 (24)

In Eq. (2.4), p(y) describes the distribution of the dislocation
lines along the grain boundary of length D (along the y axis),
with [dy p(y)=N the number of elementary dislocation lines
held by the grain boundary.

A number of possibilities are open for p(y). To wit,

(1) Discrete distribution of dislocation lines, in which case
p(y)==N_ 8(y-y,). This can be a periodic distribution,
with y,=nh(Nh=D) or a random distribution with the
N-y, values randomly distributed in [-D/2,D/2].
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(2) Continuous distributions, among which p(y)=1/h is the
continuous  extension of the periodic discrete
distribution.

The choice of a particular distribution is expected to influ-
ence significantly the expression of the field scattered by
one/several grain boundary/ies in Eq. (2.3) only when the
wavelength is comparable to the distance among dislocations
within the grain boundary. However, when the interest is in
the characterization of the effective medium (namely the at-
tenuation and the velocity change), many grain boundaries
are considered and an ensemble average is performed over
all the parameters describing the grain boundaries. It will be
seen that this average smoothes the differences between the
different distributions p(y): The result at first order is inde-
pendent of the choice of p(y) and at second order, the limit
kD <1 is found to be roughly independent of p(y).

Combining Egs. (2.2) and (2.3) leads to a wave equation
with a source (“potential”) term

_2Ui(x’t) - Cijkl Uk(X,[) = Vl-kvk, (25)

ot dx; dx;
where

Vik(x’ w)

_2( b)2 0
=7 Ewm, Mjkjdyp(y)dtfdo a—é[X—X(a,y)]
Xp

X E pul@)x (@) x, (") — (2.6)

f?k

x=X(a",y)

B. Derivation of the modified wave numbers

The derivation of the potential in Eq. (2.6) allows one to
treat the problem of the propagation of elastic waves through
a polycrystal following a usual multiple scattering theory.
Let us consider a configuration with an ensemble of grain
boundaries described by a set of parameters (the position and
the orientation of the boundaries for instance). This realiza-
tion is described by a potential V'=X,V’ in the wave equation
as in Eq. (2.5), with V' the potential of the ith grain bound-
ary, as given in Eq. (2.6).

The problem can be formulated in terms of the modified
Green tensor (G), that gives the impulse response of the
medium averaged over all realizations of disorder, the aver-
age being taken over the set of parameters that describe a
given configuration. The multiple scattering theory gives the
modified Green tensor in the Dyson equation: >

(G)=[G")" =31,

where 3, is the so-called mass operator related to the poten-
tial. The main difficulty in solving the Dyson equation is to
find X but a closed form can be written if an approximation
of 3 is performed for weak scattering. In that case, X can be
expanded and, up to second order in a small parameter that
measures the scattering strength, we have
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W=V,
(2.7)

3O = (VIGOVT) — (VI)GXVT).
In the case where V' is a sum of individual potentials and
assuming no correlations between the scatterers (that is no
correlation between the parameters that define the disorder),
the mass operator takes a simpler form as a function of the
potential for a single scatterer. In Fourier space, this is writ-
ten as

(2.8)
32 (Kk) =n f dxdx'dC eV, (x)

XGSI(X - x’)V,j(X')e"kX’ ,

where n is the density of scatterers and where the integral
over dC corresponds to the average over all the parameters
of disorder.

In our calculation, (1) all elementary dislocation lines
have the same Burgers vector b and the same mass per unit
length m and (2) all grains have the same dimension L X D.
What differs from one grain boundary to the other is (3) the
grain boundaries have different line spacing h, or equiva-
lently different N values. This allows one to account for dif-
ferent misorientations between adjacent grains since a grow-
ing misorientation angle is expected to produce a decreasing
line spacing and (4) the grain boundaries have random posi-
tion and random orientations. To simplify the calculations,
assumptions (3) is reduced to its simplest form where & can
take any value in the interval [h—Ah,h+Ah], with Ah<<h
[implying, for all f functions, (f(h)}=f(h)]. In summary, a
realization of disorder corresponds to many grain boundaries
of same size (dislocation walls), with density n, randomly
distributed and orientated in an elastic medium (otherwise
homogeneous and isotropic) with different (low) misorienta-
tion angles.

The whole task is now to derive the wave numbers K; r
of the modified Green function (G). The details of the calcu-
lations are reported in Appendix A and we find, for k=ke;

(k> = k3) 0
G)'K)=Gy'k) -3(K)=pc5| 0  (K-k)
0 0 YKE-k)
FlT(k’ Q)) + FZT(k7 (,l)) 0 O
- pC%kz 0 FlT(k’ (1)) + F2T(k, Cl)) 0 (29)
0 0 FlL(k,C!)) +F2L(k,(1))

[
With the notations calculation at second order, however, does depend on the
choice on p(y) since it involves a self-irradiation term: it is
x= 2, v = kL, (2.10) the contribution of the waves hitting twice the same scatterer.

