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The problem of Lamb wave propagation in waveguides with varying height is treated by
a multimodal approach. The technique is based on a rearrangement of the equations of
elasticity that provides a new system of coupled mode equations preserving energy
conservation. These coupled mode equations avoid the usual problem at the cut-offs with
zero wavenumber. Thereafter, we define an impedance matrix that is governed by a
Riccati equation yielding a stable numerical computation of the solution. Incidentally,
the versatility of the multimodal method is exemplified by treating analytically the case
of slowly varying guide and by showing how to get easily the Green tensor in any
geometry. The method is applied for a waveguide whose height is described by a
Gaussian function and the energy conservation in verified numerically. We determine the
Green tensor in this geometry.
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1. Introduction

The interest in waves propagating in elastic waveguide comes, at least, from two
applications. First in non-destructive testing, guided waves are believed to have
a potential for improving inspection efficiency and sensitivity, compared with
bulk-wave technique. Second in geophysics, they are the basic picture for seismic
surface waves propagating in the crust and upper mantle.

To tackle the problem of waveguide thickness variation, different techniques
have been proposed, such as hybrid boundary-element methods (Cho & Rose
1996; Cho 2000; Galan & Abascal 2003), finite-element methods (Koshiba et al.
1984; Galan & Abascal 2002; Wu et al. 2003) or modal methods (Abram 1974;
Kennett 1984; Maupin 1988; Tromp 1994; Galanenko 1998; Folguera & Harris
1999). The modal approach offers the advantage of discretizing the transverse
direction with transverse modes which implies, for instance, an exact solution for
straight waveguide, and this method permits the reduction of the problem to an
ordinary differential equation that governs the modal components resulting from
the projection onto the modal basis.
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V. Pagneux and A. Maurel1316
The problem of wave propagation in a two-dimensional waveguide can be
formally written as an evolution problem vxzZLz, where x is the waveguide
axis, zZðu; v; s; tÞT (u, v are the displacement components and shsxx, thsxy,
with s the stress tensor) and L a differential operator. After L has been
diagonalized, this vector z can be projected on the usual Lamb modes as
zZ

P
ncnzn, where znZð ~Un; ~Vn; ~Sn; ~TnÞT satisfies the eigenvalue problem

LznZ iknzn. Then, using the biorthogonality relation satisfied by the
eigenfunctions zn, the original evolution problem is thus reduced to a first-
order ordinary differential equation on the components cn (e.g. Maupin 1988).

There are two problems in this coupled mode method. The first problem
concerns cut-offs that occur at isolated longitudinal coordinates x. At cut-offs,
the eigenfunctions zn cannot form a base anymore. This problem is related to
the normalization coefficient of the biorthogonality relation that vanishes at
the cut-offs. It is also related to the impossibility to decompose z into forward
and backward modes at cut-offs. Relatively few works have been done to
overcome this difficulty. Galanenko (1998) proposes to treat cut-offs by using
the regular singularity theory of differential equation. The same kind of
techniques has also been recently proposed by Perel et al. (2005). The second
problem concerns the numerical implementation of the coupled mode equation
which is not obvious. Indeed, the coupled mode equation corresponds to a
boundary-value problem and the presence of evanescent modes makes the
integration of the coupled mode equation numerically unstable if directly
performed. To avoid this difficulty, Kennett (1984) used the technique of
invariant embedding to obtain coupled Riccati equations on the reflection and
transmission matrices.

In this paper, we propose a new formulation of the coupled mode method that
is numerically stable and that partially solves the problem of cut-off (namely, the
cut-offs with vanishing wavenumber kn). Our formulation uses the symmetry
properties of the Lamb modes between forward and backward modes. It permits
one to decompose the two two-vectors XZ(u, t)T, YZ(Ks, v)T into two
biorthogonal bases ~XnZð ~Un; ~TnÞT, ~Y nZðK~Sn; ~VnÞT, which correspond to the
forward modes only, instead of decomposing the four vector z into both
backward and forward modes. It is then possible to renormalize separately ~Xn

and ~Y n, so that the renormalized Xn and Yn remain bases at cut-offs with zero
wavenumber. This gives two coupled evolution equations on an and bn, the
components of X and Y on the two renormalized bases. To avoid numerical
instability, we define an impedance matrix Z, which links the components
through bZZa, and which is governed by a Riccati equation. This kind of
technique has been used in the scalar case, where the impedance matrix is
equivalent to a Dirichlet to Neumann operator (Pagneux et al. 1996). We could
say that the matrix Z for Lamb waves is an extension of the concept of the
Dirichlet to Neumann operator to vector waves.

The rest of this paper is organized as follows. In §2, we present the derivation
of the coupled equations. In §3, we define the impedance matrix and the Riccati
equation. In §4, the energy conservation is discussed. In §5, some analytical
solutions for slowly varying guides are presented. In §6, the derivation of the
Green tensor in elastic waveguide is presented. Section 7 presents the numerical
implementation that will be used to get the results of §8.
Proc. R. Soc. A (2006)
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1317Lamb waves in varying waveguides
2. Coupled mode equations

In this section, the problem of guided wave is set using a modal expansion. The
modal expansion we choose has been previously used in Pagneux & Maurel
(2002, 2004). It is different from the coupled mode expansion classically used;
indeed, one could think to write the problem as z0ZLz (for instance, as in
Maupin 1988), where zZ(u, v, s, t)T is a four-vector and to project on the usual

Lamb modes znZð ~Un; ~Vn; ~Sn; ~TnÞT to obtain an evolution problem for the
coefficient c of z. Instead, we choose to split the four-vector z into two two-
vectors XZ(u, t)T, YZ(Ks, v)T and to perform the projection onto XnZ
(Un, Tn)

T, YnZ(KSn, Vn)
T, where Xn, Yn are renormalized and build from the

usual Lamb modes ~Xn, ~Y n

A first motivation to do that comes from Fraser’s biorthogonality relation
(1976)

Ð
K~Un

~SmC ~Tn
~VmZ ~Jndnm that simply translates into ð ~Xnj ~YmÞZ ~Jndnm

when the form ðXjY Þh
Ð
KusC tv is defined. Also, the main motivation is to

take care of the mode cut-offs (see for instance Perel et al. 2005), problems that
are clearly translated to ~JnZ0 in our formalism. In other words, the whole task
in our formalism is to define the bases Xn and Yn, from ~Xn and ~Y n, in a way
such that ðXnjY nÞZJn does not vanish at cut-offs. It is shown in the present
work that this is possible for cut-offs with zero wavenumber. Finally, the problem
is reduced to an evolution problem for the projection coefficients a and b of
X and Y on the renormalized Lamb modes.
(a ) Position of the problem

We are interested in the propagation of Lamb wave through a two-
dimensional waveguide with a varying height, described by the function h(x)
(see figure 1), with free boundaries, and for which displacements are in the (x, y)
plane (in-plane motion). For the sake of clarity, the waveguide is considered to
be symmetric with respect to the horizontal axis, but the method can be easily
extended to non-symmetric geometry ½h1ðxÞ%y%h2ðxÞ with h1ðxÞsKh2ðxÞ�.

