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Acoustic, and more generally elastic, waves in solids are damped by several mechanisms, among which
dislocation motion is believed to play an important role. This is because an elastic wave interacts with a
dislocation causing it to oscillate in response, and the resulting transfer of energy from wave to dislocation
damps the acoustic vibrations. Recently, improved experimental techniques as well as improved numerical
methods have been able to probe in some detail this interaction, isolating the effect of a single dislocation, and
at this stage the theory, in its analytic form, is not sufficiently developed to provide quantitative comparison
with experimental data and computer simulations. There is thus a need for an improved theoretical study of this
issue. In this paper, we consider the interaction of transverse �T� and longitudinal �L� polarized waves in a
homogeneous and isotropic, three dimensional, continuum linear elastic medium interacting with a dislocation
segment pinned at both ends. An elastic wave incident upon such a dislocation segment is scattered, and the
resulting scattered wave is characterized by its scattering amplitudes, that account for possible T-L mode
conversions. Such scattering amplitudes are explicitly calculated. As a consequence, it is possible to calculate
the resulting interference patterns of incident with scattered wave, such as have been observed in recent
experiments �Shilo and Zolotoyabko, Phys. Rev. Lett. 91, 115506 �2003��. The energy loss per cycle is also
calculated using the optical theorem and results are shown to be in qualitative agreement with the results of
numerical experiments �Greaney et al., Comput. Mater. Sci. 25, 387 �2002��.
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I. INTRODUCTION

Acoustic, or elastic, waves in solids are damped by sev-
eral mechanisms, among which dislocation motion is be-
lieved to play an important role. Consequently, measure-
ments of ultrasound attenuation in solids have been used for
many years as a nonintrusive probe of those mechanical
properties of materials that are determined by dislocation be-
havior �see references in Ref. 1�, and there are many ongoing
efforts to better understand the dynamics of dislocations, es-
pecially the interaction between a wave and a single disloca-
tion. In recent years, improvements in experimental and
computational techniques have provided a strong motivation
to improve the existing theoretical understanding. Indeed,
these works provide measurements with sufficient accuracy
so they can be used to examine on a quantitative basis the
theoretical models. The interaction of an elastic wave with a
single dislocation segment has been studied recently in the
experiments of Shilo and Zolotoyabko.2–4 Using a technique
of stroboscopic x-ray imaging, they are able to visualize the
scattered wave front in a way so precise that it is possible to
make quantitative measurements. Their various experiments
have been performed for different incidences of the wave on
the dislocation segment, so that a correct interpretation of
their results necessitates a theory that captures the vector
character of the problem in terms of the various polarizations
of the elastic wave as well as the orientation of the segment
with respect to the direction of propagation of the incident
wave. In numerical experiments, Greaney et al.5,6 have stud-
ied the motion of a pinned dislocation segment and have

measured the energy loss per cycle for a single dislocation,
as opposed to attenuation due to multiple dislocation seg-
ments.

The basic mechanism of the elastic wave-dislocation in-
teraction was proposed in 1951 by Nabarro,7 who noted that
waves would be scattered by a dislocation because the mo-
tion induced by the incoming wave would generate the emis-
sion of a scattered wave. Thus, the mechanism involves two
steps, first, the motion of a dislocation in the presence of an
incident wave must be determined, and second, a represen-
tation of the elastic field generated by a moving dislocation
must be obtained. The pioneer works of the 1950s tackled
this problem using an electromagnetic analogy that is useful
in the case of a screw dislocation in interaction with an an-
tiplane shear wave in two dimensions, which is a scalar
problem.7–9 However, this analogy is no longer valid when
considering both longitudinal and transverse waves, each one
with its own propagation velocity. In 1963, Mura10 derived
from the Navier equations an integral representation for the
elastic field generated by a dislocation loop in three dimen-
sions in arbitrary motion, of which the case of an edge dis-
location studied by Kiusalaas11 is a particular case. The deri-
vation from the Navier equation of the equation of motion
for a dislocation in the presence of an external time-
dependent stress is due to Lund12 in 1988 on the observation
that the equations of dynamic elasticity follow from a varia-
tional principle. This work, together with the integral repre-
sentation of Mura10 provides the two steps needed for a full
description of the scattering of elastic waves by dislocations
in three dimensional elastic media, as Nabarro anticipated. In
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a previous study, we have tackled the two dimensional prob-
lem for both screw and edge dislocations13 and the results
have been shown to be in agreement with previous particular
cases mentioned above.7–9,11

A similar approach, i.e., involving the two steps of the
interaction, was developed during the 1950s to the 1980s by
Granato, Lücke, and co-workers.14–18 However, as discussed
in Ref. 1 their model applies within the framework of an
effective medium where the solution for the elastic field is a
plane wave, as opposed to a scattered wave, with spherical
wave fronts in the far field, expected when a single disloca-
tion is considered. This plane wave solution corresponds to
the so-called coherent wave resulting from a multiple scat-
tering process averaged over all realizations of the disordered
medium. This approach has been used in the case of an en-
semble of random distributed bidimensional19 and three
dimensional1 dislocations. In addition, the Granato-Lücke
approach considers a scalar model that certainly captures the
essence of the physics of the interaction between an elastic
wave and a random ensemble of dislocations but it does not
consider the many complexities due to the vector nature of
the variables involved in this interaction. For example, it
does not differentiate between edge and screw dislocations,
nor among the various polarizations available to an elastic
wave.

In a previous paper,13 we have described the interaction of
an elastic wave with a point dislocation in two dimensions
and in the limit of low temperatures where drag forces can be
neglected. The aim of this preliminary work was to describe
the theoretical framework in which the elastic wave-
dislocation interaction can be fully described. However, the
scattering cross section laws were divergent at low frequen-
cies because of the bidimensionality and a quantitative com-
parison with, say, experimental values of energy losses, was
not possible. The main purpose of the present paper is to
extend our previous study to the case of three dimensions
and to include internal friction effects that are present in real
problems.

