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The problem of Lamb wave propagation in waveguides with varying height is treated by
a multimodal approach. The technique is based on a rearrangement of the equations of
elasticity that provides a new system of coupled mode equations preserving energy
conservation. These coupled mode equations avoid the usual problem at the cut-offs with
zero wavenumber. Thereafter, we define an impedance matrix that is governed by a
Riccati equation yielding a stable numerical computation of the solution. Incidentally,
the versatility of the multimodal method is exemplified by treating analytically the case
of slowly varying guide and by showing how to get easily the Green tensor in any
geometry. The method is applied for a waveguide whose height is described by a
Gaussian function and the energy conservation in verified numerically. We determine the
Green tensor in this geometry.
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1. Introduction

The interest in waves propagating in elastic waveguide comes, at least, from two
applications. First in non-destructive testing, guided waves are believed to have
a potential for improving inspection efficiency and sensitivity, compared with
bulk-wave technique. Second in geophysics, they are the basic picture for seismic
surface waves propagating in the crust and upper mantle.

To tackle the problem of waveguide thickness variation, different techniques
have been proposed, such as hybrid boundary-element methods (Cho & Rose
1996; Cho 2000; Galan & Abascal 2003), finite-element methods (Koshiba et al.
1984; Galan & Abascal 2002; Wu et al. 2003) or modal methods (Abram 1974;
Kennett 1984; Maupin 1988; Tromp 1994; Galanenko 1998; Folguera & Harris
1999). The modal approach offers the advantage of discretizing the transverse
direction with transverse modes which implies, for instance, an exact solution for
straight waveguide, and this method permits the reduction of the problem to an
ordinary differential equation that governs the modal components resulting from
the projection onto the modal basis.
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1316 V. Pagneux and A. Maurel

The problem of wave propagation in a two-dimensional waveguide can be
formally written as an evolution problem d,z= Lz, where x is the waveguide
axis, z=(u,v,5,t)" (u, v are the displacement components and s=o,,, t= Oy
with ¢ the stress tensor) and £ a differential operator. After £ has been
diagonalized, this vector z can be prOJected on the usual Lamb modes as
2=3,¢nZn, where z,=(U,, V,, Sn,T) satisfies the eigenvalue problem
Lz, =ik,z,. Then, using the biorthogonality relation satisfied by the
eigenfunctions z,, the original evolution problem is thus reduced to a first-
order ordinary differential equation on the components ¢, (e.g. Maupin 1988).

There are two problems in this coupled mode method. The first problem
concerns cut-offs that occur at isolated longitudinal coordinates z. At cut-offs,
the eigenfunctions z, cannot form a base anymore. This problem is related to
the normalization coefficient of the biorthogonality relation that vanishes at
the cut-offs. It is also related to the impossibility to decompose z into forward
and backward modes at cut-offs. Relatively few works have been done to
overcome this difficulty. Galanenko (1998) proposes to treat cut-offs by using
the regular singularity theory of differential equation. The same kind of
techniques has also been recently proposed by Perel et al. (2005). The second
problem concerns the numerical implementation of the coupled mode equation
which is not obvious. Indeed, the coupled mode equation corresponds to a
boundary-value problem and the presence of evanescent modes makes the
integration of the coupled mode equation numerically unstable if directly
performed. To avoid this difficulty, Kennett (1984) used the technique of
invariant embedding to obtain coupled Riccati equations on the reflection and
transmission matrices.

In this paper, we propose a new formulation of the coupled mode method that
is numerically stable and that partially solves the problem of cut-off (namely, the
cut-offs with vanishing wavenumber k,). Our formulation uses the symmetry
properties of the Lamb modes between forward and backward modes. It permits
one to decompose the two two-vectors X=(u, t) Y=(—sv)" into two
biorthogonal bases X, = (U,, T,)", Y, = (—S,, V,)T, which correspond to the
forward modes only, instead of decomposmg the four vector z into both
backward and forward modes. It is then possible to renormalize separately X,
and Y, so that the renormalized X,, and Y,, remain bases at cut-offs with zero
wavenumber. This gives two coupled evolution equations on a, and b,, the
components of X and Y on the two renormalized bases. To avoid numerical
instability, we define an impedance matrix Z, which links the components
through b=Za, and which is governed by a Riccati equation. This kind of
technique has been used in the scalar case, where the impedance matrix is
equivalent to a Dirichlet to Neumann operator (Pagneux et al. 1996). We could
say that the matrix Z for Lamb waves is an extension of the concept of the
Dirichlet to Neumann operator to vector waves.

The rest of this paper is organized as follows. In §2, we present the derivation
of the coupled equations. In §3, we define the impedance matrix and the Riccati
equation. In §4, the energy conservation is discussed. In §5, some analytical
solutions for slowly varying guides are presented. In §6, the derivation of the
Green tensor in elastic waveguide is presented. Section 7 presents the numerical
implementation that will be used to get the results of §8.
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Figure 1. Geometry.

2. Coupled mode equations

In this section, the problem of guided wave is set using a modal expansion. The
modal expansion we choose has been previously used in Pagneux & Maurel
(2002, 2004). It is different from the coupled mode expansion classically used;
indeed, one could think to write the problem as 2'=Lz (for instance, as in
Maupin 1988), where z=(u, v, s, t)" is a four-vector and to project on the usual
Lamb modes z,=(U,, V,,S,, T,)" to obtain an evolution problem for the
coefficient ¢ of z. Instead, we choose to split the four-vector z into two two-
vectors X=(u, t)*, Y=(—s,v)T and to perform the projection onto X,=
(Un, To)", Y,=(—8,, V,)", where X, Y, are renormalized and build from the
usual Lamb modes X,,, Y,

A first motivation to do that comes from Fraser’s biorthogonality relation
(1976) [—U,S8,+ T, V= J .0,y that simply translates into (X,|V,,) = J,0,m
when the form (X|Y) = [—us+ tv is defined. Also, the main motivation is to
take care of the mode cut-offs (See for instance Perel et al. 2005), problems that
are clearly translated to J, = 0 in our formalism. In other words, the whole task
in our formalism is to deﬁne the bases X,, and Y,, from X and Yn, in a way
such that (X,|Y,)=J, does not vanish at cut-offs. It is shown in the present
work that this is possible for cut-offs with zero wavenumber. Finally, the problem
is reduced to an evolution problem for the projection coefficients a and b of
X and Y on the renormalized Lamb modes.