W

B.=2mw,, and B=B/B,, the first-order terms are

2D !
Fir= —4jnL3j du(1 - u*)S(uv,x),
aa h 0

4 1
Fiu=— nﬁf du(1 — u?)*S(uv,x), (2.11)

0

_ fi{muv/2)
S(uv,x) = ; 2= 22 = 2ixP)[(uvlj)> - 117°

where f;=sin” for j even and fj=cos? for j odd. This result
at first order is independent of the distribution law p(y) for
the dislocation lines along the grain boundaries. This is be-
cause the first-order calculation corresponds to single scatter-
ing process averaged over all possible positions and orienta-
tions of the grain boundaries. The average causes the
particular organization encapsulated in p(y) to disappear. The

J. Acoust. Soc. Am., Vol. 121, No. 6, June 2007

This contribution depends on the structure of the scatterer
[here on p(y)], and the sum of waves hitting successively
two dislocation lines of the same grain boundary will be
different when, say, the line spacing is constant or random,
since interferences are expected. The second-order terms are

. D 2 1
Fop= #(t) nL3x3f du[cos? éu? + sin® &(1 - 2u%)?]
a h -1

1 2
XJ da hx(a,u)f dé g (&u),
1 0

4i (D\? :
Fy = —l7<j> nL3x3J du u*(1 - u?)
™\ h

-1

1 2
Xf da hx(a,u)f désin® £ g (&),
1 0

(2.12)

Maurel et al.: Dislocation scattering in polycrystals 3421



f(K)

FIG. 3. Plots of the function f(kD) appearing at the second-order calcula-
tion in A, in Eq. (2.12) for different distribution laws of the dislocation lines
along the grain boundary. Full line; continuous distribution; dotted line (al-
most indistinguishable from the full line); discrete periodic distribution;

dashed line; discrete random distribution. This plot considers for D/ h=10.

h(a,u) = (1 = 3a* + 4a*)f[ (kra — ku)D]
4

"}’5

+—a*(1 = a®)fl(kya — ku)D],

g (&u) = R[S(V1 = u? cos &v,x)]°.

The function f appearing in A, in Eq. (2.12) depends on p(y)
and we found

(1) f(kD)=sinc*(kD/2) for a continuous distribution [with
sinc(x) =sin x/x].

(2) f(kD)=[sin(kD/2)/(D/h)sin(kh/2)]?, characteristic of
interference pattern produced by periodic arrays, for a
discrete periodic distribution.

(3) f(kD)=[1-sinc*(kD/2)1h/D+sinc*(kD/2) for a dis-
crete random distribution.

Note that (kD) tends to unity for kD <1 whatever the form
of p(y). The function f are quite the same for the continuous
distribution and for the discrete periodic one, as it can be
seen in Fig. 3.

Since the effective wave numbers K,,a=L,T, are ex-
pected to be close to the undisturbed wave numbers k,, we
easily find, using v(ky)=x and v(k;)=x/7,

[ 1D i D
K= kT_l + ?%nLS(flT(x) + ﬁ%fﬂ(x)) ] »

(2.13)

[ 2D i D
Kp=ki| 1+ P %”L filx) + ?%fu(x) )
with

1
fir(x) EJ du(1 - u*)S(ux,x),
0

1
filx) = f du(1 - uz)zs(MX/’}’,x),

0
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1
for= x3J dulcos® &u* + sin? &(1 - 2u?)*]
-1

1 2
Xf da th(a,u)f dé g (& u),
-1 0

1 1
S = x3f du u*(1 - Mz)f da h,y(a,u)
-1 -1

2
Xf dgng(§7u)’

0
(2.14)
hopla,u) = (1 -3a* + 4a) A mxr(a —u)]
+ %az(l —a)flmxr(aly-u)],

hy(a,u) = (1 =3a®+4a) f{mxr(a — uly)]

+ iaz(l —a)flmxr(a—u)lvy],

,y5
gr(&u) = R[S(V1 - u? cos &x,x) %,

g (&u) = sin® ER[S(V1 — u? cos &/ y,x) %,

where r=D/L. The previous expressions simplify consider-
ably in the limit x<<1 of low frequencies, as will be seen in
Sec. III B. Also, in that limit, it is easy to see that the case of
isolated dislocation segments studied in Ref. 15 is recovered
for D/h=1,kD <1, in agreement with the fact that, for long
wavelengths, the wave will see the grain boundary as a
single, fat, dislocation segment.

lll. VELOCITY CHANGES AND ATTENUATIONS

A. General expression of the velocity changes and
attenuations

The attenuations a,=Im[K,] and modified velocity v,
=w/R[K,](a=L,T) can be simply deduced from Eq. (2.13)

1D
vr=cg| 1 - ;;nLSR[fIT(x)]] )

_ (3.1
2 D
vy=cy| 1- yzﬂA;nLSR[f“_(x)]] .
and the attenuation
1D 1 D
ar = ;%”sz[hn[flr(x)] + m;fzr(x):| s
(3.2)

2 D 1D
a = f—ﬂj%nLZX[Im[fu(x)] + ;%fu(x)] .

Typical behaviors of the attenuation and velocity change
Av,=c,—v, are shown on Fig. 4 (technical details about the
numerical calculations are given in Appendix B). We found
two regimes, depending on the value of the drag B compared
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FIG. 4. Typical behaviors of (a) the attenuation ;L and of (b) the velocity
change Av;/c; as a function of the frequency, in the underdamped regime
(B=B/B.=107°,1072) and in the overdamped regime (B/B.=10,107). Cal-
culations have been performed using nL*=1, D/h=10 and y=2 in Egs. (3.1)
and (3.2). (a) Calculations of the attenuation have been performed consid-
ering a continuous distribution of dislocation lines p(y) along the grain
boundaries. For ,6’=10’5 and 10°, calculations have been performed for the
discrete distributions p(y) (periodic and random). The curves are superim-
posed but indiscernible. The inset shows a zoom for w> w;,B=1073: the
cases that are continuous (in plain line) and periodic (in dashed line) are still
indiscernible. The case of discrete random distribution is represented in
dotted line and here has the maximum difference 50% (otherwise lower than
0.15%). The w* and " frequency laws are given for a guide to the eye.