The paper is organized as follows: Section II presents the
basic equations of the motion of a dislocation segment with
pinned ends submitted to an external oscillatory stress, and
the scattered wave due to dislocation motion. We consider
small amplitudes of the external stress, so that the model is
linear. For instance, the external stress is small enough to
maintain the segment of dislocation firmly anchored at the
two endpoints and possible formation of dislocation under
Frank-Read mechanism is not considered.20 It will be as-
sumed that the motion is subsonic and that the wavelength of
the incident wave 2� /k �k=kT, kL for transverse and longi-
tudinal waves, respectively� is large compared to the seg-
ment length L and to the amplitude of dislocation motion,
introducing a small parameter kL for this scattering problem.

Section III presents the derivation of the scattering ampli-
tudes that characterize the angular dependence of the scat-
tered waves for given orientations of both the dislocation
segment and the incident wave. This is done in a first Born
approximation, allowing us to obtain all elastic fields. An
illustrative example is given for the interference pattern ob-
served when the scattered wave superposes to the incident
wave, as it could be observed in numerical experiments and

it is here qualitatively compared with the interference pattern
experimentally obtained in Refs. 2 and 3. Section IV formu-
lates an optical theorem for polarized waves. This allows us
to calculate the energy loss by the incident wave due to scat-
tering per cycle, and the particular case numerically studied
in Refs. 5 and 6 is taken as example for comparison. In Sec.
V we present some concluding remarks. Some technical cal-
culations are collected in three appendixes.

II. BASIC EQUATIONS

In the rest of the paper, we adopt the following notations:
�� ,�� are the Lamé constants and � is the density of an
infinite, homogeneous, and isotropic medium, cL

����+2�� /�, cT��� /� denote the velocities of the longi-
tudinal and transverse elastic waves, respectively, and �
�cL /cT. � denotes the stress tensor, with �ij =cijkl�uk /�xl,
the vector u is the elastic displacement and cijkl=��ij�kl
+���ik� jl+�il� jk� is the elastic constants tensor. We shall use
also the velocity v, the time derivative of the displacement u.
The dislocation segment position is denoted X�s , t� and it is
locally oriented with a unit vector ��X� / �X��, where prime
denotes the derivative with respect to the Lagrangian param-
eter s. Time derivatives will be denoted by an overdot. The
dislocation between the two pinning points is assumed to be
straight at equilibrium �i.e., unbiased� with length L. In ad-
dition, the wavelength of the incident wave 2� /k �k=kL, kT
for the longitudinal or transverse polarizations� is assumed to
be large compared to both �i� the length L of the dislocation
segment and �ii� the amplitude of the dislocation motion.
Thus, we can consider � as the unit vector along the direction
of the segment at equilibrium. With X0 the center of the
dislocation segment at equilibrium, we also get k�X�s , t�
−X0��kL	1. We shall also assume that the dislocation line
oscillates at velocities low compared with cL, cT �subsonic
hypothesis�, and we do not consider nonlinear scattering ef-
fects �phonon wind21� �see Fig. 1�.

Finally, we consider a gliding edge dislocation segment,

so that Ẋ and the Burgers vector b are parallel for small
amplitude motion �the unit vector t denotes their common
direction� and both are perpendicular to �. We define the unit
vector nÆ�
 t.

The mechanism for the wave scattering is the following:
the incident wave hits the dislocation, causing it to oscillate
in response. The ensuing oscillatory motion generates outgo-
ing �from the dislocation position� elastic waves. The goal of
this section is to derive the equation of motion of an edge
dislocation line with pinned ends. This equation is then
coupled with an equation for the wave generated by the mo-
tion of the dislocation segment.

Before going further, let us remark that the study pre-
sented in this section is performed on a single segment but it
can be extended to a fragmented dislocation line as pictured
in Fig. 2 from the representation of Refs. 14, 22, and 23. In
that representation, a dislocation network, of total length LN
is fragmented into smaller segments of length L because of
high concentration of pinning points such as impurity atoms.
The pinning points can be fixed points or they can move as
pictured in Ref. 17. More generally, any given configuration
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of dislocation segments can be treated by superposition of
the elementary solution that is the object of the present sec-
tion. Only a random configuration necessitates a change in
the mathematical treatment.1,19

A. Equation of motion of a pinned dislocation segment

We consider a dislocation segment moving at low veloci-

ties, Ẋ	cL, cT with pinned ends. Low accelerations are also
assumed, so that the back-reaction of the radiation on the
dislocation dynamics can be neglected. Following Ref. 12
and under these hypothesis, the equation of motion of an
edge dislocation takes the form of the equation of motion for
a string endowed with mass and line tension, forced by the
usual Peach-Koehler force24,25

mẌk�s,t� + BẊk�s,t� − �Xk��s,t� = Fk�t� , �2.1�

and the associated boundary conditions at pinned ends
Xk�±L /2 , t�=0. In Eq. �2.1�,

m �
�b2

4�
�1 + �−4�ln��/�0� , �2.2�

defines a mass per unit length �with �, �0 the long- and
short-distance cutoff lengths, respectively� and

� �
�b2

2�
�1 − �−2�cT

2 ln��/�0� �2.3�

is the line tension, B is the drag coefficient �for a detailed
discussion on the drag, see Ref. 21� and Fk=�kjmmbi�ij the
Peach-Koehler force ��ijk denotes the usual completely anti-
symmetric tensor�.

This equation of motion is projected onto the glide direc-

tion t, and we get, for the line velocity Ẋ= Ẋktk �where re-
peated indices imply summation�

mẌ�s,t� − �X��s,t� = �b Mlk�luk�X,t� − BẊ�s,t� , �2.4�

with

Mlk � tlnk + tknl. �2.5�

Equation �2.4� is solved using u�X , t�	u�X0 , t� in the term
of the Peach-Koehler force, a valid approximation for low
amplitude motion. In the harmonic regime ei�t, we get

− �m�2 + i�B�X�s,�� − �X��s,�� = �bMlk�luk�X0,�� ,

�2.6�

whose solution, using the velocity v�x ,��=−i�u�x , t�, is

Ẋ�s,�� = −
4

�

�b

m
S̃�s,��Mlk�lvk�X0,�� , �2.7�

with

S̃�s,�� = 

N odd

1

N��2 − �N
2 + i�B/m�

sin�N�

L
�s + L/2�� ,

�2.8�

and

�N = N�1, with �1 ���

m

�

L
. �2.9�

Let us remark that, when kL is small, �1	��� /kL��� so
that the sum in Eq. �2.8� can be approximated by the first
term,

S̃�s,�� 	
1

�2 − �1
2 + i�B/m

sin��

L
�s + L/2�� .