(a) Position of the problem

We are interested in the propagation of Lamb wave through a two-
dimensional waveguide with a varying height, described by the function h(z)
(see figure 1), with free boundaries, and for which displacements are in the (z, y)
plane (in-plane motion). For the sake of clarity, the waveguide is considered to
be symmetric with respect to the horizontal axis, but the method can be easily
extended to non-symmetric geometry [h(z) < y< hy(z) with hy(z) #=— he(2)].

The time dependence is e " and will be omitted in the following. The
equation of motion is

—pw’w = V-, (2.1)

Proc. R. Soc. A (2006)



1318 V. Pagneux and A. Maurel

where p is the density,

is the displacement vector and

is the corresponding stress tensor, with
5= 20,0+ (A+2u)d,u,
t=wu(d,u+d,v), (2.2)
r = (A+2u)d,v + Ad,u,

where (4, u) are the Lamé constants. The boundary condition at the faces
y= 1t h(z) are free of traction, corresponding to boundary conditions:

r[z,2h(z)] = 24 (2)t[z,Th(z)], (2.3)

t[z,2h(x)] = 4 (2)s[z,2h ()], (2.4)
where h'(x) is dh/dx.

(b) Modal expansion

It will be convenient to work on two quantities X and Y presented below.
That formalism allows us to easily tackle the projection on the Lamb modes. The
idea is to write the equations as an evolution equation (with respect to the
coordinate z of the waveguide) on X and Y, which leads to a canonical
eigenvalue problem in the transverse direction when transverse modes are
sought. This formulation is similar to the one presented recently in Folguera &
Harris (1999), in that it describes the evolution of a stress-displacement four-
vector, but here that four-vector is suitably split into

(i) -0

It is shown in appendix A that the elasticity equations (2.1)—(2.4) can be
written as (see also Pagneux & Maurel 2004)

ORI

where F and G are the operator matrices:

2
pw= 9,
I g,
F= and G = , (2.6)
-9 1
ho, —pw? — 0, Yo
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with fi=2/(A+2u) and fo=4u(A+u)/(A+2u). Concerning the boundary
conditions (2.4), since the problem is considered as an evolution equation (2.5)
on X and Y, we always use the expressions of r written as a linear function of Y,
r: Y —>r(Y)=fis+ f,0,0, which implies that the boundary conditions are
entirely expressed in terms of X and Y.

Then, 1n order to project the evolution equation (2.5), we introduce the modes
(X,,Y,)" solutions of the eigenvalue problem associated to (2.5),

ik, _ = _ , (2.7)
Y, G 0 Y,

with boundary conditions #,=0 and f,=0 at y=+h. Equation (2.7) is a
canonical eigenvalue problem, the solutions of which are the Lamb modes (see
Viktorov 1967; Achenbach 1987). Assuming the completeness of the set of the
Lamb modes (Kirrmann 1995; Besserer & Malishewsky 2004), the vector

(X, V)T is expended as
X X,
(Y)ZZC”(y) (2.8)
n+0 n

Here n>0 refers to right-going mode and n<0 refers to left-going modes. The
eigenvalues k, for right-going modes are sorted in ascending order of their
imaginary part and descending order of their real part, and if &, corresponds to a
right-going mode, —k,, corresponds to a left-going mode. As can be seen from
equation (2.7), the symmetry properties of these bases impose X_,L—-I-Xn,

Y_,=FY,, and in the sequel we arbitrarily choose X_,=—X,, Y_, =Y, asin
Viktorov (1967). Owing to these symmetry properties, it is possible to write the
decomposition (2.8) in term of the right-going modes only,

X = Z dTL(x)XTL(y)7 Y = Z I;”L(‘r) Y’IL(y)? (29)

n>0
with a,=¢,—c_, and b,= ¢, + c_,.
For the projections, we use the inner product between two component
functions that is defined by

<<Zi>|<::)) B th(“””z + vvy)dy.

Note that this inner product is not positive definite, since the vectors X and Y
we are going to use are complex.

One advantage of our formalism (equation (2.5)) is that the operators F and G
have the following remarkable properties (see appendix A):

% =(Y ro— o]
(FIA’IY)—(IA’IFY)HA ]_h,} (2.10)
(GX|X) = (X|GX) + [ul —ut]",.

That means that F and G are formally self-adjoint. In the particular case of the
modes which have r,(+h)=0 and ¢,(+ k) =0 and thus make the boundary terms
vanish, the operators F and G are self-adjoint. Using the property of F and G (see
(A5)), we get (FGX,|Y,,)=(X,|GFY ), that is (k2, —k2)(X,|Y,)=0. This is
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1320 V. Pagneux and A. Maurel

an easy way to derive the biorthogonality relation obtained by Fraser (1976):
(Xﬂ‘ Y ) J 677”1

As could be anticipated, it appears that J, vanishes for each mode cut-off that
corresponds to coalescence of modes (Klrrmann 1995). To avoid this latter
problem for zero cut-offs (k,=0), we choose to work with renormalized bases X,
for X and Y, for Y built from X,and Y, ina way that i is detailed in appendix B
and where (X, Z. nYn) is proportional to (X, Y ) Here, Z., appear as
renormalization coefficients and correspond to the dlagonal entries of the
characteristic impedance matrix Z. (see §3). These new bases satisfy

X, 0 F X,
k( ) - ( )( ) )
Zc,n,Yn G 0 Zc,nYn

The modal decomposition is now done as

X = Zan(x)X

neN

Y = an Y, (

(the expression of J, is given in appendix C) and
a, = a;f + a,,
(2.13)
bn = Zc,n(ar_i_ —(l;)