with the critical value B.=mw, that fixes the limit of the
over- and underdamped regimes for the dislocation motion.
In the underdamped regime (B=B/B.<1), the frequency
law for the attenuation is a combination of a quadratic and
quartic terms at low frequencies w/w; <1. Above w;, reso-
nances appear for incident wavelengths that are a submul-
tiple of the grain size L(w=nw;). These resonances are
smoothed because of the damping (encapsulated in B) and
increasing 8 B causes them to disappear in the overdamped
regime $>1. A more detailed discussion on these regimes
can be found in Ref. 15. The attenuation involves the second-
order calculation. Calculations have been performed with the
different distribution laws p(y): continuous, periodic, and
random. The difference between the three p(y) laws de-
creases increasing (. This is because the second-order con-
tribution is independent of B and increasing B makes the
first-order contribution dominant [otherwise independent of
p(y)]. For B=107, the difference between the a values is
lower than 0.15% for w<w;. It reaches 50% for w> w, as
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shown in the inset of Fig. 4(a). For 8=10, the differences
between the « values is lower than 1073% in the whole fre-
quency range [107°—10]w,.

From these figures, the limit of validity of the present
calculations can be commented upon. Our approach assumes
that the multiple scattering medium behaves as an effective
dissipative medium in which a coherent wave propagates,
and a perturbative development is performed. This implies
Av/c<1 and a/k<<1, both conditions being a consequence
of the perturbative method. It can be seen that, in the under-
damped regime, frequencies w>w; give high attenuation
and velocity change because of the resonances. In that re-
gime, the weak scattering approximation will cease to be
valid.

B. Velocity change and attenuation in the low
frequency regime

In the low frequency regime (w<<w; or x<<1), the ex-

pressions for velocity change simplify to

(3.3)

with C;=4/(57"),C;=16/(15y*7*), and for attenuation to
B

Q, Z'DQHLZXZ 5 5
a a — 202
1+x°8

4 3y5+29x2(1—x2,82)
Tis? Y U+ |

(3.4)

with Dy=4/(57°), D,=16/(15y*w), and B=B/B,. These
results agree with those obtained for isolated dislocation seg-
ments in Ref. 15 with the replacements b—Nb and m
—Nm with N=D/h the number of dislocation segments

held in a grain boundary [or equivalently D/h=1]. This rea-
sonably means that a grain boundary behaves as a single (fat)

dislocation segment with total Burgers vector Nb and total

mass Nm in the low frequency regime. The behaviors in the
under- or overdamped regimes are illustrated in Fig. 4 and a
discussion can be found in Ref. 15. In the underdamped re-
gime, the terms x8<< 1vanish and the attenuation has simply
a contribution in x* due to the drag B> 8 and a contribution
in x* due to multiple scattering process. This behavior is
compared with experimental results in Sec. I'V.

IV. COMPARISON WITH ZHANG et al. EXPERIMENTS

In a recent publication, Zhang et al."* have reported the
experimental measurement of the attenuation of longitudinal
waves with frequencies in the 10 MHz range (meaning
wavelengths of the order of millimeter) in polycrystalline
copper. The care taken by these authors to prepare the
samples allowed them to characterize very accurately the fre-
quency dependence, and the data clearly exhibit, in addition
to the usual quartic law, a quadratic term. The data fits re-
ported in that paper are discussed in this section.

Following Zhang’s notation, we write a=a;(c=c;) and

Maurel et al.: Dislocation scattering in polycrystals 3423



TABLE I. Coefficients of the fits for the attenuation in a=a,f>+ ayf*, from Zhang et al. (Ref. 12) for different
grain sizes d in different prepared samples (PM and CW). Two sets of values for & and B/b? are reported, The
first (V1) correspond to the values deduced from Eq. (4.2) in the polynomial approximation and the second [
(V2) in parentheses] are the values that give the best fits between our complete expression o' [Eq. (3.2)] and

the polynomial expansion given by Zhang.

Sample reference (in Ref. 12) PM3 PM5 CW2 CW4
d (pum) 9.77 26.9 10.3 339
a, (107 m™' Hz™2) 12 32 71 240
a; (107 m=' Hz™) 9 180 7 280
7 (um) 125 (0.79) 352 (241) 162 (198) 503 (11.24)
B/b* (10" Pas m™) 0.039 (0.025) 0.0140 (0.0110) 0.254 (0.309) 0.075 (0.168)

a=P(f) = arf* + a,f*.
Now, our expression (3.4) in the limit x<<1 and in the un-
derdamped regime gives the same polynomial expansion as
Eq. (4.1) with the identifications

64 BnL’ D

O=""7"%52",

27 1544 pb*c? h

(4.1)

4.2)

Ay

1024 3y°+2nL%(D)\?
225w A\ )

Note the proportionality of @, with D. The latter is a linear
dimension associated with grain boundary size, which it is
not unreasonable to suppose proportional to grain size. In
this case this formula provides a rationale for the linear scal-
ing between «, and grain size found by Zhang et al.?

We have to introduce simplifying assumptions concern-
ing grain shape that should not affect measurements per-
formed at length scales much larger than grain size:

(1) Following Zhang et al., we shall call d the grain size,
and we shall assume it is of the same order of magnitude
as all dimensions of the grain boundaries, or, in the lan-
guage of the present model, the dislocation walls: d
~L=D=w.

(2) With the previous assumption, we assume nd>~ 1,
which means that the grains are “cubes” uniformly dis-
tributed throughout space.