The motion will be over-damped if B /2m�1 is larger than
one. This condition is roughly in agreement with the usual
critical value of the drag coefficient21,26

Bc = 2��/�cTL� , �2.10�

above which the dislocation motion becomes overdamped.
Equation �2.7� gives the displacement of the dislocation

line if the elastic displacement of the incident wave �through
the term vk�X0 ,��� is known. Note that Weertman27 obtained
an analytical solution for X�s , t�. Equations �2.7� and �2.8�

FIG. 1. Configuration of the dislocation segment anchored at
both extremities bowing under the action of an external stress that
results in the propagation of a transverse �T� and longitudinal �L�
waves �dislocation bow out is exaggerated for the sake of clarity�.
vL,T

inc denote the velocities associated with the external stress, kL,T the
corresponding wave vectors. X�s , t� denotes the current position
along the bowed line, X0 the center of the segment at equilibrium.

FIG. 2. Dislocation network of length LN fragmented into
smaller segments with pinned ends. The pinners can be fixed �a� or
movable with the network �b�.
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correspond to the Fourier series expansion of Weertman’s
solution. This representation allows us to obtain easily X�s , t�
in the long wavelength limit.

Next, an equation for the scattered wave is necessary. This
is the object of the following section.

B. Integral representation for the scattered wave

The elastic wave scattered by a moving dislocation can be
derived using the wave equation and the discontinuity rela-
tion �u�=b, first given in Ref. 10 �see also Ref. 19�. An
integral representation is obtained for the scattered velocity,

vm
s �x,t� = � jnhcijkl 

L
dt�ds biẊn�s,t��h

�

�xl


Gkm
0 �x − X0,t − t�� , �2.11�

where L represents the dislocation segment of length L and
where the Green tensor of free space G0 verifies

�
�2

�t2Gim
0 �x,t� − cijkl

�2

�xj � xl
Gkm

0 �x,t� = ��x���t��im.

�2.12�

In the integral representation above, X0 has been used in-
stead of X�s , t�. An exact form of the Green tensor can be
found in Refs. 11 and 28. Its asymptotic form for large x is

Gij
0 �x,�� 	

1

4��
�Px̂ij

cL
2

eikLx

x
+

�I − Px̂�ij

cT
2

eikTx

x
� ,

where Px̂ij � x̂ix̂ j and I−Px̂ are the projectors along the direc-
tions parallel and perpendicular to x̂ respectively, and with
ka=� /ca, ca=cL, cT.

III. SCATTERED ELASTIC FIELD

We calculate in this section the scattered field resulting
from the interaction of the elastic wave with a pinned dislo-
cation. This is done through the derivation of the scattering
amplitudes defined in Eq. �3.5� below, that account for pos-
sible mode conversions. From the scattering amplitudes, the
elastic fields can be obtained and an example is provided.

A. Scattering amplitudes

The integral representation of the scattered wave in Eq.

�2.11� is written substituting the solution Ẋ for the disloca-
tion velocity in Eq. �2.7�. In the frequency domain, we get

vm
s �x,�� =

8L

�2

�b

m

S���
�2 cijkl ti nj

�

�xl
Gkm

0 �x,��Mnp�nvp�X0,�� ,

where we have used � jnhẊnh=−Ẋnj and with

S��� �
��2

2L


−L/2

L/2

ds S̃�s,�� 	
�2

�2 − �1
2 + i�B/m

.

�3.1�

Using cijklbinj =�bMlk �M is defined in Eq. �2.5��, we get

vm
s �x,�� =

2i

�3��b2

m
�S���

�
cT

4L
xl

x2Mlk�Px̂km

cL
3 eikLx

+
�I − Px̂�km

cT
3 eikTx�Mnp�nvp�X0,�� . �3.2�

The scattering amplitudes are determined in a first Born ap-
proximation, with v=vinc on the right-hand side term of Eq.
�3.2�.

The general form of an incident wave propagating in the

k̂0 direction is given by

vinc�x,�� = ALeikLxk̂0 + ATeikTxŷ0, �3.3�

where both longitudinal and transverse polarizations, of am-

plitudes AL and AT, and directions k̂0 and ŷ0, respectively

�ŷ0 · k̂0=0� are considered.
The scattered wave is similarly split, vs=vL

s +vT
s , where vL

s

is the longitudinal scattered wave �parallel to the x̂ direction�
and vT

s is the transverse scattered wave �parallel to a ŷ direc-
tion with ŷ · x̂=0�. Using Eq. �3.2�, it is easily found that

vL
s �x,�� = −

2

�3��b2

m
�� cT

cL
�4

L S���


Px̂N�ALk̂0 +
cL

cT
ATŷ0� eikLx

x
,

vT
s �x,�� = −

2

�3��b2

m
�L S����I − Px̂�


N� cT

cL
ALk̂0 + ATŷ0� eikTx

x
, �3.4�

where N�Mx̂tk̂0M is an operator that depends on the direc-

tion x̂ of the scattered wave, and on the direction k̂0 of the
incident wave. The scattering amplitudes f , defined as the
angular response of the scatterer

vL
s �x,�� = �fLL�x̂�AL + fLT�x̂�AT�

eikLx

x
x̂ ,

vT
s �x,�� = �fTL�x̂�AL + fTT�x̂�AT�

eikTx

x
ŷ ,

are then simply obtained by identification with Eq. �3.4�. The
result is

fLL�x̂� = −
2

�3��b2

m
��−4 L S��� fL�k̂0�gL�x̂� ,

fLT�x̂� = −
2

�3��b2

m
��−3 L S��� fT�k̂0�gL�x̂� ,

fTL�x̂� = −
2

�3��b2

m
��−1 L S��� fL�k̂0�gT�x̂� ,

MAUREL et al. PHYSICAL REVIEW B 72, 174110 �2005�

174110-4



fTT�x̂� = −
2

�3��b2

m
� L S��� fT�k̂0�gT�x̂� , �3.5�

with gL�x̂�� tx̂Mx̂, gT�x̂�ŷ��I− x̂tx̂�Mx̂, fL�k̂0�� tk̂0Mk̂0

and fT�k̂0�� tk̂0Mŷ0. Note that the behavior for �→0 is
given by S���→−1/�1

2 instead of the divergence that was
obtained in two dimensional analysis.13

We choose the following conventions, illustrated in Fig. 3.