One important point is that X, and Y, remain bases for cut-offs with zero
wavenumber (k,=0).

with (X,|Y,) = J,0,m (2.12)

(¢) Ewvolution equation

The task is now to derive an evolution equation for the modal components a(z)
and b(z). To do that, we project the system (2.5) on the bases Z.,Y,, and X,

(0,X|Z.,Y,) =(FY|Z.,Y,),
(0, Y|X,) = (GX[X0).
Each term is then calculated using (2.12) and properties (A 4):
(6 X‘ c,n ’n) = ZC,'VL(a[l'Xm’ Yn)a/WL + a;LZC,anéTYLn?
(FY|ZnYn) = (YIFZu Y o) + Zenfil08, = sValls & Zenfolvd, Vi = 9,0V, 11,
= ik'ﬂ( Y|Xn) + I:/UR'” - TVTL:IE}I = ikanbmémn'

(2.14)

Similarly,
(GX|Xn) = (X|G-Xn) + [tUn - Tnu]]ih = iknachm‘]némn + [h/ Unsm]}ihbm

This leads to a system of first-order differential equations governing a and b:

a/ = Nla + NQb,
(2.15)

b/ = N3a + N4b,
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where matrices N; to N, are given by

1
Nl(na m) = _7 (aTXm| Yn)a
ik
NQ(nv m) = linémm

Zen (2.16)

N3(n7 m) = iancA,namm

1
N4('I7,, m) = 7 {_(az Ym|Xn) + [hl UnS’rn]ﬁh}'

Expressions of matrices N; and N, easier for numerical calculation, are given in
appendix D.

3. The impedance matrix

In principle, equations (2.15) might be directly integrated, but there are two
reasons that prevent one from doing that. First, the problem will be posed as a
boundary-value problem with a radiation condition at the outlet of the
waveguide and a source at the inlet, and the integration of (2.15) as an initial
value problem would be very awkward. Second, the numerical integration of
(2.15) appears to be unstable because of the presence of the evanescent modes
that induce exponential growth (Pagneux et al. 1996). In order to circumvent
these two problems, it has been proven to be useful to define the impedance
matrix Z (Pagneux et al. 1996) as the linear operator that links together vectors
a(z) and b(z) at a given z position,

b(z) = Z(z)a(z). (3.1)

Using the definition of the impedance matrix Z(z), it is easily obtained from
(2.15) that Z(z) obeys a Riccati matrix differential equation,

Z'(z) = Ny + N, Z(z) —Z(2)N, —Z(2)NoZ (). (3.2)

This allows us to solve the problem of guided wave in any configuration by
simply solving the Riccati differential equation on Z, starting from a radiation
condition at the outlet, e.g. at the guide terminations, with either a™=0 or
a =0, we get Z=+Z., where Z. is the so-called characteristic impedance
matrix which is diagonal with entries Z ,,.

Once Z has been calculated, the whole fields can be obtained by integrating

a'(z) = [Ny + NoZ(2)]a(2), (3.3)

obtained from equation (2.15) and where the source imposes a™ at the inlet. The
successive integrations of equations (3.2) and (3.3) are numerically stable, even
in the presence of evanescent modes.

(a) Reflection and transmission matrices

If the interest is in the determination of the elastic fields between the inlet and
the outlet, one has to integrate successively the above equations (3.2) and (3.3),
but this necessitates storing the Z matrix at each point z during the first
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1322 V. Pagneux and A. Maurel

integration (3.2) to perform the second integration (3.3). On the other hand, if the

interest is only in the scattering matrix, i.e. the knowledge of the reflection matrix

R and the transmission matrix T, this storage is not necessary, as shown below.
To determine R, which is defined at the inlet abscissa xj,; by

ai(xini) = Ra+($ini)7 (34)
it is sufficient to know Z(z,), since R is related to Z(zy,;) through
R= [ZC + Z(‘rini)]il [ZL _Z(«Tjni)], (35)

easily obtained from equations (2.13).
To determine T, we define the matrix Y as the operator that links together the
coefficients a between the outlet abscissa z; and any z<z through

a(z) = Y(z, z)a(z). (3.6)
Note that Y corresponds to the propagator of equation (3.3). Then, by
differentiating equation (3.6) with respect to z, we get the following differential
equation governing Y:

Y/ = _Y[Nl + NQZ], (37)
that has to be integrated from z=uz; to x=uz;,; with the initial condition
Y (2, z= ;) = |. The transmission matrix T is defined by

(1+({Ef) = Ta+(xini)7 (38)
and is related to the matrix Y through

Eventually, to obtain matrices R and T, it is sufficient to integrate the coupled
equations (3.2) and (3.7) from z= ¢ to 2= x;,; and this without storing any matrix.

4. Energy flux conservation

In this section, we want to verify that the coupled mode equations conserve the
energy flux. At each z position, the energy flux Wis defined by W(z)= [¢(m)dS,
where the average is taken over time and where w= o(u, @)T is the Poynting
vector (overdot indicates the time derivative). In the harmonic regime, we get

W(z) = 5 Im{(X|Y)], (4.1)

where the overbar means complex conjugation. Introducing the matrix
Kin = (X,,|Y,), the energy flux can be expressed as W(z)= (w/2)Im[a"Kb].
It is sufficient to use the properties: k, — k, gives X,— X,, Y, — I_’,,L_and
k,— —k, gives X, —> X,, Y,— Y,, to build the matrix M, such as X, =
M,.X,, and Y,=M,, Y : for real and imaginary k, values (k, ==k,), we get
X, and Y, real, so M locally equals identity; for k, complex, say n=2, we
consider k3 =—ky, so X3= X,, Y3=Y,, and we get locally M equals

(1)
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With J,,, = (X,,| Y,,), we thus get K=JM (M equals its transpose, with M*=1)
and the final expression of the flux,

W(z) = %Im[aTJME]. (4.2)