With these assumptions it is possible to find simplified ex-

pressions with only two undetermined parameters: A, the
mean distance between two dislocations within a grain
boundary, and B/ b2, a ratio that depends on the characteris-
tics of the dislocation in the grain boundary:

1024 3y’ +2d° 1

= , 4.3
157 pc? bz;_l “-3)

a

Equation (4.3) does not contradict the linear scaling with D
predicted by our model. It is a consequence of the assump-
tion L~ D ~w, which is used for the numerical estimations
of Table I.

For two sets of samples denoted PM (prepared by the
power metallurgy method) and CW (cast-and-wrought),
Zhang et al. give the coefficients of the polynomial fits of the
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experimental data [«, and «, defined in P(f), Eq. (4.1)].
These results are reported in Table I, together with the values

of h and of (B/b?) they imply in our model when the poly-
nomial simplification is considered [Eq. (4.1)]. To do that, it
is sufficient to use the above-presented expression of a, in

Eq. (4.3) to determine h without any adjustable parameters

_ 1024 3y +2d° 1

(4.4)

This value of & can then be used in the expression of a, to
extract the ratio B/b2,

B\ 157*pc® -
(2] 2

—-— 4.5
64 d° “5)

Results are presented in Table I (values V1), for p=9
X 1073 kg m™, ¢=4900 m s~!, and y=2.

The results for 4 seem eminently reasonable: The few
micrometers found for the distance between dislocation cor-
responds to the value, first observed by Lacombe™® and re-
ported by Read and Shockley in 1950." 1t corresponds to a
low angle grain boundary with a disorientation angle of
about 1073 rad for b around 1 nm.

The results implied for B/ b? however, differ from the
values of B commonly accepted for an isolated dislocation.
Indeed, in this case b is typically below the nanometer and B
is around 107 Pa's at room temperature,%f48 giving a value
for the ratio B/b* around 10'* Pasm™ if the dislocation
segments within a grain boundary behave as isolated dislo-
cation segments. This is at least one order of magnitude
above the results reported in Table I, reasonably suggesting
that the presence of neighboring dislocation segments
strongly affects their damping dynamics. In other words,
keeping the usual value of b, the drag B of the dislocation
segment in the grain boundary is found around 107 Pas, a
value significantly smaller than the value for an isolated dis-
location. Finally, note that we can check the assumption
made that the dislocations move in an underdamped regime
since the ratio B/B, is found to typically lie between 0.02
and 0.2.

Comment on the polynomial approximation. The validity
of the polynomial approximation is measured by the differ-
ence with the exact theoretical expression o' given in Eq.
(3.2), whose approximated form is the polynomial approxi-
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mation only for x<<1. Since the experimental configurations
for PM3, PM4, CW4, and CWS5 cover x between 0.08 and
0.5, the approximation may be questioned. We denote a®*P
the polynomial approximation [indeed, remember that the
polynomial approximation with 4 and (B/b?) in Eqs. (4.4)
and (4.5) gives exactly the experimental results, by construc-
tion] and E=|a™-a®*P|/|a®P| the difference with the exact
expression.

The difference E on the attenuation is as follows (a
mean value is taken in the frequency range [10-18] MHz):
For PM3 (x<0.14,B/B.=0.03), we get E=7%. For PM5
(x<0.4,B/B.=0.03), E=25%. For CW2 (x<0.15,B/B.
=0.19), E=1.3% and for CW4 (x<0.5,B/B.=0.18), E
=16%. As expected, E increases as x increases. Figure 6
illustrates this behavior: We have represented the experimen-
tal attenuation (identical to the polynomial approximation)

and o™ calculated with the values of & and B/b? in Eqs. (4.4)
and (4.5) (V1 values). The maximum difference is observed
for the PM5 sample.

We have performed a second calculation in which the

V1 values (h,B/b?) are taken as initial guess values. Then,
these values have been adjusted to obtain the best agreement
with the polynomial fits. To do that, we have searched a
minimum of E=|a—a®P|/|a®P|, where o™ is numerically
calculated with two adjustable parameters B/b* and h: The
minimum of E(B/b?,h) is found in a two-dimensional space

where B/b* and h have been centered on the initial guess
value with 100% variation. Figure 5 illustrates the procedure.
The resulting values (V2) are also presented in Table I
and in Fig. 6. The resulting error E is decreased, around 1%
for all samples.
Note that the difference between values (V1) and (V2) is
significant but, as expected for relatively small x values, it

does not change the order of magnitude of 4 and B/b>.

V. COMMENT ON THE EFFECT OF GRAIN
ANISOTROPY

The attenuation measured in polycrystals has been
widely studied as originating from the variation in the elastic
constants relevant for the propagation of waves from grain to
grain due to the change in the grain orientation.'™" This ef-
fect can be encapsulated in a potential in the wave equation

& &
—S0,(X, 1) —Cip) T x,t=V-Tx X,1),
pra0I000) = )5 vyen) = Vo)

(5.1

d J

T\ —

Vi(x) = - _<5Cijk1(x)_ . )

Ix; ox;
where (c;j,) are the mean elastic constants, averaged over all
possible orientations of the crystal axis, and dc;j,(x) are the
variations in the elastic constants from grain to grain, with

respect to their mean value. In that case, the attenuation is
found to be of the form
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FIG. 5. (a) Example of the function error E=|a"—a®?|/|a®*?| [log(E) in
gray scale] as a function of the two adjustable parameters B/b? and h (here
for the case CW4 in Table I). White is the higher value (here 200%) and
black the lowest value (0.08%). (b) The attenuation: in full line, the experi-
mental fit given by Zhang er al. for CW4, in dotted line the attenuation
calculated from Eq. (3.2) with the initial guess values V1((B/b*)=7.49
X 10" S.I. and #=5.0265 um and in dotted line, the best fit of the attenu-
ation calculated from Eq. (3.2), obtained with the values V2:B/b*=16.81