�i� The direction of the Burgers vector is along e1�t=e1�
and the direction of the dislocation line along e3��=e3�.

�ii� The geometry of the incident wave with respect to the
dislocation line is determined with Euler angles ��0 ,�0 ,�0�
and the corresponding rotation matrices R0=R�e3 ,

�0�R�e2 ,�0�R�e1 ,�0� : k̂0=R0e1 denotes the direction of the
incident wave �thus also its direction of longitudinal polar-
ization� and ŷ0=R0e2 denotes the direction of polarization of
the incident transverse wave.

�iii� Similarly, the geometry of the scattered waves is de-
termined using Euler angles �� ,� ,�� and the corresponding
rotation matrices R : x̂=Re1 denotes the direction of the scat-
tered wave �thus also the direction of its longitudinal polar-
ization� and ŷ=Re2 denotes the direction of polarization of
the transverse scattered wave. Note that the direction of ob-
servation x̂ where the scattered wave is considered depends
on �� ,�� only. The third Euler angle � that gives the direc-
tion of polarization of the transverse scattered wave in the
�e� ,e��-plane must be determined. The explicit form of the
rotation R is given in Eq. �A1�.

This convention is not the usual one for the calculation of
scattering amplitudes. Usually, the scattering direction x̂ is
measured with respect to the direction of the incident wave.
In our case, the forms of the scattering amplitudes are con-
siderably simpler to manipulate with the chosen conventions.
The scattering amplitudes take finally the form of Eqs. �3.5�
with

fL�k̂0� = cos2 �0 sin 2�0,

fT�k̂0� = cos �0�cos �0 cos 2�0 − sin �0 sin �0 sin 2�0� ,

gL�x̂� = cos2 � sin 2� ,

gT�x̂�ŷ = cos ��cos 2�e� − sin � sin 2�e��,

or equivalently�gT�x̂� = − cos ��1 − cos2 � sin2 2� ,

��x̂� = tan−1�sin � tan 2�� .
�

�3.6�

Details of the calculation are given in Appendix A. Typical
forms of the scattering functions are given in Fig. 4 for �0
=−� /5, �0=� /4, and �0=0.

B. Interference patterns

In practice, the scattered wave superposes with the inci-
dent wave to produce an interference pattern, that it should
be possible to see in numerical simulations as well as
laboratory experiments. Experimentally, Shilo and
Zolotoyabko2–4 have developed a technique of stroboscopic
x-ray imaging. By using a 580 MHz surface acoustic wave,
they are able to visualize the interference pattern resulting
from the interaction between acoustic waves and individual
dislocations in LiNbO3. Impressive contrast in a form of con-
centric rings can be seen in Refs. 2 and 3 for a dislocation
line located perpendicularly to the crystal surface.

This experimental configuration differs from our theoret-
ical one. For instance, because of the free surface, the waves

FIG. 3. �a� Convention chosen for the calculation of the scatter-
ing functions: the dislocation segment is along e3, the Burgers vec-

tor along e1. The incident wave propagates in the k̂0=R0e1 direc-
tion and the scattering functions are calculated in the x̂=Re1
direction with, in �b�, �c�, the definitions of the Euler angles
��0 ,�0 ,�0� for R0 and of the Euler angles �� ,� ,�� for R.
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excited in the experiment are surface waves, not bulk waves,
and the elastic Green tensor for free space used in the present
study should be replaced by the elastic Green tensor in a
half-space for an accurate comparison. Also, wavelengths of
a few �m are used in these experiments, so that our theoret-
ical assumption kL	1 will not hold for usual dislocation
lengths. However, we can think that the physics of the inter-
action between the acoustic wave and the dislocation does
not change significantly. Therefore, we suggest to study the
configuration illustrated in Fig. 5 as an example to rational-
ize the trends and patterns observed in experimental visual-
izations. A dislocation segment, of length L is located at a
distance d from the P-plane �the free surface� and is perpen-
dicular to this plane. The incident wave propagates in the
P-plane and hits the dislocation with an incident angle �0
with the Burgers vector. Finally, the wave has a longitudinal
polarization and a transverse polarization perpendicular to
the P-plane, as it is the case for surface waves. To calculate
the interference pattern, it is then sufficient to �i� derive the
scattered wave vs�x� using the set of Eqs. �3.5� and �3.6� with
�0=0, �0=� /2, �ii� to extract the v3

s�x� component that is
effectively measured by SAW technique, and finally �iii� to
restrict the expression of v3

s�x� to v3
s�x1 ,x2�, its expression in

a plane x3=d. With �r=�x1
2+x2

2 ,�=tan−1�x2 /x1�� the polar
coordinates in the P-plane, we get

v3
s�r,�� = −

4

�3

�b2

m
S���sin 2�0AL��−3eikL

�r2+d2
− eikT

�r2+d2
�



d Lr2 cos � sin �

�d2 + r2�2 . �3.7�

Note that only the longitudinal wave interacts with the dis-
location for that incidence and generates both L and T waves
due to mode conversion. Interference results from the super-
position of the scattered wave v3

s with the transverse incident
wave

v�r,�� = v3
s�r,�� + ATeikT cos��0−��x �3.8�

in the P-plane. A typical form of the interference pattern is
shown in Fig. 6�b� using �=2� 580 MHz, kT
=2� /6��m�−1, d=10 to 100 �m and arbitrary values of S
and L �these two values give the weight of the scattered wave
with respect to the incident one�. Those theoretical patterns
provide the pictures which could be compared qualitatively
with those observed in Refs. 2,3. Figure 6�c� shows the
modulation along a typical radius at constant �, a figure to be
compared with Fig. 6 in Ref. 3, where a calculation is done
assuming a constant scattering function. The aim of this cal-
culation is to show that our approach can be helpful in the
interpretation of these new experiments and that further the-
oretical developments along this direction �for instance the
use of the appropriate Green function� will allow quantitative
comparison.