The time dependence is eKiut and will be omitted in the following. The
equation of motion is

Kru2w ZV$s; ð2:1Þ
Proc. R. Soc. A (2006)
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where r is the density,

w Z
u

v

� �
is the displacement vector and

sZ
s t

t r

 !

is the corresponding stress tensor, with

sZ lvyvCðlC2mÞvxu;
t ZmðvyuCvxvÞ;
r Z ðlC2mÞvyvClvxu;

9>>=
>>; ð2:2Þ

where (l, m) are the Lamé constants. The boundary condition at the faces
yZGh(x) are free of traction, corresponding to boundary conditions:

r½x;GhðxÞ�ZGh 0ðxÞt½x;GhðxÞ�; ð2:3Þ

t½x;GhðxÞ�ZGh 0ðxÞs½x;GhðxÞ�; ð2:4Þ
where h0(x) is dh/dx.
(b ) Modal expansion

It will be convenient to work on two quantities X and Y presented below.
That formalism allows us to easily tackle the projection on the Lamb modes. The
idea is to write the equations as an evolution equation (with respect to the
coordinate x of the waveguide) on X and Y, which leads to a canonical
eigenvalue problem in the transverse direction when transverse modes are
sought. This formulation is similar to the one presented recently in Folguera &
Harris (1999), in that it describes the evolution of a stress–displacement four-
vector, but here that four-vector is suitably split into

X Z
u

t

 !
and Y Z

Ks

v

� �
:

It is shown in appendix A that the elasticity equations (2.1)–(2.4) can be
written as (see also Pagneux & Maurel 2004)

vx
X

Y

 !
Z

0 F

G 0

 !
X

Y

 !
; ð2:5Þ

where F and G are the operator matrices:

FZ
K
f1
l

Kf1vy

f1vy Kru2Kf2vy2

0
B@

1
CA and GZ

ru2 vy

Kvy
1

m

0
BBB@

1
CCCA; ð2:6Þ
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1319Lamb waves in varying waveguides
with f1Zl=ðlC2mÞ and f2Z4mðlCmÞ=ðlC2mÞ. Concerning the boundary
conditions (2.4), since the problem is considered as an evolution equation (2.5)
on X and Y, we always use the expressions of r written as a linear function of Y,
r : Y/rðY ÞZ f1sC f2vyv, which implies that the boundary conditions are
entirely expressed in terms of X and Y.

Then, in order to project the evolution equation (2.5), we introduce the modes
ð ~Xn; ~Y nÞT solutions of the eigenvalue problem associated to (2.5),

ikn

~Xn

~Y n

 !
Z

0 F

G 0

 !
~Xn

~Y n

 !
; ð2:7Þ

with boundary conditions ~rnZ0 and ~tnZ0 at yZGh. Equation (2.7) is a
canonical eigenvalue problem, the solutions of which are the Lamb modes (see
Viktorov 1967; Achenbach 1987). Assuming the completeness of the set of the
Lamb modes (Kirrmann 1995; Besserer & Malishewsky 2004), the vector
(X, Y )T is expended as

X

Y

 !
Z
X
ns0

cn

~Xn

~Y n

 !
: ð2:8Þ

Here nO0 refers to right-going mode and n!0 refers to left-going modes. The
eigenvalues kn for right-going modes are sorted in ascending order of their
imaginary part and descending order of their real part, and if kn corresponds to a
right-going mode, Kkn corresponds to a left-going mode. As can be seen from
equation (2.7), the symmetry properties of these bases impose ~XKnZG~Xn,
~YKnZH~Y n, and in the sequel we arbitrarily choose ~XKnZK~Xn, ~YKnZ ~Y n, as in
Viktorov (1967). Owing to these symmetry properties, it is possible to write the
decomposition (2.8) in term of the right-going modes only,

X Z
X
nO0

~anðxÞ ~XnðyÞ; Y Z
X
nO0

~bnðxÞ ~Y nðyÞ; ð2:9Þ

with ~anZcnKcKn and ~bnZcnCcKn.
For the projections, we use the inner product between two component

functions that is defined by

u1

v1

� �
j

u2

v2

� �� �
Z

ðh
Kh
ðu1u2Cv1v2Þdy:

Note that this inner product is not positive definite, since the vectors X and Y
we are going to use are complex.

One advantage of our formalism (equation (2.5)) is that the operators F and G
have the following remarkable properties (see appendix A):

ðFŶ jY ÞZ ðŶ jFY ÞC ½rv̂Kr̂v�hKh;

ðGX̂jXÞZ ðX̂jGXÞC ½ut̂Kût�hKh:

)
ð2:10Þ

That means that F and G are formally self-adjoint. In the particular case of the
modes which have rn(Gh)Z0 and tn(Gh)Z0 and thus make the boundary terms
vanish, the operators F and G are self-adjoint. Using the property of F and G (see
(A 5)), we get ðFG ~Xnj ~YmÞZð ~XnjGF ~YmÞ, that is ðk2mKk2nÞð ~Xnj ~Y nÞZ0. This is
Proc. R. Soc. A (2006)
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an easy way to derive the biorthogonality relation obtained by Fraser (1976):
ð ~Xnj ~YmÞZ ~Jndmn.

As could be anticipated, it appears that ~Jn vanishes for each mode cut-off that
corresponds to coalescence of modes (Kirrmann 1995). To avoid this latter
problem for zero cut-offs (knZ0), we choose to work with renormalized bases Xn

for X and Yn for Y built from ~Xn and ~Y n in a way that is detailed in appendix B
and where (Xn, Zc,nYn)

T is proportional to ð ~Xn; ~Y nÞT. Here, Zc,n appear as
renormalization coefficients and correspond to the diagonal entries of the
characteristic impedance matrix Zc (see §3). These new bases satisfy

ikn
Xn

Zc;nYn

 !
Z

0 F

G 0

 !
Xn

Zc;nYn

 !
: ð2:11Þ

The modal decomposition is now done as

X Z
X
n2N

anðxÞXnðyÞ;

Y Z
X
n2N

bnðxÞY nðyÞ;
with ðXnjYmÞZ Jndmn

8>><
>>: ð2:12Þ

(the expression of Jn is given in appendix C) and

an Z aCn CaKn ;

bn ZZc;nðaCn KaKnÞ:

)
ð2:13Þ

One important point is that Xn and Yn remain bases for cut-offs with zero
wavenumber (knZ0).
(c ) Evolution equation

The task is now to derive an evolution equation for the modal components a(x)
and b(x). To do that, we project the system (2.5) on the bases Zc,nYn and Xn:

ðvxXjZc;nYnÞZ ðFY jZc;nYnÞ;
ðvxY jXnÞZ ðGXjXnÞ:

)
ð2:14Þ

Each term is then calculated using (2.12) and properties (A 4):

ðvxXjZc;nYnÞZZc;nðvxXmjYnÞam Ca 0
nZc;nJndmn;

ðFY jZc;nYnÞZ ðY jFZc;nY nÞCZc;nf1½vSnKsVn�hKh CZc;nf2½vvyVnKvyvVn�hKh

Z iknðY jXnÞC ½vRnKrVn�hKh Z iknJnbmdmn:

Similarly,

ðvxY jXnÞZ ðvxYmjXnÞbm Cb0nJndmn;

ðGXjXnÞZ ðXjGXnÞC ½tUnKTnu�hKh Z iknamZc;nJndmn C ½h 0UnSm�hKhbm:

This leads to a system of first-order differential equations governing a and b:

a 0 ZN1aCN2b;

b0 ZN3aCN4b;

)
ð2:15Þ
Proc. R. Soc. A (2006)



1321Lamb waves in varying waveguides
where matrices N1 to N4 are given by

N1ðn;mÞZK
1

Jn
ðvxXmjYnÞ;

N2ðn;mÞZ ikn
Zc;n

dmn;

N3ðn;mÞZ iknZc;ndmn;

N4ðn;mÞZ 1

Jn
fKðvxYmjXnÞC ½h 0UnSm�hKhg:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð2:16Þ

Expressions of matrices N1 and N4, easier for numerical calculation, are given in
appendix D.

3. The impedance matrix

In principle, equations (2.15) might be directly integrated, but there are two
reasons that prevent one from doing that. First, the problem will be posed as a
boundary-value problem with a radiation condition at the outlet of the
waveguide and a source at the inlet, and the integration of (2.15) as an initial
value problem would be very awkward. Second, the numerical integration of
(2.15) appears to be unstable because of the presence of the evanescent modes
that induce exponential growth (Pagneux et al. 1996). In order to circumvent
these two problems, it has been proven to be useful to define the impedance
matrix Z (Pagneux et al. 1996) as the linear operator that links together vectors
a(x) and b(x) at a given x position,

bðxÞZZðxÞaðxÞ: ð3:1Þ
Using the definition of the impedance matrix Z(x), it is easily obtained from
(2.15) that Z(x) obeys a Riccati matrix differential equation,

Z0ðxÞZN3 CN4ZðxÞKZðxÞN1KZðxÞN2ZðxÞ: ð3:2Þ
This allows us to solve the problem of guided wave in any configuration by
simply solving the Riccati differential equation on Z, starting from a radiation
condition at the outlet, e.g. at the guide terminations, with either aCZ0 or
aKZ0, we get ZZGZc, where Zc is the so-called characteristic impedance
matrix which is diagonal with entries Zc,n.

Once Z has been calculated, the whole fields can be obtained by integrating

a 0ðxÞZ ½N1 CN2ZðxÞ�aðxÞ; ð3:3Þ
obtained from equation (2.15) and where the source imposes aC at the inlet. The
successive integrations of equations (3.2) and (3.3) are numerically stable, even
in the presence of evanescent modes.

(a ) Reflection and transmission matrices

If the interest is in the determination of the elastic fields between the inlet and
the outlet, one has to integrate successively the above equations (3.2) and (3.3),
but this necessitates storing the Z matrix at each point x during the first
Proc. R. Soc. A (2006)
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integration (3.2) to perform the second integration (3.3). On the other hand, if the
interest is only in the scattering matrix, i.e. the knowledge of the reflection matrix
R and the transmission matrix T, this storage is not necessary, as shown below.

To determine R, which is defined at the inlet abscissa x ini by

aKðx iniÞZRaCðx iniÞ; ð3:4Þ
it is sufficient to know Z(x ini), since R is related to Z(x ini) through

RZ ½ZcCZðx iniÞ�K1½ZcKZðx iniÞ�; ð3:5Þ
easily obtained from equations (2.13).

To determine T, we define the matrix Y as the operator that links together the
coefficients a between the outlet abscissa xf and any x%xf through

aðxfÞZYðxf ; xÞaðxÞ: ð3:6Þ
Note that Y corresponds to the propagator of equation (3.3). Then, by
differentiating equation (3.6) with respect to x, we get the following differential
equation governing Y:

Y0 ZKY½N1 CN2Z�; ð3:7Þ
that has to be integrated from xZxf to xZx ini with the initial condition
Yðxf ; xZxfÞZ I. The transmission matrix T is defined by

aCðxfÞZTaCðx iniÞ; ð3:8Þ
and is related to the matrix Y through

TZYðxf ; x iniÞ½ICR�: ð3:9Þ
Eventually, to obtain matrices R and T, it is sufficient to integrate the coupled

equations (3.2) and (3.7) from xZxf to xZx ini and this without storing any matrix.
4. Energy flux conservation

In this section, we want to verify that the coupled mode equations conserve the
energy flux. At each x position, the energy flux W is defined by W ðxÞZ

Ð
ShpidS,

where the average is taken over time and where pZsð _u; _vÞT is the Poynting
vector (overdot indicates the time derivative). In the harmonic regime, we get

W ðxÞZ u

2
Im½ðXj �Y Þ�; ð4:1Þ

where the overbar means complex conjugation. Introducing the matrix
KmnZðXmj �Y nÞ, the energy flux can be expressed as W ðxÞZðu=2ÞIm½aTK�b�.
It is sufficient to use the properties: kn/ �kn gives Xn/ �Xn;Y n/ �Y n and
kn/Kkn gives Xn/Xn, Y n/Y n, to build the matrix M, such as �XnZ
MnmXm and �Y nZMnmYm: for real and imaginary kn values ðknZG�knÞ, we get
Xn and Yn real, so M locally equals identity; for kn complex, say nZ2, we
consider k3ZK�k2, so X3Z �X2, Y 3Z �Y 2, and we get locally M equals

0 1

1 0

 !
:

Proc. R. Soc. A (2006)



1323Lamb waves in varying waveguides
With JmnZðXmjY nÞ, we thus get KZJM (M equals its transpose, with M2ZI)
and the final expression of the flux,

W ðxÞZ u

2
Im½aTJM�b�: ð4:2Þ

(a ) Energy conservation

Let us calculate W 0ZdW/dx,

W 0 Z Im½ðJa 0ÞTM�bCaTMJb0 CaTJ0M�b�; ð4:3Þ
using JMZM�J. We now write the system (2.15) as