(a) Energy conservation
Let us calculate W' =dW/dz,
W =Im[Ja)"Mb + a"MJb + a'J'Mb], (4.3)
using JM = MJ. We now write the system (2.15) as
Ja' =M,a +D(ikJ/Z,)b,
| (ikJ/ Z) (4.4)
Jb' = D(ikJZ,)a + M,b,

where D(a) denotes the diagonal matrix with a, as nth diagonal elements and
M, (n,m)=—(8,X,,| Y,), My(n, m)=—(9,Y,,| X,,) + [0/ U,S,,]",. By differentiating
the biorthogonality relation in (2.12), it is easy to check that

J =—M{ —M,. (4.5)
A1807 M_Imn = (az)_(m| }_/n) = Mml(anl‘ Yk‘)Mk’m S0 M_l = MMIM anda as well
M, = MM,M. (4.6)

We get, using equations (4.4) and (4.5),
W' = Im[b'D(ikJ/Z,)Mb + a*MD(ikJZ,)a] + Im[a’ (MM, —M,M)b].  (4.7)

The matrix (MM, —MyM) equal zero because of property (4.6) with M*=I. The
two first quantities of the right-hand side term also equal zero: for k, real or
imaginary, both ik,J,/Z. , and ik,J,,Z. ,, are real; for k, complex, say n=2, it is
sufficient to consider k3 =—k, (and Jy=Jy, Z.3=Z.5) to check that b'D
(ikJ/ Z,)*Mb is equal to '

( ) 0 k2J2/Z(:,2 b2 (k2 / T )
b b - =1 J ZC bybs —cc 5
e ’ k‘ZJQ/Zc,Q 0 b3 i o

(cc denotes the complex conjugate), with zero imaginary part.
We finally obtain W’=0, which shows that the system is written in a form
that implies energy conservation.

(b) Reflection and transmission coefficients

To define the fraction of reflected/transmitted energy, the energy flux is
written as

W =Im[(a’ + a")"KZ.(aT —a"))
=Im[(a™)"IMZ.a* — (a7)"IMZ, @] + Im[(a") " IMZ.a* — (a™)"IMZ,a7].
(4.8)
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The structure of matrix JMZ, is as follows: for k, real, it locally equals J,,LZC,,L:
—JnZen €iR. For imaginary k, value, it locally equals J,Z., = J,Z., €R. For
two complex conjugate, say ks =—ky, we get locally,

0 JQZC.B O JQZC,Q
JiZe 0 ) \DhZn 0 )

Consequently, both terms of the right-hand side term in equation (4.8) can be
written as

Im[(a*)"IMZ,a™ —(a")"IMZ, @) = > iJ, Z. ,lar [P =Y 1], 7 | an]’,
k,€R k.€R
Im[(a”)"IMZ.;a™ —(a")"IMZ,a") =2 " J,Z. ,Im(a; a,)
k,€iR
+2 > Im[J,Ze(ay Gy = Gnai1)].
1=k,
The first term accounts for the energy flux carried by the propagating modes,

while the second terms account for the energy flux carried by evanescent modes.
Let us consider the case where N propagating modes are sent at the waveguide

inlet z=, that is a(z)= (ay, ..., ay,0,...,0)" and a radiation condition at the
waveguide outlet z=1,, that is a™ (z,) =0. We get
N N
W(x) =Y 1 Zealay (@) = 11,2 0lan ()],
n=1 v n=1 (49)
W(z,) =Y 1, Zealay (z,)),
n=1

where N’ denotes the number of propagating modes at x=1, (N'# N a priori if
h(z,) differs from h(z;)). The energy conservation implies W(z;)= W(z,) and we
define the coefficients of reflected energy Fr and transmitted energy Fr=1— Ff,

N N’
> JnZonl () > JnZonlay (z,)?
n=1 n=1
FR = N 5 FT = N . (410)
z_:l JnZLn|ar—l_(Iz)|2 E—:l Jan,nlarT(Ii)F

5. Analytical solutions for slowly varying guides

We present here the WKB (Wentzel-Kramer—Brillouin) approximation of
equation (2.5) by using the biorthogonality relation (2.12). This approximation
is valid for a slowly varying waveguide. The height h is supposed to vary slowly and
we denote {=ezx the slow variable, where € measures the slowness. The following
WKB ansatz is proposed for the four-vector (as in Folguera & Harris 1999),

X ‘ (X
( Y) = explip(2)/d 3 ¢ ( YV>. (5.1)
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Lamb waves in varying waveguides 1325

In the following, we denote

o’ 3
X' = and Y’ = ,
t v’

and "= fis" + £,0,0". We insert (5.1) in equation (2.5). At zero order in €, we
obtain

XO
[z—iqs’(:)]( ) 0, (5.2)

YO

where ( 0 F)
L= ,
G 0

and with the boundary conditions /= t"=0. We thus deduce that (X°, Y°)" and
¢’ are, respectively, an eigenvector and an eigenvalue of the eigenvalue problem
(2.7) for a given mode number n,

¢'(C) = kn, (5.3)

X0 X, 5.0
=, , 5.
YO i Zc,n Yn

where the proportionality factor «, will be determined by the equation at first
order. First order in € leads to

X! Xx°
(M _ikn) ( ) = aﬁf < ) > (5'5)
y! Y?

with boundary conditions t'=h's" and ' =0. Equation (5.5) and the associated
boundary conditions determine the evolution law for «,. Equation (5.5) is

projected on the four-vector
Zc,n Yn
X, )

(FY'|Z., Y,) + (GX'|X,) =ik, (X[ 2., Y,) + (Y| X,,)]

and

= (a’;XO|ZC,n Yn) + (aC Y0|Xn) (56)

Properties (A 4) give (FY'Z.,Y,)=(Y'FZ., Y, )+ (Z.,Vur'+ Z. . R, 0" ", =
ikn(Yl‘Xn) and(GX1|Xn)=(X1‘GXn)+ [Untl_Tnul]’—Lh= ikn(Xl‘ Yn)+[h/50Un]’—Lh'
We thus obtain