FIG. 4. Typical forms of the scattering amplitudes as a function
of the direction x̂ �a� fLL�x̂� and fLT�x̂�, having the same form given
by gL�x̂�; �b� fTL�x̂� and fTT�x̂�, having the same form given by
gT�x̂� for �0=−� /5, �0=� /4, and �0=0.

FIG. 5. A dislocation is located at a distance d from a free
surface �here a P-plane� and its line is perpendicular to this plane
�as in Fig. 1, dislocation bow out is exaggerated for the sake of
clarity�. The incident wave has both shear and longitudinal polar-
ization; the shear polarization is perpendicular to the P-plane. The
interference between the incident shear wave �along e3� and the e3-
component of the scattered wave is observed in the P-plane.
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IV. THE OPTICAL THEOREM AND ENERGY LOSSES

A. The optical theorem for polarized waves

The time averaged total energy flux �a into a sphere con-
taining the dislocation is �a= 1

2Re�dS �v*. Decomposing
the stress � and velocity v into a sum of the incident part and
scattered part �=�inc+�s, v=vinc+vs, leads to the definition
of the scattered energy flux �s=− 1

2Re�dS �svs* and total
energy flux, �t=�a+�s. Cross sections are usually defined
normalizing the fluxes �a,s,t with the incident flux �inc

=�cT��AL
2 +AT

2�. At leading order in 1/x, the term �v* dS
reduces to

� x2d��cL
2 �ur

�x
vr

* + cT
2� �u�

�x
v�

* +
�u�

�x
v�

*�� ,

where d�=cos �d�d�. It is shown in Appendix B that, for
an incident wave of the form �3.3�, the scattered and total
energy fluxes are

d�s

d�
�x̂� =

�cT

2
���fLL�x̂�AL + fLT�x̂�AT�2

+ �fTL�x̂�AL + fTT�x̂�AT�2� ,

FIG. 6. From left to right, d=10, 50, and 100 �m, �a� e3 component of the scattered field in the P-plane, following Eq. �3.7�. The
horizontal axis coincides with the direction of the incident wave. �b� Resulting interference pattern �Eq. �3.8��. �c� Typical modulation along
a radius.
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�t =
2�

�
�cT

2 Im��2�fLL�k̂0�AL + fLT�k̂0�AT�AL

+ c�k̂0��fTL�k̂0�AL + fTT�k̂0�AT�AT� , �4.1�

where c�k̂0�� tŷ��0 ,�0�ŷ0=cos����0 ,�0�−�0�. This provides
a relation between total energy flux and imaginary part of
scattering amplitudes along the forward scattering direction
usually known as an optical theorem. A more explicit form
can be provided using Eqs. �3.5�, in which case we find

�s =
16

15�5� 2

�2 − 1���b2

m
�2

�cTL2�S����2F�vinc�

	
16

15�5� 2

�2 − 1���b2

m
�2


�cTL2F�vinc�
�4

��2 − �1
2�2 + �2B2/m2 ,

�t = −
4

�2�cT
2L��b2

m
�Im�S���

�
�F�vinc�

	
4

�2�cT
2L��b2

m
�F�vinc�

�2B/m

��2 − �1
2�2 + �2B2/m2 ,

�4.2�

where

F�vinc� � ��−1fL�k̂0�AL + fT�k̂0�AT�2, �4.3�

is a function that depends only on the characteristics of the

incident wave �the incident direction k̂0 and the amplitudes
AL and AT�. The scattering amplitudes fL and fT are given in
Eqs. �3.6�. The details of the calculation are given in Appen-
dix B.

In our case, the scattering functions have been calculated
in the first Born approximation. We can conclude that the
absorption is given by the energy flux �a	�t at leading
order but no conclusion is possible for higher order. Notably,
when no internal viscosity exists �B=0�, we get �a	0.

B. The energy loss per cycle

The energy loss per cycle �W is, at leading order,

�W �
2�

�
�t 	

8

�
�cT

2L��b2

m
�F�vinc�

�B/m

��2 − �1
2�2 + �2B2/m2

�4.4�

with F�vinc� defined in the preceding section in Eq. �4.3�.
Through this function F, the energy loss depends on the di-
rection of the incident wave. This dependence is illustrated in
Fig. 7.

For some directions of incidence the Peach-Koehler force
vanishes, there is no interaction with the dislocation, and
there is no energy loss. Specific cases are for an incident
wave �either T or L� propagating along the dislocation line or
for an incident L-wave propagating in a direction parallel or
perpendicular to the Burgers vector b �Fig. 7�a��. Also no

interaction occurs for an incident T wave having a polariza-
tion along the dislocation line �Fig. 7�c��. The opposite ex-
treme is given by directions of maximum loss, corresponding
to a maximum interaction. For instance, for a T-wave propa-
gating along the direction of b with polarization perpendicu-

FIG. 7. Dependence F�vinc� of the energy loss with the charac-

teristic k̂0 and ŷ0 of the incident wave. �a� Dependence on the
direction of an incident L-wave �AT=0� for which F�vinc�
= fL

2��0 ,�0�. The dependence on the direction of the characteristics
of an incident T-wave �AL=0 for which F�vinc�= fT

2�� ,�0 ,�0�, with
�0 an extra variable� is represented for a polarization in the
�e�0

,e�0
�-plane �b� along e�0

��0=0� or �c� along e�0
��0=� /2�. For

instance, for an incident T-wave propagating along the Burgers vec-
tor e1 for �0=�0=0, �b� corresponds to a polarization along e�0
=e2 perpendicular to the slip plane, and �c� corresponds to a polar-
ization along e�0

=e3 parallel to the dislocation line. Vectors kL,T and
the corresponding direction of polarization �in dotted lines� are rep-
resented for a particular incidence ��0=�0=0� on each plot.
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lar to the slip plane �in the direction of n� or propagating
perpendicularly to the slip plane with a polarization parallel
to b �Fig. 7�b��.