Ja 0 ZM1aCDðikJ=ZcÞb;
Jb0 ZDðikJZcÞaCM4b;

)
ð4:4Þ

where D(a) denotes the diagonal matrix with an as nth diagonal elements and
M1ðn;mÞZKðvxXmjYnÞ,M4ðn;mÞZKðvxYmjXnÞC ½h 0UnSm�hKh. By differentiating
the biorthogonality relation in (2.12), it is easy to check that

J0 ZKMT
1 KM4: ð4:5Þ

Also, M1mnZKðvx �Xmj �YnÞZMmlðvxXl jYkÞMkn, so M1ZMM1M and, as well

M4 ZMM4M: ð4:6Þ
We get, using equations (4.4) and (4.5),

W 0 Z Im½bTDðikJ=ZcÞM�bCaTMDðikJZcÞ�a�CIm½aTðMM4KM4MÞ�b�: ð4:7Þ
The matrix ðMM4KM4MÞ equal zero because of property (4.6) with M2ZI. The
two first quantities of the right-hand side term also equal zero: for kn real or
imaginary, both iknJn/Zc,n and iknJnZc,n are real; for kn complex, say nZ2, it is
sufficient to consider k3ZK�k2 (and J3Z �J 2, Zc;3Z �Zc;2) to check that bTD
ðikJ=ZcÞTM�b is equal to

ið b2 b3 Þ
0 k2J2=Zc;2

Kk2J2=Zc;2 0

 !
�b2

�b3

 !
Z iðk2J2=Zc;2b2b3KccÞ;

(cc denotes the complex conjugate), with zero imaginary part.
We finally obtain W 0Z0, which shows that the system is written in a form

that implies energy conservation.

(b ) Reflection and transmission coefficients

To define the fraction of reflected/transmitted energy, the energy flux is
written as

W Z Im½ðaCCaKÞTK�ZcðaCKaKÞ�

Z Im½ðaCÞTJM�Zca
CKðaKÞTJM�Zca

K�C Im½ðaKÞTJM�Zca
CKðaCÞTJM�Zca

K�:
ð4:8Þ
Proc. R. Soc. A (2006)
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The structure of matrix JM�Zc is as follows: for kn real, it locally equals Jn �Z c;nZ
KJnZc;n2iR. For imaginary kn value, it locally equals Jn �Z c;nZJnZc;n2R. For
two complex conjugate, say k3ZK�k2, we get locally,

0 J2 �Z c;3

J3 �Z c;2 0

 !
Z

0 J2Zc;2

J2Zc;2 0

 !
:

Consequently, both terms of the right-hand side term in equation (4.8) can be
written as

Im½ðaCÞTJM�Zca
CKðaKÞTJM�Zca

K�Z
X
kn2R

iJnZc;njaCn j2K
X
kn2R

iJnZc;njaKn j2;

Im½ðaKÞTJM�Zca
CKðaCÞTJM�Zca

K�Z 2
X
kn2iR

JnZc;nImðaCn aKn Þ

C2
X

knC1ZKkn

Im JnZc;n aCn a
K
nC1KaKn a

C
nC1

� �� �
:

The first term accounts for the energy flux carried by the propagating modes,
while the second terms account for the energy flux carried by evanescent modes.

Let us consider the case where N propagating modes are sent at the waveguide
inlet xZxi, that is aðxiÞZða1;.; aN ; 0;.; 0ÞT and a radiation condition at the
waveguide outlet xZxo, that is a

K(xo)Z0. We get

W ðxiÞZ
XN
nZ1

iJnZc;njaCn ðxiÞj2K
XN
nZ1

iJnZc;njaKnðxiÞj2;

W ðxoÞZ
XN 0

nZ1

iJnZc;njaCn ðxoÞj2;

9>>>>=
>>>>;

ð4:9Þ

where N 0 denotes the number of propagating modes at xZxo (N 0sN a priori if
h(xo) differs from h(xi)). The energy conservation implies W(xi)ZW(xo) and we
define the coefficients of reflected energy FR and transmitted energy FTZ1KFR,

FR Z

PN
nZ1

JnZc;njaKnðxiÞj2

PN
nZ1

JnZc;njaCn ðxiÞj2
; FT Z

PN 0

nZ1

JnZc;njaCn ðxoÞj2

PN
nZ1

JnZc;njaCn ðxiÞj2
: ð4:10Þ
5. Analytical solutions for slowly varying guides

We present here the WKB (Wentzel–Kramer–Brillouin) approximation of
equation (2.5) by using the biorthogonality relation (2.12). This approximation
is valid for a slowly varying waveguide. The height h is supposed to vary slowly and
we denote zZex the slow variable, where e measures the slowness. The following
WKB ansatz is proposed for the four-vector (as in Folguera & Harris 1999),

X

Y

 !
Z exp i4ðzÞ=e½ �

X
nR0

en
Xn

Y n

 !
: ð5:1Þ
Proc. R. Soc. A (2006)



1325Lamb waves in varying waveguides
In the following, we denote

Xn Z
un

tn

 !
and Y n Z

Ksn

vn

 !
;

and rnZ f1s
nC f2vyv

n. We insert (5.1) in equation (2.5). At zero order in e, we
obtain

½LKif0ðzÞ�
X 0

Y 0

 !
Z 0; ð5:2Þ

where

LZ
0 F

G 0

 !
;

and with the boundary conditions r0Zt0Z0. We thus deduce that (X 0, Y 0)T and
f0 are, respectively, an eigenvector and an eigenvalue of the eigenvalue problem
(2.7) for a given mode number n,

f0ðzÞZ kn; ð5:3Þ
and

X 0

Y 0

 !
Zan

Xn

Zc;nY n

 !
; ð5:4Þ

where the proportionality factor an will be determined by the equation at first
order. First order in e leads to

ðMKiknÞ
X1

Y 1

 !
Z vz

X 0

Y 0

 !
; ð5:5Þ

with boundary conditions t1Zh 0s0 and r1Z0. Equation (5.5) and the associated
boundary conditions determine the evolution law for an. Equation (5.5) is
projected on the four-vector

Zc;nY n

Xn

 !
;

ðFY 1jZc;nYnÞCðGX1jXnÞKikn½ðX1jZc;nYnÞCðY 1jXnÞ�

Z ðvzX 0jZc;nYnÞCðvzY 0jXnÞ: ð5:6Þ

Properties (A 4) give ðFY 1jZc;nY nÞZðY 1jFZc;nY nÞC½Zc;nVnr
1CZc;nRnv

1�hKhZ

iknðY 1jXnÞ andðGX1jXnÞZðX1jGXnÞC½Unt
1KTnu

1�hKhZ iknðX1jY nÞC½h 0s0Un�hKh.
We thus obtain

½h 0s0Un�hKh Z ðvzX 0jZc;nYnÞCðvzY 0jXnÞ;
and using equation (5.4)