[hlso Un}ﬁh = (aCXO|ZC,n Yn) + (G’C Y0|Xn)7
and using equation (5.4)

22, Z nIn + 0, {(0: X 0| Zen Y ) + (X |0 (Ze Yn)) — Ze W U, S} = 0. (5.7)
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1326 V. Pagneux and A. Maurel

With JT’L = (aCXn| Yn) + (Xn’aC Yn) - [h, UnS’n]]—th we get

20 Ze I + @y (Zedy + Zi g J,) = 0. (5.8)
Assuming «,, non-zero, equation (5.8) is equivalent to
d:(e2 Z. J,,) = 0. (5.9)

Eventually, the WKB solution is

x\ | X,
( Y) = a,, explip() /€ (Zn Yn>’ (5.10)

with ¢ and «, determined by equations (5.3) and (5.9). Obviously, this WKB
solution shows no coupling between modes and it conserves the energy.

6. Green tensor

To get the usual Green tensor G;; (=1, 2), giving the displacements from a delta
function force, we start from
—pw’® Gy(r, r') + Ly, Gy(r, r') = 0,;0(r— r'), (6.1)

where r=(z,y) is the vector position. If u=(u;=u, uy=v) denotes the
displacement fields satisfying

_PQ)QUz'(”) + Lypw(r) = f;, (6.2)

where f= (Fy, Fy)"6(r—1) is a delta function force located in 7, we have
ui(r) = Jdr' Gi(r, 7)fi(r") = FL Gy (r,m0) + Fy Gy (7, 7). (6.3)

As a consequence, the four components of the Green tensor can be simply
deduced through the displacement fields

Gyi(r,r Gp(r, T
u(r)=< u( 0)>, for F, =0 and u(r)=< il 0)>, for F, = 0.

Gy (7, 79) Goa (7, 70)
(6.4)
In our formalism, equation (6.2) becomes, from equation (2.5),
0
X 0 F\/X —F,
d, = + o(r—ry). (6.5)
Y G 0/\Y F,
0

Integrating equation (6.5) w.r.t.  between 25— € and 1+ ¢, it is easy to see that
[ul=[v]=0, [t]=—Fy6(y—1vyy) and [ —s]= F;6(y—1y,) (where [2(z)]=lim,,,
2(ap + €) —2(z9—¢)).

We then project [X]=>",.[a,]X,, on Y,, with

[[X]]—( ’ )
—Fy0(y—w0) )
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and [Y]=>",.00,,1Y,, on X,, with

[v] = (171‘5(?;_(@0))7

_ 5 Valw) _ = Uw)
[a,] = —F, Jno’ [b,] = F, Jno. (6.6)

For the sake of simplicity and without loss of generality, we choose 15=0 in
the following. The numerical resolution can be now solved using Z(L™")=Z, at
the waveguide exit and calculating Z(z) from L™ to z=07, as described in §8b.
Similarly, Z(z<0) is calculated integrating from Z(—L~ )= —Z. to z=0". The
source is taken into account at z=0 with

a(0%) = [Z(07) = Z(0")] 7 (Z(07)[al —[b]), and b(0*) = Z(0")a(0"), }
a(07) = [2(07) = 2(0")] ' (2(0")[al —=[b]), and b(0") = Z(07)a(0"),
(6.7)

where [a]= ([a,]) and [b]= ([b,]) are given in equations (6.6). From these
initial conditions on @ and b at =0, we can calculate a(z) and b(z) until
z=+IF (and thus the corresponding displacement fields).

to get

(a) Green tensor of a straight waveguide
In the case of a straight waveguide (h constant), the calculation can be done
explicitly, since we simply have a,(z)= a,(07)e** and b,(z) = b,(0")e**, for
>0, a,(z)=a,(07)e ™ and b,(z)=b,(07)e ¥ for 2<0. With Z(0F)==+Z,
we get

a(0") = 5 L([al + Z7'[6D), and b(0%) = %(ZC[[a]] 1 [8]),
1 1 (6.8)
a(07) =~ ([a) =2 [bl). and b(0") = 2 (Z]al ~[)).
Using equations (6.4) and (6.6)—(6.8), we obtain
_ 1 ik, 2]
Gy(r,ry) = — U, U,(y)e ,
(r,79) ; 27, .7, (v0) Un(y)
G, 70) = sign(2) S5 Usao) Vi)™,
n>0 . | (69)
G12(7’, TO) = _Slgn(x)Zﬁ Vn(yO) Un(y)elknma
n>0
Gayy(r, 1) = _Z (y)eik”‘x"
n>0 )
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These expressions are identical to those found by Karhitonov (1978). Note also
that at =0, the quantities »_,(1/J,)U, ( 0) Va(y) and >,(1/J,) V,.(y )Un(y)
defining G, and Ga Vamsh as does any series with terms (1/.J,) ([ dy f(y) V. (v))
U,(y) or (1/J,)([dy f(y) ( )) V,.(y) for a given function f. Here, this means for
instance, that a force applied along the g¢direction does not produce any
displacement along the az-direction (this could also be deduced simply by
symmetry argument, for instance the symmetry x — —z for Gi,).

7. Numerical resolution

To solve a typical problem in a waveguide, namely with a radiation condition
and a source, one has to solve first the Riccati equation (3.2) and, second,
equation (3.3). By integrating equation (3.3), a(z) and b(z)=Z(z)a(z) are
known in the whole space and, thus, the stress and displacement fields also.

We propose two numerical resolutions of equations (3.2) and (3.3). One
resolution method uses a Magnus method for both equations and is detailed
below. This method has three advantages: (i) it gives an exact solution for
straight waveguide, (ii) the step size is not imposed by the wavelength, but
rather by the typical variation length of the waveguide, (iii) it is not sensitive to
the quasi-resonances that may be displayed by the behaviour of the impedance
(Schiff & Shnider 1999). However, this Magnus method is not adapted to pass
through cut-offs with non-zero wavenumber.