X 10" S.I. and h=11.24 um.
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FIG. 6. Comparison with experiments reported in Zhang et al. for the four
samples whose fits are given (see Table I): solid lines correspond to the
experimental fitted curves. The correction of the simple power law in a,f>
+ayf* using the whole expression in Eq. (3.2) is given using (B/b>,h)
coming from: in dashed line, the V1 values deduced from the polynomial
approximation and in dotted line (almost superposed to the experimental
curves) the V2 values minimizing the difference with the experimental con-
figuration.
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2 4

ad~c<1) (ﬂi) , (5.2)
‘1 ‘L

where cq; is the first term of the stiffness matrix, equal to
N+2u for isotropic media and n=c||—cj,—2c44 1S @ measure
of the anisotropy of the single crystal. C is a numerical con-
stant, of the order than 1072-1073 (a simplified presentation
of the calculation is given in Appendix C, for a more com-
plete derivation of the Dyson equation, see Ref. 10). The
contribution of the anisotropy of the crystal grain corre-
sponds to a second-order contribution in the perturbative ex-
pansion, the first order vanishing because it is proportional to
(dc;jyy) that is zero, by definition.

It is shown in Appendix C that the attenuations due to
the dislocations in the grain boundaries and due to the grain
anisotropy simply superpose when both effects are consid-
ered. The attenuation could be thus written, with both effects,

ad=A£ef(w_d)2+[B(sj)ﬂ(;(zﬂ(w_d)‘i
B.j\cp h c1 ‘L
(5.3)

where we have used the simplified expression in Eqgs.
(4.1)—(4.3):  A=16/(15ym)=2Xx10" and B=64(3y’
+2)/(2257°9*)=5X107>. A comparison between the two
quartic terms will depend on the characteristics of the mate-
rial at hand. For copper, studied in Refs. 1 and 49, 7 is of the

same order than the stiffness coefficients c;;. With d/ h~10
dislocations per grain boundary (as we have found in Table
I), the two contributions are of the same order of magnitude.
This means that including both effects in our study would not

change significantly the results on the values of B and h. Of
course, this balance can change depending on the polycrys-
tal.

VI. CONCLUDING REMARKS

Recent measurements of ultrasound attenuation can be
understood in terms of a model that blames the attenuation
on scattering by grain boundaries that are made of disloca-
tion arrays. For low frequencies, that is, wavelengths long
compared to grain size, the grain boundaries mainly behave
as an ensemble of isolated dislocations, with an effective
mass and an effective Burgers vector equal to the total mass
and the total Burgers vector “held” by the grain boundary. A
frequency law that is a linear combination of quadratic and
quartic terms naturally appears. The quadratic term is due to
the drag experienced by the dislocations as they respond to
the externally generated acoustic wave. The quartic term is
due to the damping experienced by the coherent wave as
energy is taken from it by the randomly placed grain bound-
aries; it is an effect of disorder.

The quadratic scaling of the attenuation due to (indi-
vidual) dislocation damping has been known since the
1950s°"* and the extra quartic contribution that appears
when many, randomly located, dislocations are present, has
been identified more recently.15 In the low frequency regime,
the quadratic contribution of the dislocations (say of length /)
to the attenuation typically behaves as a~ 10AlB(w/ w,)?
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with w;=mc/I the first resonance frequency and A=nl! the
surface density of dislocations. This law has successfully ex-
plained the attenuation due to dislocations experimentally
measured in the range of 1072—1 m~! (typical temporal at-
tenuation, ac, being in the range 107*—1072 us™! for ring-
down curves).” ®' The attenuations measured in the experi-
ments of Zhang et al. are two orders of magnitude larger than
in experiments that refer to dislocation damping, meaning
that the contribution to the attenuation of the (individual)
dislocations in the bulk of the grains can be neglected.

However, grain boundaries pictured as arrays of disloca-
tions, a good approximation in the low-angle case, are good
candidates to explain the quadratic term of the measured at-
tenuation, with the dislocation drag significantly diminished
by the presence of neighboring dislocations nearby. The
quartic term can quite reasonably be understood as arising
from the presence of many, randomly placed and oriented,
grain boundaries, a quartic contribution that has to be com-
pared with the usual contribution of the change in grain an-
isotropy.

Zhang et al." found a difference in attenuation for
samples prepared via powder metallurgy and equal channel
angular extrusion, presumably linked to the difference in
grain size distribution. In our work, while we can fit the data
with appropriate values for the dynamic attenuation of dislo-
cation motion B, we have taken an approximation in which
grain boundaries, while randomly distributed, have identical
sizes. Our formalism allows for a more general treatment
with a more realistic distribution, and remains a possible
direction for future work.

Finally, the dislocation walls that form grain boundaries
appear to be good candidate as source of damping in poly-
crystals. Further measurements of the attenuation in a larger
range of frequencies would be helpful (1) to confirm the
results of Zhang et al. concerning the quadratic contribution
in the low frequency regime, (2) to discriminate between the
contribution due to the dislocation walls and due to the an-
isotropy in the transition (near w;) regime, and (3) to inves-
tigate the high frequency regime where resonances should be
observed. Also, the low value of the drag coefficient that we
obtain using the data of Zhang et al. needs to be further
investigated if this result is confirmed.
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APPENDIX A: DERIVATION OF THE MASS
OPERATOR

The task is here to derive the so-called mass operator 2,
that links the modified Green tensor (G) of the effective me-
dium (corresponding to an average of all realizations of the
medium filled with random distributions of scatterers) and
the Green tensor G° of the elastic medium free of scatterers.
In the limit of weak scattering, the mass operator can be
developed as in Eq. (2.8). In our case, the calculation is

Maurel et al.: Dislocation scattering in polycrystals



performed up to second order. The first order gives the ve-
locity change and a term of the attenuation due to internal
viscosity (via the drag term B in the equation of motion for
the dislocation) and the second order gives a term in the
attenuation due to the energy that is taken away from the
direction of propagation. This latter term exists even in the
absence of any viscous effect.