2a0
nZc;nJn CanfðvzXnjZc;nYnÞCðXnjvzðZc;nYnÞÞKZc;n½h 0UnSn�hKhgZ 0: ð5:7Þ
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With J 0
nZðvzXnjYnÞCðXnjvzYnÞK½h 0UnSn�hKh, we get

2a0
nZc;nJn CanðZc;nJ

0
n CZ 0

c;nJnÞZ 0: ð5:8Þ
Assuming an non-zero, equation (5.8) is equivalent to

vzða2
nZc;nJnÞZ 0: ð5:9Þ

Eventually, the WKB solution is

X

Y

 !
Zan exp½i4ðzÞ=e�

Xn

Zc;nYn

 !
; ð5:10Þ

with 4 and an determined by equations (5.3) and (5.9). Obviously, this WKB
solution shows no coupling between modes and it conserves the energy.
6. Green tensor

To get the usual Green tensor Gij (iZ1, 2), giving the displacements from a delta
function force, we start from

Kru2Gijðr; r 0ÞCLikGkjðr; r 0ÞZ dijdðrKr 0Þ; ð6:1Þ
where rZ(x, y) is the vector position. If uZ(u1Zu, u2Zv) denotes the
displacement fields satisfying

Kru2uiðrÞCLikukðrÞZ fi; ð6:2Þ
where fZðF1;F2ÞTdðrKr0Þ is a delta function force located in r0, we have

uiðrÞZ
ð
dr 0 Gikðr; r 0Þfkðr 0ÞZF1Gi1ðr; r0ÞCF2Gi2ðr; r0Þ: ð6:3Þ

As a consequence, the four components of the Green tensor can be simply
deduced through the displacement fields

uðrÞZ
G11ðr; r0Þ
G21ðr; r0Þ

 !
; for F2 Z 0 and uðrÞZ

G12ðr; r0Þ
G22ðr; r0Þ

 !
; for F1 Z 0:

ð6:4Þ
In our formalism, equation (6.2) becomes, from equation (2.5),

vx
X

Y

 !
Z

0 F

G 0

 !
X

Y

 !
C

0

KF2

F1

0

0
BBBB@

1
CCCCAdðrKr0Þ: ð6:5Þ

Integrating equation (6.5) w.r.t. x between x0Ke and x0Ce, it is easy to see that
EuFZEvFZ0, EtFZKF2dðyKy0Þ and EKsFZF1dðyKy0Þ (where EzðxÞFZ lime/0

zðx0CeÞKzðx0KeÞ).
We then project EXFZ

P
mEamFXm on Yn, with

EXFZ
0

KF2dðyKy0Þ

 !
;
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and EY FZ
P

mEbmFYm on Xn, with

EY FZ
F1dðyKy0Þ

0

 !
;

to get

EanFZKF2

Vnðy0Þ
Jn

; EbnFZF1

Unðy0Þ
Jn

: ð6:6Þ

For the sake of simplicity and without loss of generality, we choose x0Z0 in
the following. The numerical resolution can be now solved using Z(LC)ZZc at
the waveguide exit and calculating Z(x) from LC to xZ0C, as described in §8b.
Similarly, Z(x!0) is calculated integrating from Z(KLK)ZKZc to xZ0K. The
source is taken into account at xZ0 with

að0CÞZ ½Zð0KÞKZð0CÞ�K1ðZð0KÞEaFKEbFÞ; and bð0CÞZZð0CÞað0CÞ;

að0KÞZ ½Zð0KÞKZð0CÞ�K1ðZð0CÞEaFKEbFÞ; and bð0KÞZZð0KÞað0KÞ;

)

ð6:7Þ
where EaFZðEanFÞ and EbFZðEbnFÞ are given in equations (6.6). From these
initial conditions on a and b at xZ0G, we can calculate aðxÞ and bðxÞ until
xZGLG (and thus the corresponding displacement fields).
(a ) Green tensor of a straight waveguide

In the case of a straight waveguide (h constant), the calculation can be done
explicitly, since we simply have anðxÞZanð0CÞeiknx and bnðxÞZbnð0CÞeiknx , for
xO0, anðxÞZanð0KÞeKiknx and bnðxÞZbnð0KÞeKiknx , for x!0. With Zð0GÞZGZc,

we get

að0CÞZ 1

2
EaFCZK1

c EbF
� �

; and bð0CÞZ 1

2
ZcEaFCEbFð Þ;

að0KÞZK
1

2
EaFKZK1

c EbF
� �

; and bð0KÞZ 1

2
ZcEaFKEbFð Þ:

9>>>=
>>>;

ð6:8Þ

Using equations (6.4) and (6.6)–(6.8), we obtain

G11ðr; r0ÞZ
X
nO0

1

2Zc;nJn
Unðy0ÞUnðyÞeikn jxj;

G21ðr; r0ÞZ signðxÞ
X
nO0

1

2Jn
Unðy0ÞVnðyÞeikn jxj;

G12ðr; r0ÞZKsignðxÞ
X
nO0

1

2Jn
Vnðy0ÞUnðyÞeikn jxj;

G22ðr; r0ÞZK
X
nO0

Zc;n

2Jn
Vnðy0ÞVnðyÞeikn jxj:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð6:9Þ
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These expressions are identical to those found by Karhitonov (1978). Note also
that at xZ0, the quantities

P
nð1=JnÞUnðy0ÞVnðyÞ and

P
nð1=JnÞVnðy0ÞUnðyÞ

defining G12 and G21 vanish, as does any series with terms ð1=JnÞ
Ð
dy f ðyÞVnðyÞ

� �
UnðyÞ or ð1=JnÞ

Ð
dy f ðyÞUnðyÞ

� �
VnðyÞ for a given function f. Here, this means, for

instance, that a force applied along the y-direction does not produce any
displacement along the x-direction (this could also be deduced simply by
symmetry argument, for instance the symmetry x/Kx for G12).
7. Numerical resolution

To solve a typical problem in a waveguide, namely with a radiation condition
and a source, one has to solve first the Riccati equation (3.2) and, second,
equation (3.3). By integrating equation (3.3), aðxÞ and bðxÞZZðxÞaðxÞ are
known in the whole space and, thus, the stress and displacement fields also.

We propose two numerical resolutions of equations (3.2) and (3.3). One
resolution method uses a Magnus method for both equations and is detailed
below. This method has three advantages: (i) it gives an exact solution for
straight waveguide, (ii) the step size is not imposed by the wavelength, but
rather by the typical variation length of the waveguide, (iii) it is not sensitive to
the quasi-resonances that may be displayed by the behaviour of the impedance
(Schiff & Shnider 1999). However, this Magnus method is not adapted to pass
through cut-offs with non-zero wavenumber.