The other resolution method is used when cut-off has to be taken into account.
In that case, we add a small dissipation to transform the singularity into quasi-
singularity at cut-off. Nevertheless, passing through this quasi-singularity
requires a smaller step size and is more time-consuming. This resolution, that
uses two classical integration schemes, is not detailed below. To integrate the
equation (3.2), we use a classical Runge-Kutta scheme with adaptative step size.
The details of the scheme are not developed here and can be found in Press et al.
(1993) for instance. Then, a(z;) is then simply calculated solving equation (3.3)
using a classical Crank—Nicholson scheme, well adapted to preserve the energy
conservation.

(a) Magnus method

Our scheme is inspired by the techniques proposed by Schiff & Shnider (1999)
and Iserles et al. (1999). The radiation condition gives Z at z; and the source a is
imposed at z;,; (figure 2). Then the interval [z;,; xf] is discretized with dz step, so
T, = Ty + ndz and a second set X, =z, + dz/2 is defined.

If we start from equation (2.15), the Magnus method gives

b(,41) Ey(X,) Ei(X,) )\ b(z,)

Nl(Xn) NQ(Xn)
N3 (X,,) N4<Xn>>’

with matrix
N(X,) = (
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Z(x,,) via equation (7.2)

AN = Xini XN-1 X2 X1=Xf
L : | | . | | | | |
Xn-1 . X |_ _| _____ [

a(x,), b(x,) via equation (7.3) Xini Xini Xr Xg

Figure 2. Discretization along the axis of the waveguide.

and matrices E; to E,; defined by

E.(X,) E)X,
exp(—Ndm)=( (%2) ( )>,

(calculated at X, midpoint between z, and z,.;), and that eventually permits
one to obtain the following scheme for Z:

Z(xn-&-l) = [E3(XIL) + E4<Xn)z($n)][E1(Xn) + EQ(Xn)Z(xn)]_lv (7'2)

with Z(z;) = Z.. Note that integration is performed from right to left.
Then, equation (7.1) is used once again to get

a(xn) = [El(Xn> + EQ(XH)Z(xwL)]ila(xn—i-l)a (73)

where the calculation is done from left to right, starting from a(zy).

(b) Calculation in the inlet/outlet portion with constant cross-section

When the waveguide begin or ends with a portion of constant cross-section,
the displacement field can be determined analytically. Suppose that the portion
with varying cross-section corresponds to Z;,; < x < Z; (figure 2). In this portion,
the fields are numerically calculated, using either a Runge-Kutta scheme or
matrix exponential. To obtain the field between z;,; and Z;,; (waveguide inlet)
and the field between 7; and z; (waveguide outlet), we use:

(i) For the waveguide outlet, & <z<a, a,(z)= a,(Z)e™ ™) for both
symmetric and antisymmetric modes, with no left-going modes. a,(Z;) is
known from the numerical calculation between Z;,; and Z;.

(ii) For the waveguide inlet, z;,; < 7 < 7y, we have a(z) = [l+ R(Z,)]at (2),
with @ (z)= a:{(xini)eik"(””ﬂmi) that accounts for the incident wave at zjy;.
Again, R(Z,) is known from the numerical calculation between Z;,; and Z;.

8. Results

We report in this section results obtained with our method. The spectrum for
Lamb modes is determined using the spectral method described in Pagneux &
Maurel (2001), with a relative accuracy of 10~°. The material constituting
the waveguide has the following properties: Poisson ratio s=0.31, ¢;=2/m,

¢ =2/m\/2(1—5)/(1—2s) and p=1.
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1.00 [
075}
Fg 0.50}
025}
/‘\
0 05 1.0 15 2.0

[0

Figure 3. Coefficient of energy reflection Fr as a function of the frequency .

(a) Reflection in a non-uniform guide

We consider here the calculation of the coefficient of energy reflection and
transmission. The geometry consists of a waveguide whose cross-section is
described by a Gaussian function,

72
o) = to-+ (1 =toJexp (=73 ). (s.1)
with hy=0.7, hy = 1.5 and L=1.5.
The incident wave at = —3L contains only the first antisymmetric mode 4,

and the geometry being symmetric with respect to y=0, only antisymmetric
modes are considered. The range for w is such that for w<0.65, only A, is
propagating in the whole waveguide. For 0.65 <w<1.42, the mode A; is
evanescent for hy and propagating for h;. Finally, for 1.42 < w < 2, both modes
Ay and A, are propagating in the whole waveguide. The calculation is performed
using matrix exponential with NA%=11 and 170 steps in the whole range of
considered frequencies.

Figure 3 shows the variation of the coefficient of energy reflection Fy as a
function of the frequency w. The energy conservation relation Fr+ Fr=1 is
satisfied in the whole range of frequency with an accuracy of around 10~ °.

The curve in plain line corresponds to the energy ratio transported by the
mode A, always propagating. At the cut-off frequency w =1.42, the mode A4,
becomes propagating and, therefore, transports a part of the energy (curve in
dotted line). Finally, at frequency w =1.37, FR reaches a maximum very close
the value 1. This behaviour indicates that this frequency corresponds to a quasi-
trapped mode, whose shape is indicated in figure 4b.

(b) Green tensor

We focus here on the Green tensor in a waveguide whose cross-section is
described by the Gaussian function, as in §8a, with hy=1, hy =1.4, L=1. The
frequency is w=>5. For hy, there are four symmetric and five antisymmetric
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&)

(©)

Figure 4. w-displacement fields for (a) w=0.5, (b) ©=1.37 and (¢) w=1.5.

propagating modes and for hy, there are six symmetric modes and six
antisymmetric propagating modes.

Since there are cut-offs with non-zero wavenumber in this configuration, the
numerical calculation is performed using the Runge—Kutta scheme with a

relative tolerance of 107 % The source point being located at (0,hy/2), the
calculations are divided into two parts, between 0 and z; and between 0 and z;;,
using the initial conditions of equations (6.7), as described in §6

With NA% =41 and N3 = 40, the Runge-Kutta calculation needs N=1500 and
750 steps (respectively for antisymmetric and symmetric modes) for the calculation
in the right part and N=300 and 350 steps for the calculations in the left part.