To do the calculations, we restrict ourselves to the fol-
lowing assumptions:

(1) All the elementary dislocation lines along the grain
boundary are identical, meaning they have the same
Burger vector b and the same mass per unit length m.

(2) All grains have the same dimension L X D.

The randomness has two sources:

cos @ cos 6 —sin € cos £— sin ¢ cos @sin &
R=| cos ¢sin # cos @cos &—sin @ sin #sin €

sin @ cos ¢ sin &

Also, when a discrete random distribution of dislocation
lines is considered: p(y)=28(y—y,), with y, randomly dis-
tributed in [-D/2,D/2], an additional average has to be per-
formed to account for all possible positions of y,. This is
done through [dy,dy,...dyy/D"., indicating that each y, has
the D length as accessible space. Finally, the average over
the orientations of the grain boundaries is encapsulated in the
notation [dC.

1. First-order calculation

The first-order calculation is straightforward. We have,
denoting x,(0)=sin[(n7/L)(c+L/2)] and p,(w)=1/(w’
—wi+in/ m),

25})(k)=nfddee‘ik"Vik(X)eik"

. J dXdCdyp(y)dO'da"e_ikXMipqu
9 ) aeikx
X ﬁ_a[x - X(OE)’)]E pn(w)Xn(O-)Xn(a- ) ox

)Cp n qx

cos @ cos 6 —sin € cos &— sin ¢ cos 6sin &
R=| cos ¢sin # cos @cos &—sin ¢ sin fsin &

sin ¢ cos @ sin &
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—cos @sin & —sin ¢ sin 6 cos &

(1) The grain boundaries hold different number N of dislo-
cation lines, or equivalently different spacing 4. This al-
lows one to account for different misorientations be-
tween adjacent grains since a growing misorientation
angle is expected to produce an increasing N value. We
choose the simplest case where / can take any values in

the interval [h—Ah,h+Ah] with Ah<<h, thus we use
(F(m)=f(h).

(2) The grain boundaries can have any orientation, the ori-
entation of a grain being given by the orientation of the
two vector (7,t). The two vector is described by the

Euler angles (0, ¢,&). We denote R the rotation matrix
R=R(e;, 0)R(e,, ¢)R(e;,$),

sin sin & —sin ¢ cos O cos &

(A1)

cos ¢ cos &

2n (ub)?
== dyp(y) | dCM,;,M; kK,

L
2
X pa(w) f doyx,(0)e®™
4L22n D (ub)?
AL ] MMk ok

where we have used [dyp(y)=N=D/h for any distribution of
dislocation lines and where

(0.0) sin?(kL/2)  p,(o) "
k) = or n even
A [(kLinm)? =1 n" ey
2(kL/2
cos(kL/2) _py(w) for n odd. (A2)

- [(kL/nm)?=17> n"

The integration over C has to be performed over the Euler
angles (6, ¢, &) since we have to account for all orientations
of the two vectors (7,b). We denote R the rotation matrix
R=R(e;, 0)R(e,, 0)R(e;, &),

sin @ sin £ — sin @ cos 6 cos &

—cos fsin £—sin ¢ sin 6 cos & (A3)
cos ¢ cos &
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Without loss of generality, we choose 7=Re;,t=Re,,n
=Re; and we choose arbitrarily k=ke; (the general form of
the modified Green function can be obtained through rota-
tions afterwards if desired). We obtain

4L72nD (ub)*

SO(K) =- &2 -
Lh ™

f dCV'VY, a,(w,kRj)),

with V;=R;;R3,+R;;R33. Since R;;=sin ¢ is independent of
0 and £ in f,, it is easy to integrate over 0 and & This allows
one to show that 3! is diagonal with E 2(212). We denote

(1) (1) () —<s0)

SW=30 4ng 30 =3),
D nLc?
2P0 = pepe ==
h

1
du(1 - u*) Y, a,(w,ku),
0 n

D 1
SW(k) = - pC%vkztl’LLC%f du(1 = u®*Y a,(w,ku),
h 0 n

_ 2
where we have used u=pc7.

2. Second-order calculation

Calculations at second order are quite long but similar to
the first-order ones. We report here the main steps of these
calculations,

Eﬁ?(k) =n f dxdx'dCe™ ™V, (x)G%/(x — x’)VU(x’)e"k"'

4n (/Lb)4 f
L2 m?

dxdx'dCM;,M, M, M,

ng

p
J dyp(y)dodo’dy'p(y')dsds' e™—
(9x,,

X é[X - X(U’y)]z ann(o-)Xn(oJ)

J J
X ————Gpx—x)— 8x' - X(s,y")]
o"xk|x:X((,,’y) (?x,
&eier
X E PonXon($) Xonls")
t|x =X(s",y")

We use G(x)=1/(2m)3[dqG’(q)e'™ and X(o,y)=07+yn
to get

@y M (Mb)4<£>2
Eij (k)_(277')3L2 m? \

X f dqdc M ipMonlertqqktqurGSI(q)

2
Jny

dyp(y)e’*a

X > an(w,kf)z a,(w,k7),

which can be written without indices in a more tractable
form
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S (k) =

4n wa(g)z D\
Qm3L* m* \ 7 A
X J dqdCAV'Vf{(k-q) -nD]g(k - 7),

where A='qMG°(q)Mq is a scalar term, V= MK is a vector
and with g(x)=|=,a,(x)*
The function f depends on the distribution law consid-
ered for the dislocation lines. With
2
, (Ad)

< ‘ f dyp(y)e’™
D/2

where (-) denotes the average over h and for the discrete
random distribution, the average over the positions of the
dislocation on a single grain boundary.