The other resolution method is used when cut-off has to be taken into account.
In that case, we add a small dissipation to transform the singularity into quasi-
singularity at cut-off. Nevertheless, passing through this quasi-singularity
requires a smaller step size and is more time-consuming. This resolution, that
uses two classical integration schemes, is not detailed below. To integrate the
equation (3.2), we use a classical Runge–Kutta scheme with adaptative step size.
The details of the scheme are not developed here and can be found in Press et al.
(1993) for instance. Then, aðxiÞ is then simply calculated solving equation (3.3)
using a classical Crank–Nicholson scheme, well adapted to preserve the energy
conservation.

(a ) Magnus method

Our scheme is inspired by the techniques proposed by Schiff & Shnider (1999)
and Iserles et al. (1999). The radiation condition gives Z at xf and the source a is
imposed at x ini (figure 2). Then the interval ½x ini; xf � is discretized with dx step, so
xnZx iniCn dx and a second set XnZxnCdx=2 is defined.

If we start from equation (2.15), the Magnus method gives

aðxnC1Þ
bðxnC1Þ

 !
Z

E1ðXnÞ E2ðXnÞ
E3ðXnÞ E4ðXnÞ

 !
aðxnÞ
bðxnÞ

 !
; ð7:1Þ

with matrix

NðXnÞZ
N1ðXnÞ N2ðXnÞ
N3ðXnÞ N4ðXnÞ

 !
;
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a(xn), b(xn) via equation (7.3)

Z (xn) via equation (7.2)

x2 

X1 

xN = xini x1=xfxN–1 

XN–1 

xini
~ xf xfxini

~

Figure 2. Discretization along the axis of the waveguide.
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and matrices E1 to E4 defined by

expðKN dxÞZ
E1ðXnÞ E2ðXnÞ
E3ðXnÞ E4ðXnÞ

 !
;

(calculated at Xn midpoint between xn and xnC1), and that eventually permits
one to obtain the following scheme for Z:

ZðxnC1ÞZ ½E3ðXnÞCE4ðXnÞZðxnÞ�½E1ðXnÞCE2ðXnÞZðxnÞ�K1; ð7:2Þ
with Zðx1ÞZZc. Note that integration is performed from right to left.

Then, equation (7.1) is used once again to get

aðxnÞZ ½E1ðXnÞCE2ðXnÞZðxnÞ�K1aðxnC1Þ; ð7:3Þ
where the calculation is done from left to right, starting from aðxN Þ.
(b ) Calculation in the inlet/outlet portion with constant cross-section

When the waveguide begin or ends with a portion of constant cross-section,
the displacement field can be determined analytically. Suppose that the portion
with varying cross-section corresponds to ~x ini!x! ~x f (figure 2). In this portion,
the fields are numerically calculated, using either a Runge–Kutta scheme or
matrix exponential. To obtain the field between x ini and ~x ini (waveguide inlet)
and the field between ~x f and xf (waveguide outlet), we use:

(i) For the waveguide outlet, ~xf%x%xf , anðxÞZanð~x fÞeiknðxK~xfÞ for both
symmetric and antisymmetric modes, with no left-going modes. anð~xfÞ is
known from the numerical calculation between ~x ini and ~xf .

(ii) For the waveguide inlet, x ini%x% ~x ini, we have aðxÞZ ½ICRð~x iniÞ�aCðxÞ,
with aCn ðxÞZaCn ðx iniÞeiknðxKx iniÞ that accounts for the incident wave at x ini.
Again, Rð~x iniÞ is known from the numerical calculation between ~x ini and ~xf .
8. Results

We report in this section results obtained with our method. The spectrum for
Lamb modes is determined using the spectral method described in Pagneux &
Maurel (2001), with a relative accuracy of 10K9. The material constituting
the waveguide has the following properties: Poisson ratio sZ0:31, ctZ2=p,
clZ2=p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1KsÞ=ð1K2sÞ

p
and rZ1.
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Figure 3. Coefficient of energy reflection FR as a function of the frequency u.
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(a ) Reflection in a non-uniform guide

We consider here the calculation of the coefficient of energy reflection and
transmission. The geometry consists of a waveguide whose cross-section is
described by a Gaussian function,

hðxÞZ h0Cðh1Kh0Þexp K
x2

L2

� �
; ð8:1Þ

with h0Z0:7, h1Z1:5 and LZ1:5.
The incident wave at xZK3L contains only the first antisymmetric mode A0

and the geometry being symmetric with respect to yZ0, only antisymmetric
modes are considered. The range for u is such that for u!0:65, only A0 is
propagating in the whole waveguide. For 0:65!u!1:42, the mode A1 is
evanescent for h0 and propagating for h1. Finally, for 1:42!u!2, both modes
A0 and A1 are propagating in the whole waveguide. The calculation is performed
using matrix exponential with NAS

m Z11 and 170 steps in the whole range of
considered frequencies.

Figure 3 shows the variation of the coefficient of energy reflection FR as a
function of the frequency u. The energy conservation relation FRCFTZ1 is
satisfied in the whole range of frequency with an accuracy of around 10K5.

The curve in plain line corresponds to the energy ratio transported by the
mode A0, always propagating. At the cut-off frequency ux1:42, the mode A1

becomes propagating and, therefore, transports a part of the energy (curve in
dotted line). Finally, at frequency ux1:37, FR reaches a maximum very close
the value 1. This behaviour indicates that this frequency corresponds to a quasi-
trapped mode, whose shape is indicated in figure 4b.
(b ) Green tensor

We focus here on the Green tensor in a waveguide whose cross-section is
described by the Gaussian function, as in §8a, with h0Z1, h1Z1:4, LZ1. The
frequency is uZ5. For h0, there are four symmetric and five antisymmetric
Proc. R. Soc. A (2006)
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Figure 4. u-displacement fields for (a) uZ0.5, (b) uZ1.37 and (c) uZ1.5.
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propagating modes and for h1, there are six symmetric modes and six
antisymmetric propagating modes.

Since there are cut-offs with non-zero wavenumber in this configuration, the
numerical calculation is performed using the Runge–Kutta scheme with a

relative tolerance of 10K6. The source point being located at ð0; h0=2Þ, the
calculations are divided into two parts, between 0 and xf and between 0 and x ini,
using the initial conditions of equations (6.7), as described in §6

With NAS
m Z41 and NS

mZ40, the Runge–Kutta calculation needs NZ1500 and
750 steps (respectively for antisymmetric and symmetricmodes) for the calculation
in the right part and NZ300 and 350 steps for the calculations in the left part.