The displacement fields obtained are shown in figure 5. Note that we observe
wiggles at the vertical of the source point, characteristic of the modal
decomposition of the Green tensor. This calculation has been performed with
an imaginary part € of the frequency equal to 10~ 2 in order to avoid the cut-offs
with non-zero wavenumber. The value of € is small enough not to influence the
final result, as shown in figure 6.

9. Closing remarks

The method developed in this paper is a multimodal method for waveguide with
height variation. The two main advantages of this method are: (i) it avoids
singularities at cut-offs with zero wavenumber and (ii) it can be implemented
without numerical instability owing to the introduced impedance matrix. The
way to avoid singularities at cut-offs with non-zero wavenumber remains an open
question.
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(b)

Figure 5. Green tensor for a source point located at (0, hy/2). Real part of the u-displacement fields
associated with the Green tensor (@) Giy, (b) Gay, (¢) Gio and (d) Gay for e=10"2

(@) (b

0.3

0.10
0.2

0.05
0.1

0
0

-0.05
-0.1

-0.10
-0.2

X
(o) (d)
I
0.1 0.1 [
0 0
P
0.1 0.1
-2 0 2 4 -2 0 2 4

Figure 6. Profiles of the u-displacement at y=0 for e=10? (solid line) and e=10"? (dotted line).
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We think that it is a valuable alternative to purely numerical methods, e.g. the
finite-element method or the boundary-element method, because it allows both
the brute force numerical calculation and the asymptotic approximation
analysis.

Appendix A

(a) Derivation of the differential system

The derivation of equation (2.5) from equations (2.1)—(2.4) is as follow. The first
step consists to obtain r as a function of (u, v, s, ¢). This is done using its
definition, that is the third equation of (2.2), that is written as r= fis+ fd,v,
where fi = A/(A+ 2u) and f, = (4u(A+ u))/(A+ 2u). Then, equation (2.5) can be
written as

—pwiu =09,5 + a,t,
(A1)
—pw?v = 0,t + d,r = 0,1+ f1d,s + f,0,00.
The definitions of s and ¢ (first and second equations of (2.2)) give
5= 20,0+ (A +2u)d,u=A(d,v+ d,u/f), (A2)
t = u(d,u+9d,v).
From (A 1) and (A 2), it is now straightforward to obtain
. B o
d,t
' —prv—flays—fzayw
pw’u + d,t (A3)
—d,s
1
az'U —t—ayu
u

(b) Properties of matrices F and G

We give here properties of F and G for two vectors Z; = (2, 22)" and Zy=
(21, 222)

(FZ1|Z2) = (Z1|FZ2) + /i [211322 _212221]]—Lh +f2[2123y222 _ayzl2z22]}—Lh7 } (A 4)
(GZ.|2,) = (Z,|GZ,) + [z19% _ZHZZZ]ﬁh,-
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Using (A 4), it is easy to also obtain
(FGZ,|Z,) = (2Z,|GF 2,) +f1[(GZ1)1222 (GZ1)2z21] +f2[(Gzl) Y222

_ay(Gzl)QZQQ]ﬁh + [219(F Zy), — 211 (F Z,)5)%,. (A5)

Appendix B. Renormalization of the bases X, and ffn

In this appendix, we show how to construct the renormalized bases X,, and Y,
from the usual bases X,, and Y,,, in order that X,, and Y, remain the basis for
zero cut-offs (k,=0). _

Looking for a solution in e** leads to search 4, and B,, in

¢, (7, y) = A, cosh(B,y),

for symmetric modes,
Yoz, y) = B, sinh(a,y) /ey,

(B1)
¢7L<x7 y) = An Sinh(ﬁny>/‘8ﬂ7 . .
for antisymmetric modes.
wn(x? y) = BTL COSh(any)a
where the scalar potential ¢,, and potential vector (0, 0, y,,) define

u = ik"¢’ﬂ + ayw”?

Up = =0 ¢ —ik ‘pm
(B2)

o/ =—(k; +26% — o), + 2ik,0,¥,,
to/ = 2ik, 0,0, + (ki + a2)¥,.

This is with «,= (k2 k,?)l/Q, 8,= (k2 k])l/Q, ki=w/c,= (p/,u)l/Qo) and
ki=w/c= (p/(}{+2,u))1/2w To ensure the solution satisfies the boundary
condition r,=t,=0, A, and B, must satisfy

M A =0 B3
Bn - Y ( )

M (k2 + a?)cosh(B,h)  —2ik, cosh(a,h) )
2ik,a, 08, sinh(8,h) (k2 + o?)sinh(e,h)

with

for symmetric modes,
(B4)
(k2 + o?)sinh(B,h) —2ik,a,8, sinh(a,h)
2ik, cosh(B,h) (k2 4+ o?)cosh(a,h)

for antisymmetric modes. )
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The dispersion relations D(k, w)=0 (Viktorov 1967) is det (M)=0,
( (K* + o?)*sinh(ah)cosh(8h) /a —4k*8 sinh(8h)cosh(ah),

for symmetric modes,

D(k, w)

(B5)
(k* + o®)?sinh(B8h)cosh(ah) /8 —4k*a sinh(ah)cosh(Bh),

for antisymmetric modes.

In our formahsm the vanishing of one of the two vectors X, = (U,, T,)"

=(— S, V )" is not acceptable. We have to ensure that this does not occur.
In order to see how the vanishing of these modes may occur we write them as
follows:

cosh(8,y) cosh(a,y)
X, =ik, A, + B, ,
2u,sinh(8,,y) u(ky + of)sinh(a,y) /o,
5 _2# COSh(any) :u(kr% + 26% - a%L)COSh(Bny)
Y’VL = ik”LB’VL + An M
—sinh(a,y)/e, B, sinh(8,y)

for symmetric modes and

X, =ik, 4, + B, ,
2u cosh(B,y) ,u(k% + a%)cosh(any)
Y, =ik,B, + A, ,
—cosh(e,y) cosh(8,y)

for antisymmetric modes.