Another way to understand the function F�vinc� is to in-
troduce the resolved stress �r that appears in the Peach-
Koehler force when it is written in a scalar form F=b�r. In
the chosen conventions, � is the component �12�X0=0� of
the stress tensor at the position of the dislocation. It is easy to
see that the function F�vinc� is recovered in the strength of
the resolved stress

�r = �cT��−1fL�k̂0�AL + fT�k̂0�AT� . �4.5�

C. Energy loss versus frequency, comparison
with a numerical experiment

We adopt in this section the following expression for the
energy loss, using Eqs. �4.4� and �4.5�:

�W =
8

�
��b2

m
�L

�
�r

2 �B/m

��2 − �1
2�2 + B2�2/m2 . �4.6�

The variation of �W with frequency, in the limit �	�1,
is straightforward. When � becomes comparable to �1 sev-
eral regimes must be distinguished. In the underdamped re-
gime, �W is an increasing function of frequency up to the
resonance frequency �1. In the overdamped regime, the en-
ergy loss reaches a maximum �Wmax at frequency �max,

�Wmax =
4

�3

b2L3

�
�r

2 for �max = �2 �

BL2 � �1. �4.7�

At frequencies low compared with �max, there is a linear
increase with frequency, while at frequencies large compared
to �max it decreases as 1/�. It follows also that an increase in
� increases the energy loss and shifts the peak to higher
frequencies while an increase in B simply shifts the peak to
lower frequencies, a natural trend for a damped linear oscil-
lator.

These behaviors are illustrated in Fig. 8 where the energy

loss has been normalized with W0=8/���b2 /m�L�r
2 / ���1

2�
	�32/�2���r

2 /��L3. Incidentally, note that the energy W0

differs from the incident energy defined in Refs. 14 and 25.
Using dimensional arguments, it is possible to define the
incident energy in a volume L3 as Winc=�incL3 /cT, with
�inc=�cT��AL

2 +AT
2� but no general relation exists between �r

and �inc. As previously seen, this is because the efficiency of
the interaction with the dislocation depends on the direction
of the polarizations of the incident wave. Thus, whatever the
strength of incident energy Winc, ineffective directions make
W0 vanish.

We consider now a configuration numerically studied in
Refs. 5 and 6. Those calculations are based on a continuum
simulation of dislocation dynamics, when each segment of
the dislocation line between the two endpoints verifies an
equation of motion similar to our Eq. �2.1� where the inertial
term is neglected and where the line tension is taken into
account through the so-called self-stress.29,30 The energy loss
is defined as

�W =�
t

t+2�/�

dt �rb cos �t
�A

�t
dt� , �4.8�

where A�t���Lds X�s , t� denotes the area swept by the dis-
location line, �r denotes the resolved stress, and angular
brackets denote the average over several cycles because the
numerical time evolution is not perfectly periodic. It is
shown in Appendix C that this definition is equivalent to our
definition in Eq. �4.6�, with

A�t� = −
8

�2

bL

m
�r� ��2 − �1

2�cos �t − �B/m sin �t

��2 − �1
2�2 + �2B2/m2 � ,

�4.9�

when �r�t�=�r cos �t.
To make more precise the independence of �W with re-

spect to the mass in the overdamped regime, note that Eq.
�4.6� can also be written, using Eq. �2.9�,

�W =
8

�
b2L�r

2 �B

�m�2 − ���
L �2�2 + �2B2

, �4.10�

and the term in m�2 can be neglected for overdamped re-
gime B�Bc and �	�1. In our model, a precise value of �
in Eq. �2.3� needs the ratio of the long- over small-cutoff
lengths to be known �usually, ��L and �0�b�. Taking
ln�� /�0� of order one, we can calculate the curve �W��� in
the same conditions as described in Refs. 5 and 6 and with-
out any additional adjustable parameter, a L=1 �m disloca-
tion line is driven by a �r=0.5 MPa sinusoidal stress in the
range 103–107 Hz. The other constants are b=2.86 A, �
=26.5 GPa, �=0.347 �with � the Poisson’s ratio, so that �
=�2�1−�� / �1−2��� B=0.08 Pa s, and we take �
=2300 kg/m3 for aluminum. Figure 9 shows the curve ob-
tained in comparison with numerical results of Ref. 6. The
results reasonably compare. The values of �max are in good
agreement but the energy maximum is a factor about 2.5
higher in numerical experiments. This discrepancy is not due
to a difference in the line tension value because in that case

FIG. 8. Energy loss �W, normalized with W0��32/�2�

��r

2 /��L3, as a function of the frequency ���1	cT� /L from Eq.
�2.9�� for B /Bc=10−4 �underdamped regime�, B /Bc=10,104 �over-
damped regimes�. Bc=2m�1	2�� / �cTL� from Sec. II.
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�max would be different as well. Further work is needed to
understand this discrepancy.

Note also that the calculations of Greaney et al. do not
include radiation. However, direct comparison with our cal-
culation remains possible at first order. Indeed, at this first
order, the equation for the motion of the dislocation in Eq.
�2.1� has the form of the equation of motion for a string
forced by an harmonic stress �v=vinc in the Peach-Koehler
force�, as considered in Ref. 6.

V. CONCLUDING REMARKS

The scattering by a dislocation segment has been investi-
gated in the low frequency regime with respect to the natural
oscillation frequency of the dislocation �kL	1�. Conven-
tional experiments, being performed in the kHz to MHz re-
gime, involve wavelengths ranging from a few meters to a
few millimeters, well above typical micrometer length of dis-
locations. However, care should be taken when applying the
theory to explain recent experiments reaching the GHz fre-
quency regime.