The displacement fields obtained are shown in figure 5. Note that we observe
wiggles at the vertical of the source point, characteristic of the modal
decomposition of the Green tensor. This calculation has been performed with
an imaginary part e of the frequency equal to 10K2 in order to avoid the cut-offs
with non-zero wavenumber. The value of e is small enough not to influence the
final result, as shown in figure 6.
9. Closing remarks

The method developed in this paper is a multimodal method for waveguide with
height variation. The two main advantages of this method are: (i) it avoids
singularities at cut-offs with zero wavenumber and (ii) it can be implemented
without numerical instability owing to the introduced impedance matrix. The
way to avoid singularities at cut-offs with non-zero wavenumber remains an open
question.
Proc. R. Soc. A (2006)
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We think that it is a valuable alternative to purely numerical methods, e.g. the
finite-element method or the boundary-element method, because it allows both
the brute force numerical calculation and the asymptotic approximation
analysis.
Appendix A

(a ) Derivation of the differential system

The derivation of equation (2.5) from equations (2.1)–(2.4) is as follow. The first
step consists to obtain r as a function of (u, v, s, t). This is done using its
definition, that is the third equation of (2.2), that is written as rZ f1sC f2vyv,
where f1Zl=ðlC2mÞ and f2Zð4mðlCmÞÞ=ðlC2mÞ. Then, equation (2.5) can be
written as

Kru2u Z vxsCvyt;

Kru2v Z vxtCvyr Z vxtC f1vysC f2vy2v:

)
ðA 1Þ

The definitions of s and t (first and second equations of (2.2)) give

sZ lvyvCðlC2mÞvxu Z lðvyvCvxu=f1Þ;
t ZmðvyuCvxvÞ:

)
ðA 2Þ

From (A 1) and (A 2), it is now straightforward to obtain

vxX Z
vxu

vxt

0
@

1
AZ

f1
l
sKf1vyv

Kru2vKf1vysKf2vy2v

0
BB@

1
CCA;

vxY Z
Kvxs

vxv

0
@

1
AZ

ru2uCvyt

1

m
tKvyu

0
BBBB@

1
CCCCA:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðA 3Þ

(b ) Properties of matrices F and G

We give here properties of F and G for two vectors Z1Zðz11; z12ÞT and Z2Z
ðz21; z22ÞT:

ðFZ1jZ2ÞZ ðZ1jFZ2ÞC f1½z11z22Kz12z21�hKh C f2½z12vyz22Kvyz12z22�hKh;

ðGZ1jZ2ÞZ ðZ1jGZ2ÞC ½z12z21Kz11z22�hKh:

)
ðA 4Þ
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Using (A 4), it is easy to also obtain

ðFGZ1jZ2ÞZ ðZ1jGFZ2ÞC f1½ðGZ1Þ1z22KðGZ1Þ2z21�hKh C f2½ðGZ1Þ2vyz22

KvyðGZ1Þ2z22�hKh C ½z12ðFZ2Þ1Kz11ðFZ2Þ2�hKh: ðA 5Þ
Appendix B. Renormalization of the bases ~Xn and ~Y n

In this appendix, we show how to construct the renormalized bases Xn and Yn

from the usual bases ~Xn and ~Yn, in order that Xn and Yn remain the basis for
zero cut-offs (knZ0).

Looking for a solution in eiknx leads to search An and Bn, in

fnðx; yÞZAn coshðbnyÞ;
jnðx; yÞZBn sinhðanyÞ=an;

)
for symmetric modes;

fnðx; yÞZAn sinhðbnyÞ=bn;
jnðx; yÞZBn coshðanyÞ;

)
for antisymmetric modes:

ðB 1Þ

where the scalar potential fn and potential vector (0, 0, jn) define

un Z iknfn Cvyjn;

vn Z vyfnKiknjn;

sn=mZK k2n C2b2nKa2
n

� �
fn C2iknvyjn;

tn=mZ 2iknvyfn C k2n Ca2
n

� �
jn:

9>>>>>=
>>>>>;

ðB 2Þ

This is with anZðk2nKk2t Þ1=2, bnZðk2nKk2l Þ1=2, ktZu=ctZðr=mÞ1=2u and

klZu=clZðr=ðlC2mÞÞ1=2u. To ensure the solution satisfies the boundary
condition rnZtnZ0, An and Bn must satisfy

M
An

Bn

 !
Z 0; ðB 3Þ

with

MZ
ðk2n Ca2

nÞcoshðbnhÞ K2ikn coshðanhÞ

2iknanbn sinhðbnhÞ ðk2n Ca2
nÞsinhðanhÞ

 !
;

for symmetric modes;

Z
ðk2n Ca2

nÞsinhðbnhÞ K2iknanbn sinhðanhÞ

2ikn coshðbnhÞ ðk2n Ca2
nÞcoshðanhÞ

 !
;

for antisymmetric modes:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðB 4Þ
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The dispersion relations D(k, u)Z0 (Viktorov 1967) is det (M)Z0,

Dðk;uÞZ

ðk2 Ca2Þ2sinhðahÞcoshðbhÞ=aK4k2b sinhðbhÞcoshðahÞ;

for symmetric modes;

ðk2 Ca2Þ2sinhðbhÞcoshðahÞ=bK4k2a sinhðahÞcoshðbhÞ;

for antisymmetric modes:

8>>>>>>><
>>>>>>>:

ðB 5Þ

In our formalism, the vanishing of one of the two vectors ~XnZð ~Un; ~TnÞT or
~Y nZðK~Sn; ~VnÞT is not acceptable. We have to ensure that this does not occur.
In order to see how the vanishing of these modes may occur we write them as
follows:

~Xn Z iknAn

coshðbnyÞ

2mbnsinhðbnyÞ

0
@

1
ACBn

coshðanyÞ

m k2n Ca2
n

� �
sinhðanyÞ=an

0
@

1
A;

~Y n Z iknBn

K2m coshðanyÞ

KsinhðanyÞ=an

0
@

1
ACAn

m k2n C2b2nKa2
n

� �
coshðbnyÞ

bn sinhðbnyÞ

0
@

1
A;

for symmetric modes and

~Xn Z iknAn

sinhðbnyÞ=bn

2m coshðbnyÞ

0
@

1
ACBn

an sinhðanyÞ

m k2n Ca2
n

� �
coshðanyÞ

0
@

1
A;

~Y n Z iknBn

K2man sinhðanyÞ

KcoshðanyÞ

0
@

1
ACAn

m k2n C2b2nKa2
n

� �
sinhðbnyÞ=bn

coshðbnyÞ

0
@

1
A;

for antisymmetric modes:

For knZ0, some care has to be taken when either (i) for symmetric modes,
coshðbnhÞxk2n (for antisymmetric modes, sinhðbnhÞxk2n) or (ii) for symmetric
modes, sinhðanhÞxk2n (for antisymmetric modes, coshðanhÞxk2n). In fact,
configuration (i) corresponds to a pure longitudinal mode and makes the ~Xn

vanish (BnZ0) and configuration (ii) corresponds to a pure transverse mode
and makes ~Y n vanish (AnZ0). Then, it is sufficient to renormalize the modes
by dividing ~Xn by Bn and ~Y n by An to avoid the vanishing of the modes at knZ0.
A last step in the renormalization of the modes is needed because of the Lamé
modes, where for symmetric modes ða2

nCk2nÞxcoshðanhÞ vanishes (for
antisymmetric modes, ða2

nCk2nÞxsinhðanhÞ vanishes). For Lamé modes, the
ratio Bn/An diverges and this necessitates a new renormalization of the modes
~Y n, where this ratio would appear, by multiplying it by ða2

nCk2nÞ.
Eventually the renormalized bases will be defined by XnZ ~Xn=Bn and

YnZ ~Y nða2
nCk2nÞ=An.
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With Zc;nZAn=½Bnða2
nCk2nÞ� whose expression is deduced from (B 3),

Zc;n ZK
sinhðanhÞ

2iknanbn sinhðbnhÞ
Z

2ikn coshðanhÞ
ða2

n Ck2nÞ2coshðbnhÞ
;

for symmetric modes;

ZK
coshðanhÞ

2ikn coshðbnhÞ
Z

2iknanbn sinhðanhÞ
ða2

n Ck2nÞ2sinhðbnhÞ
;

for antisymmetric modes;

9>>>>>>>>>>=
>>>>>>>>>>;

ðB 6Þ

we get, for symmetric modes,

Un Z iknða2
n Ck2nÞZc;n coshðbnyÞCcoshðanyÞ;

Vn Z ða2
n Ck2nÞbn sinhðbnyÞKikn=Zc;n sinhðanyÞ=an;

Sn=mZKða2
n Ck2nÞðk2n C2b2nKa2

nÞcoshðbnyÞC2ikn=Zc;n coshðanyÞ;

Tn=mZ 2iknbnða2
n Ck2nÞZc;n sinhðbnyÞCða2

n Ck2nÞsinhðanyÞ=an;

9>>>>>=
>>>>>;

ðB 7Þ

and for antisymmetric modes,

Un Z iknða2
n Ck2nÞZc;n sinhðbnyÞ=bn Can sinhðanyÞ;

Vn Z ða2
n Ck2nÞcoshðbnyÞKikn=Zc;n coshðanyÞ;

Sn=mZKða2
n Ck2nÞðk2n C2b2nKa2

nÞsinhðbnyÞ=bn C2iknan=Zc;n sinhðanyÞ;

Tn=mZ 2iknbnða2
n Ck2nÞZc;n coshðbnyÞCða2

n Ck2nÞcoshðanyÞ:

9>>>>>=
>>>>>;

The two renormalized sets of vectors XnZðUn;TnÞT and YnZðKSn;VnÞT
continue to verify the biorthogonality condition and permit to project the elastic
fields for ‘zero-coalescence’ of the mode wavenumbers knZ0. Note also that
vectors Xn and Yn offer the advantage of being even functions of an, bn and kn,
and, consequently, they have no branch points.

It has to be stressed that this useful renormalization of Lamb modes has been
done owing to the formalism presented in this paper, i.e. the splitting of the
original four-vector (u, v, s, t)T into two two-vectors (u, t)T and (Ks, v)T.

A problem that we have not resolved remains in the choice of these two bases:
when two modes associated to wavenumbers km and kmC1 (ZKkm) coalesce
on the imaginary axis or when two modes associated to wavenumbers km and
KkmC1 (Zkm) coalesce on the real axis, the two vectors, although both non-zero,
are orthogonal and the method of projection fails (Jn vanishes).
Appendix C. Biorthogonality relation and expression of Jn

The biorthogonality condition (Fraser 1976; Murphy & Li 1994) for an in-
plane problem can be written as: ðxnjymÞZ

Ð
ðKunsmCvmtnÞdyZ jndnm. With
Proc. R. Soc. A (2006)



1337Lamb waves in varying waveguides
JnZðXnjYnÞZ jnða2
nCk2nÞ=ðAnBnÞ and using the dispersion relations, we get

Jn Z im
kn
Zc;n

sinhð2anhÞPðknÞGðk2nKa2
nÞ 1K

an sinhð2anhÞ
bn sinhð2bnhÞ

� 	
 �
; ðC 1Þ

where ‘G’ indicates ‘C’ for symmetricmodesand ‘K’ for antisymmetricmodes, and
where PðknÞZKanðk2nKa2

nÞ=ð2b2nÞCa3
n=k

2
nKk2n=ð2anÞC3:5=anK8a3n=ðk2nCa2

nÞ.
Appendix D. Expression of matrices Ni

N1ðn;mÞZ

K
1

4Jn
2J 0

nC2Jn
Z 0
c;n

Zc;n

C h0 UnSnCiru2 U 2
n

knZc;n

C
Zc;nV

2
n

kn

 !( )" #h
Kh

( )
;

formZn;

1

k2mKk2nð ÞJn
h0 Kk2mUmSnCiru2 knUnUm

Zc;n

KkmZc;mVnVm

 !( )" #h
Kh

;

formsn;

8>>>>>>>>>>><
>>>>>>>>>>>:

ðD 1Þ

N4ðn;mÞZ

1

4Jn
K2J 0

nC2Jn
Z 0
c;n

Zc;n

C h0 UnSnCiru2 U 2
n

knZc;n

C
Zc;nV

2
n

kn

 !( )" #h
Kh

( )
;

formZn;

1

k2mKk2nð ÞJn
h0 Kk2nUnSmCiru2 kmUnUm

Zc;m

KknZc;nVnVm

 !( )" #h
Kh

;

formsn:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ðD 2Þ

(a ) Biorthogonality condition

Equation (A 5) applied to Z1ZXn and Z2ZYm leads to

ðFGXnjYmÞZðXnjGFYmÞC ikn½VnRmKRnVm�hKh

C ikm½TnUmKUnTm�hKh:
ðD 3Þ

On the other hand, we also have FGXnZKk2nXn and GFYmZKk2mYn. This
leads to

ðk2nKk2mÞðXnjYmÞZ 0: ðD 4Þ
Our normalization for Xn and Yn leads to

ðXnjYmÞZ Jndnm; ðD 5Þ
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and its differentiated form

J 0
ndnm Z ðvxXnjYmÞCðXnjvxYmÞC ½h 0XnYm�hKh: ðD 6Þ
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