Let us give the expression of the function f for the con-
tinuous or discrete distributions p(y):

J(kD) =

(I) For a continuous distribution p(y)=1/h, it is easily
found, with sinc X=sin X/X,
f(kD) = sinc*(kD/2). (A5)

(2) For a discrete periodic distribution p(y)=§l],:’=15(y—nh),
with D=Nh, the integral is easily obtained

sin(kD/2 2
kD) = [1_("—_)} . (A6)
(D/R)sin(xh/2)

(3) For a discrete random distribution p(y):EfY:]&(y—yn)
with y, randomly distributed in [-D/2,D/2], an addi-

tional average has to be performed. Denoting N=D/h,
we get

_ [ Ay dyw
f(kD) = e f dh J dydy J o
N N
X 8y - yn)E 8y = y,)e 0"

n=1
dyn E KOy

=_fdhfdy1

N n,m=1
=— dh{f +N(N—1)
N?

J %ei"m_h)}

= —[1 - sinc*(kD/2)] + sinc*(kD/2).

X

=

(A7)

@

The typical behavior of these functions is illustrated in
Fig. 3.

We choose now 7=Re;,t=Re,,n=Re;, and still k
=ke;. The above-mentioned integrals can be rewritten (with
a change of variable q — 'Rq)
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2(2)(1() —

4n (Mb)4(4r_L2>2k2
QmiL? m* \ 7

x f dqdC AV fTkRy, - giiy o kRss).

with A='qM,G%(q)M,q(M,,=e,'e,+e,'e;) and V=Me;.

In the absence of the functions f and g, the integrals
over C and q would be separable since A depends only on g
and V only on the Euler angles described by C. As in the
calculation of the mass operator at first order, the choice of k
along e; and n is motivated by the fact that R;;=sin ¢ (ap-
pearing in the coupling function f) allows the direct integra-
tion over the two other Euler angles (6, £). Here, because we
have to deal with k- 7 and k-n, we have to let in the coupling
functions at least one other Euler angle: it appears in g
through Rs3=cos ¢ cos & It is thus possible to integrate
freely the operator V'V only over 6.

In a similar way, the integration of A over q can be
performed singly (q,,q3) since the coupling function f in-
volves only q, and we choose the angles (a, ), such q,
=sin @, {y=cos a cos B, qz=cos asin B so that integration
of the scalar term A over B can be performed directly.

In addition, we are only concerned by the imaginary part
of 3®. This appears through the calculation of
[dqAf[kR5;-¢q,] and (with a=sin « and integrating over
B

Im[f dqAf(kRs, —CI(All)}

3

1
= Sf da{(l—3a2+4a4)f(k7a—kR3l)
2pcrJ

Tw

+ %(12(1 - (lz)f(kLCl - kR31)} . (A8)

The remaining integral over the Euler angle 6 is performed
over V'V with V,=-sin 6 cos &sin ¢+cos 2¢ cos #sin & V,
=cos 6 cos & sin @+cos 2¢ sin #sin & Vi=sin 2¢ sin & This
integration is sufficient to show that 3 is diagonal with
E(Tz)=2(121)=2(222),222)=2§23) and we get (with u=sin ¢)

3P = pcikPFyr(k, o),
A9
2) _ 272 ( )
EL —pCTk FZL(kvw)’

. D 2 1
Fop= #(j) nL3x3f du[cos? &u® + sin® &(1 - 2u?)?]
aw h -1

1 21
XJ da hx(a,u)j dég (&u),
-1 0

4i (D\? :
FZLE—i(j) nL3x3f dur*(1 - u?)
T \h -1
1 2
Xf dahx(a,u)f dé sin® &g (£.u),
-1 0
(A10)
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h(a,u) = (1 -3a® + 4a*) [ (kya — ku)D]

+ iaz(l —a)fl(k,a - ku)D],

')’5

g(&u) = RIS(V1 —u? cos &v,x)].

APPENDIX B: REMARK ON THE NUMERICAL
INTEGRATION OF THE ATTENUATION

The numerical integration of the attenuations in Eg.
(2.14) is fairly simple. Functions f;7; involve a single inte-
gral easy to perform with a Runge-Kutta scheme with ad-
aptative step size. For f,; (respectively, f>7), the integral is of
the form

1 1 2
f du®(1 - uz)f dah(a,u)f dég(é.u),
-1 0

-1

(B1)

and to compute it, we first choose a discretization for the u
variable, and then, for each u value, we solve independently

find G, (27) = f " dég(&,u) by solving the ODE d(Z—”g(g)
0
=g(&u), with G,(0)=0,
find H,(1) = 1 dah(a,u) by solving the ODE d%f)
-1
=h(&u), with H,(- 1) =0. (B2)

These ordinary differential equation (ODEs) are solved using
a classical Runge-Kutta scheme with adaptative step size.
The final integral over u is finally performed using the trap-
ezoidal rule.