Also, calculations have been performed considering a
gliding edge dislocation. Many real materials involve mixed
dislocations whose Burgers vector is the sum of edge and
screw dislocation Burgers vectors. Since all phenomena dis-
cussed in this study are linear, the case of mixed dislocations
can be obtained by superposition. Also, since continuum
elasticity is considered, there is no restriction on the value of
the Burgers vector which does not need to be a lattice vector
and our results apply without change to partials.

The interaction of an elastic wave with a single disloca-
tion has been characterized by the scattering functions and it
has been shown that the strength of the interaction depends
on the frequency and on the characteristics of the incident
wave. This is a step forward which, we expect, will allow us
to enable a quantitative comparison between theory and
modern experiments2–4 and, on this basis, the extraction with
high precision of important parameters such as dislocation
viscosity. Our scattering formalism, that takes into full ac-
count the vector nature of the elastic wave dislocation inter-
action, can deal with these new situations that involve free
surfaces and short wavelengths �kL� 1� such as are used in
SAW experiments.2–4

Finally, a natural extension of the present study is to con-
sider a random distribution of dislocations to account for
collective behavior, a study that is presented in Ref. 1.
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APPENDIX A: TECHNICAL CALCULATIONS
ON THE SCATTERING FUNCTIONS

We define the rotation matrix R
�R�e3 ,��R�e2 ,��R�e1 ,��,

R = �cos � cos � − sin � cos � − sin � cos � sin � sin � sin � − sin � cos � cos �

cos � sin � cos � cos � − sin � sin � sin � − cos � sin � − sin � sin � cos �

sin � cos � sin � cos � cos �
� �A1�

defined with the Euler angles �� ,� ,�� is the matrix from
�e1 ,e2 ,e3� to �er ,e� ,er
e��, as illustrated in Fig. 10.

The scattering functions are defined in Eqs. �3.5� with

gL�x̂�� tx̂Mx̂, gT�x̂�ŷ��I− x̂tx̂�Mx̂, fL�k̂0�� tk̂0Mk̂0 and

fT�k̂0�� tk̂0Mŷ0. Without loss of generality, we choose b
=be1, n=e2 and �=e3, so that M takes a simple form

M = e1
te2 + e2

te1. �A2�

The polarizations AL and AT of the incident wave can have
any direction with respect to the dislocation segment so that
we note AL=ALR0e1 and AT=ATR0e2, where R0 is the rota-
tion matrix of Euler angles ��0 ,�0 ,�0� �the corresponding
configuration is illustrated in Fig. 3�. This means also that the

FIG. 9. Energy loss calculated from Eq. �4.6� in solid line with
values taken from Ref. 6, circles �with dashed line� indicate the
values obtained from the corresponding numerical experiments
�from Fig. 3 in Ref. 6�.
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incident wave propagates along the direction of vector R0ê1.
Similarly, we define the direction of observation x̂=Re1

�this direction depends only on �� ,�� in spherical coordi-
nates�. The polarizations of the scattered waves are denoted
AL=ALRe1 �along the direction of observation� and AT
=ATRe2. The direction of the shear wave y has one more
degree of freedom � than the compressional wave, this angle
being a priori a function of the geometry of the dislocation
segment and of the direction of observation. It will be shown
below that the direction of polarization of the shear wave
depends only on the direction of observation, that is �
=��� ,��.

The derivation of the functions f is below, with k̂0
= �cos �0 cos �0 ;cos �0 sin �0 ; sin �0�

fL�k̂0� � tk̂0Mk̂0 = 2R0,11R0,21 = cos2 �0 sin 2�0,

fT�k̂0� � tk̂0Mŷ0 = R0,11R0,22 + R0,21R0,12

= cos �0�cos �0 cos 2�0 − sin �0 sin �0 sin 2�0�
�A3�

gL is easily obtained, with x̂= �cos � cos � ;
cos � sin � ; sin ��

gL�x̂� � tx̂Mx̂ = 2R11R21 = cos2 � sin 2� . �A4�

To get gTŷ, we find its components along e� and e�,

gT�x̂�cos � = te��I − x̂tx̂�Mx̂ = te��e1
te2 + e2

te1�x̂ − gL
te�x̂

= e�,1x̂2 + e�,2x̂1 = cos � cos 2�

gT�x̂�sin � = te��I − x̂tx̂�Mx̂ = te��e1
te2 + e2

te1�x̂ − gL
te�x̂

= e�,1x̂2 + e�,2x̂1 = − cos � sin � sin 2� �A5�

that can be written as

gT�x̂�ŷ = cos ��cos 2�e� − sin � sin 2�e�� , �A6�

or

gT�x̂� = − cos ��1 − cos2 � sin2 2� ,

��x̂� = tan−1�sin � tan 2�� . �A7�

APPENDIX B: TECHNICAL CALCULATIONS
FOR THE DERIVATION OF THE SCATTERING

AND TOTAL CROSS SECTIONS

1. On the scattered cross section

The scattered energy flux is defined by �s

=− 1
2Re�dS �svs*, where dS=x2d�x̂ �d� is the solid angle�.
We choose spherical coordinates, where vr

s=vL
s , v�

s

=vT
s tŷe� and v�

s =vT
s tŷe�. The stress tensor is written at lead-

ing order in 1/x, �rr	�cL
2 �ur /�x, �r�	�cT

2 �u� /�x and �r�

	�cT
2 �u� /�x. We thus get

�s = −
�

2
Re dS�cL

2 �ur
s

�x
vr

s* + cT
2� �u�

s

�x
v�

s * +
�u�

s

�x
v�

s *��
=

�

2
Re dS�cL�vr

s�2 + cT��v�
s �2 + �v�

s �2�� , �B1�

where we have used that �ua /�x=−va /a, a=cL, cT. We thus
get, using the general definition of the scattering amplitudes
in Eqs. �3.5�,

�s =
�

2
 d��cL�fLLAL + fLTAT�2 + cT�fTLAL + fTTAT�2� ,

�B2�

that is the first relation of Eq. �4.1�
Let us use now our particular expression of the scattering

amplitudes in Eqs. �3.5�,

�s =
4

�6��b2

m
�2

L2�S����2
�

2
cT d����−2gL

2 + gT
2�


��−1fLAL + fTAT�2� . �B3�

The function ��−1fLAL+ fTAT�2 depends only on the charac-
teristic of the incident wave. The integration over d�
=cos �d�d� is performed using Eqs. �3.6� for �−2gL

2 +gT
2

= ��−2−1�cos4 � sin2 2�−cos2 �, leading to �d���−2gL
2 +gT

2�
=8��2�−2−1� /15 and

�s =
16

15�5 �2�−2 − 1��cT��b2

m
�2

L2�S����2F�vinc� , �B4�

where

F�vinc� � ��−1fL�k̂0�AL + fT�k̂0�AT�2, �B5�

with fL, fT given by Eqs. �3.6�. This equation is the first
relation of Eqs. �4.2�.