For k,=0, some care has to be taken when either (i) for symmetric modes,
cosh(8,h) = k2 (for antisymmetric modes, sinh(8,h) = k2) or (ii) for symmetric
modes, sinh(oznh):k,% (for antisymmetric modes, cosh(a,h) =k2). In fact,
configuration (i) corresponds to a pure longitudinal mode and makes the X,
vanish (B,=0) and configuration (ii) corresponds to a pure transverse mode
and makes Y, vanish (A,=0). Then, it is sufficient to renormalize the modes
by dividing X, by B, and Y, by A, to avoid the vanishing of the modes at k,=0
A last step in the renormalization of the modes is needed because of the Lamé
modes, where for symmetric modes (a2 + k2) =cosh(a,h) vanishes (for
antisymmetric modes, (a2 + k2) =sinh(a,h) vanishes). For Lamé modes, the
ratio B,/A, diverges and this necessitates a new renormalization of the modes
Y ,, where this ratio would appear, by multiplying it by (a2 + &2).

Eventually the renormalized bases will be defined by X, Xn/B and
Y - Y (Oé +k72L)/An
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With Z., = A,/[B,(e + k3)] whose expression is deduced from (B 3),

7 —_ sinh(e,h) _ 2ik, cosh(a,h) )
o 2ik, 0,06, Sinh(ﬁnh) (a% + k%)zcosh(ﬁnh) ’

for symmetric modes,

(B6)
_ cosh(a,h) _ 2ik,a,B, sinh(a,h)
21k” COSh(ﬁ”h) ((X% + k%)QSinh(ﬁnh) ,
for antisymmetric modes,
we get, for symmetric modes,
Uy = ik, (o, + k2) Z.., cosh(B,y) + cosh(a,y),
Vi, = (af + k2)8,, sinh(8,,y) —ik,/ Z y sinh(a,y) /ay, B7)

Sp/u=—(af + k) (k; + 267 —ai)cosh(B,y) + 2ik,/ Z, , cosh(a,y),
T,/u = 2ik,B, (a2 + k,,%)ZC’n sinh(8,y) + (a2 + k2)sinh(a,,y)/a,,
and for antisymmetric modes,
Uy = ik, (o, + k3) Z.  sinh(B,y) /B, + o, sinh(a,y),
V, = (a% + k,%)cosh(ﬁny) —ik,/Z.,, cosh(e,y),
Su/p == (e, + kn) (k5 + 26, — a)sinh(B,y) /B, + 2ik,etn/ Z  sinb(er,y),
T,/ = 2ik,B,(02 + K2) 7., cosh(8,9) + (a2 + K2)cosh(a,y).

The two renormalized sets of vectors X,=(U,, T,)* and Y,=(—S,, V,)"
continue to verify the biorthogonality condition and permit to project the elastic
fields for ‘zero-coalescence’ of the mode wavenumbers k,=0. Note also that
vectors X, and Y, offer the advantage of being even functions of a,, 8, and k,,
and, consequently, they have no branch points.

It has to be stressed that this useful renormalization of Lamb modes has been
done owing to the formalism presented in this paper, i.e. the splitting of the
original four-vector (u, v, s, t)* into two two-vectors (u, t)" and (—s, v)".

A problem that we have not resolved remains in the choice of these two bases:
when two modes associated to wavenumbers k,, and k,+1 (=—k,) coalesce
on the imaginary axis or when two modes associated to wavenumbers k,, and

—km+1 (=k,,) coalesce on the real axis, the two vectors, although both non-zero,
are orthogonal and the method of projection fails (J,, vanishes).

Appendix C. Biorthogonality relation and expression of .J,,

The biorthogonality condition (Fraser 1976; Murphy & Li 1994) for an in-
plane problem can be written as: (,|y,,) = [(—u,$, + vy t,)dy = j,0,,,. With
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J,=(X,|Y,)=7j,(c2+k>)/(A,B,) and using the dispersion relations, we get

ok > o[, o, sinh(2a,h)
J, =iu {smh(Qanh)P(kn) +(k,—ay) |1 —ﬂ" Siﬂh(?ﬁnh)] }, (C1)

where ‘ &’ indicates ‘ +’ for symmetric modes and ‘ —’ for antisymmetric modes, and

c,n

Appendix D. Expression of matrices N;

¢ h
Z! vz z.,V:
. / c,n / . 2 n c,n’n
v {2Jn+2jn Zc,n+ h {UnSnﬂLlpw <kn,Zc,n+ K » ,
form=n,
N, (n,m) = h
1 k,U,U, '
| Wk ipw?® |2tk Z .V,
(k:?,ﬂ—k%)(]n [ { m UWLS”_'—]'pw < chn m C,TTLVI'LV’"L)} _h7
. for m=#n,
(D 1)
( h
1 Z! vz Z.,V:
-9 / 2 c,n hl . 2 n c,n’n
4Jn{ Jn+ ‘]n Zc,n * {UnSn+1pw (anc,7z+ k?? _h ’
for m=mn,
N4(n7m> =1 h
1 kU, U
h/ _k2US _|_ 2 m~n m_kZ VV
(k?ﬂ/—k%)Jn [ { n n m lp("‘) Zc7m n cn'ntm 7h7
\ for m=+#n.
(D 2)
(a) Biorthogonality condition
Equation (A 5) applied to Z;=X,, and Z,=Y,, leads to
(FGXn’ Ym) =(Xn’GFYm) + ikn[Van _Rn Vm]}—Lh (D 3)

+ ik [ Ty Upy — Uy T

On the other hand, we also have FGX,,=—k2X,, and GFY,,=—k2Y,,. This
leads to

Our normalization for X,, and Y,, leads to
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and its differentiated form

J7l16nm = (axXn’ Ym) + (Xn‘az Ym) + [thn Ym]ﬁh' (D 6)
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