APPENDIX C: ATTENUATION DUE TO THE
FLUCTUATIONS OF THE ELASTIC CONSTANTS

We give here very briefly the main steps in the deriva-
tion of the attenuation due to the fluctuations of the elastic
constants c;;,(x) from grain to grain. This is just in order to
get the order of magnitude of this effect. A wave propagating
in a medium with elastic constants that are space dependent
is a solution of
s J J
P?Ui(XJ) - &_)Cj(cijkl(x)a_x)vk(x’t) =0. (Cn
Writing ¢;j,(X)=(c;jx) + 0c;jxy(X), where the mean has to be
defined, the effect due to this spatial dependence can be en-
capsulated in a potential V7(x),

— (X, 1) —
popvixn =

X <Cijkl>vk(x’t) = VZ];(X)U]((X’[)’
j !

(C2)
d J
Vilx) = - a_xj(&ijkl(x)a_xl . )

Writing Eq. (C2) in terms of a potential V7 allows the appli-
cation of the multiple scattering formalism to solve the
Dyson equation.
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Most of the literature considers that the difference in
elasticity occurs because the grains are not uniformly ori-
ented. Thus the mean (c;;;) is taken over all possible orien-
tations. The elastic constants of a grain with arbitrary orien-
tation can be expressed in terms of the single crystal
constants cgkl through c,jklsz»RbiRcdelcgkl. This allows one
to derive (c;j,), related to cgk, and to a coefficient 7 that
measures the anisotropy of the single crystal. For example,
for cubic symmetry, one has C?,-,-i:Cl | ,cioijjzclz, c?ﬁjzc44 (and
zero otherwise) and one gets for an untextured polycrystal
(that is, all possible orientations have equal probability),
(Ciiiy=cn=27/5, <Cijij>=c44_77/5’ with 7=cj1—c1p—2cyy.
Within a single grain, the elastic constants c;;, are indeed
constants, and the spatial dependence in c;;,(x) indicates that
the wave travels through different grains.

Assuming small scattering strength, the mass operator
can be expanded as in Eq. (2.7). The first-order expansion
being proportional to (&c;j,), that is zero by definition. The
second order is the lowest nonvanishing contribution and it
takes the form 3,=(V'G°V"). In Fourier space, 3 can be
calculated as follows:

1 . -
Eﬁ?(k) =5 f dCdxdx' e V] (x)Gy,,(x = x") V), (x")e™

1 —_— J
=9 j dCdxdx'e“k"&—< 8¢ i(X)—GY, (x — X’))

X, r?xl
J ——
X =\ 8¢,ppig(x') =™ ) C3
%( )2 (€3)

To illustrate the calculation, consider the following term
(others involve similar calculations):

1 )
E?(k):]—/J'dCdxdx'e_’k"écink,(x)&mqu(x’)

s

o .
G) (x—x")———e™. C4
dx; 0 x,, ol ) ¢ €4)

! !
&xq &xp

We use G°(x)=[dqG%(q)e'™/(2m)> to get

szdq q2GO(q)fdxdx'e_i(k—Q)(x—x’)

S@(k) = YT

X f dC &ijkl(x) &mnpq(x,) ’ (CS)

where we have omitted the indices for simplicity. To evaluate
the integral, we now need the geometric correlation function
W(r) in the two point average [W(r) is implicitly included in
dC]: W(r) represents the probability that two points sepa-
rated by r are in the same grain. Usually, it is taken as
W(r)=e™"¢, with d the grain size. For simplicity again, we
use instead W(r)=d>&(r). In this way we get

3

2w’
id®

~—k
4

S@(k) ~

k2 f dqquO(q)<5Cinkl5cmqu>

2ki<&inkl&mqu>s (C6)
where the angular brackets denote an average over possible
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orientations. We have considered the longitudinal wave using
G%q)=1/(u(g>~k?)) and focused on the imaginary part of
32 only to get the attenuation. With (OC i1 OC i)
=(CinkiCmpjq) = Cink){Cmpjq)» it is possible to end the calcula-
tion. Again, the result depends on the symmetry of the single
crystal and on the presence or absence of texture. In the
simple case of polycrystals of cubic symmetry, one gets
(CinkiCmpjq) = {Cint){Cmpjg) = 7 s0 that, for the longitudinal
wave,

2(2)(/%) = (C7)

E k5ﬁ
40 b o’
The modified Green function (G)™! =/L(k2—K%), where K| is
the modified wave number whose imaginary part gives the
attenuation coefficient. From (G)™'=G*'-3 with K, ex-

pected to be close to k;, we get, using K; =k; +2/(2ukL),
1 d 4 2
ad ~ —(‘”—) (ﬁ) . (C8)

8\ ¢ "

What happens if both effects, the effect of the change of
elastic constants because of the anisotropy and the effect of
the dislocations, are considered together?

It is sufficient to sum the potentials V7= Vdisloc yanisot ¢
answer. At first order, the linearity implies 3" is simply the
sum of both effects, and we recover the effect of the dislo-
cation only. At second order, cross terms appear because the
nonlinearity in the potential. However, we have in that case

2(2) — <VTGOVT> _ <VT>GO<VT> — 2(2),disloc + 2(2),anis0t
+ <VdislocG0Vanis0t> + <Vanis0tGOVdisloc>
_ <Vdisloc>GO<Vanisot> _ <Vanisot>. (C9)

The cross terms involving coupled effects of the dislocations
and of the change in elastic effects vanish: this is because the
parameters for the average for the anisotropy, typically the
orientation of the crystal axis in a grain, are different from
the parameters describing the parameters for the average for
the grain boundaries: typically the number of dislocations

per grain boundary. Thus, we get (VdislocGOyanisory
= (ydislocy GO(yanisoty and simply
3,(2) = $(2)disloc 4 5 (2).anisot (C10)
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