2. On the total cross section

The total energy flux is defined by �t= 1
2Re�dS��svinc*

+�incvs*�. With the same notations as in the preceding sec-

tion, we easily get that �svinc=−�cT��vL
s tx̂+vT

s tŷ��vL
inck̂0

+vT
incŷ0�* and �incvs= ��svinc�* tk̂0x̂. We thus have

 dS �svinc* = −
�cT

2
 x2d���vL

s tx̂ + vT
s tŷ�


�vL
inck̂0 + vT

incŷ0�*,

FIG. 10. Euler angles.
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 dS �incvs* = −
�cT

2
 x2d���vL

s tx̂ + vT
s tŷ�*


�vL
inck̂0 + vT

incŷ0�tk̂0x̂ . �B6�

Let us calculate the first of the integrals in the above Eqs.

�B6�. The terms in vL
inc*, vT

inc* introduce a term in e−ik tk̂0x̂

=e−ikxG��,��, k=kL ,kT �namely G�� ,��=cos � cos �0 cos��
−�0�+sin � sin �0�. It is now convenient to define the ge-
neric integral

I�g,k� �  x cos �d�d� g��,��e−ikxG��,��

=
2i�

k
g��0,�0�e−ikx, �B7�

where we have used twice a stationary phase approximation,
valid at large distances from the dislocation, kx�1, with �
and �. We get

 dS �svinc* = −
�cT

2
�eikLxI���fLLAL + fLTAT�AL

tx̂k̂0,kL�

+ eikTxI���fTLAL + fTTAT�AL
tŷk̂0,kL�

+ eikLxI���fLLAL + fLTAT�AT
tx̂ŷ0,kT�

+ eikTxI��fTLAL + fTTAT�AT
tŷŷ0,kT�x̂�

= − �cTi����fLL�k̂0�AL + fLT�k̂0�AT�
AL

kL

+ �fTL�k̂0�AL + fTT�k̂0�AT�
AT

kT
c�ŷ0�� . �B8�

We have used that x equals k̂0 in the forward direction �

=�0, �=�0, and that tŷ��0 ,�0�k̂0= tx̂��0 ,�0�ŷ0=0 �this im-
plies that the coupling between AL and AT vanishes�. How-
ever, ŷ��0 ,�0� differs in general from ŷ0 and we denote

c�k̂0�� tŷ��0 ,�0�ŷ0=cos����0 ,�0�−�0�. The same procedure
applied to the second integral in Eqs. �B6� gives

 dS �incvs* = �cTi����fLL�k̂0�AL + fLT�k̂0�AT�
AL

kL

+ �fTL�k̂0�AL + fTT�k̂0�AT�
AT

kT
c�ŷ0��*

.

�B9�

Coming back to �t, we finally get

�t = 2��cT Im���fLL�k̂0�AL + fLT�k̂0�AT�
AL

kL

+ �fTL�k̂0�AL + fTT�k̂0�AT�c�ŷ0�
AT

kT
� , �B10�

that is equivalently written in the form of the second relation
in Eqs. �4.1�.

Again, we develop the previous relation in our particular
case. Using Eqs. �3.5�, we get

�t = −
4

�2�cT
2L��b2

m
�Im�S���

�
���−1fL�k̂0�AL + fT�k̂0�AT�


��−1gL�k̂0�AL + gT�k̂0�c�ŷ0�AT� . �B11�

Using Eqs. �3.6�, it is easy to see that gT�k̂0�c�ŷ0�
=gT�k̂0�tŷ0ŷ= fT�k̂0�, from which we finally have

�t = −
4

�2�cT
2L��b2

m
�Im�S���

�
�F�vinc� , �B12�

with F�vinc� is defined in Eq. �B5�. This equation is the sec-
ond relation of Eqs. �4.2�.

APPENDIX C: ON ENERGY LOSSES

The energy loss is often defined as the work done by the
Peach-Koehler force to displace the dislocation

�W = 
t

t+2�/�

dt
L

ds F�s,t�
�X

�t
�s,t� . �C1�

For a sinusoidal resolved stress �r�X0 , t�=�r cos �t, all
quantities are written as Y�x , t�=Re�Y�x ,��e−i�t�. Defining
A�t�=�Lds X�s , t� the area swept by the dislocation line and
assuming the force F�s , t� equal F�X0 , t�=�rb cos �t �this is
the approximation kL	1�, we get

�W = 
t

t+2�/�

dt �rb cos �t
�A

�t
. �C2�

This Eq. �C2� is the expression used in the numerical experi-
ments of Ref. 5,6. The area swept by the dislocation line is
deduced from Eq. �2.7� using that �Mlk�lvk�X0 ,��=−i��r

and Eq. �3.1�,

A�t� = −
8

�2

bL

m
�r Re� e−i�t

�2 − �1
2 + i�B/m

�
= −

8

�2

bL

m
�r� ��2 − �1

2�cos �t − �B/m sin �t

��2 − �1
2�2 + �2B2/m2 � .

�C3�

We finally obtain

�W =
8

�2

b2L

m
�r

2
t

t+2�/�

dt
�2B/m

��2 − �1
2�2 + �2B2/m2 cos2 �t

=
8

�

b2L

m
�r

2 �B/m

��2 − �1
2�2 + �2B2/m2 . �C4�

Equation �C4� corresponds to our expression of the energy
loss given in Eq. �4.6�.
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