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A Nonuniformly Stretched Vortex
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A stretched vortex model is proposed which includes a nonuniform stretching in the radial direction
that is clearly present in real flows, as well as a slow variation of velocity profiles along the vortex axis.
Both features of this boundary layer approximation depart from the classical Burgers solution. This
model is shown to be in very good agreement with experimental velocity measurements.
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FIG. 1. Theoretical vortex model. The z axis is directed along
the vortex axis and z � 0 defines the center of the channel and
as the vorticity flux across any surface of radius much
larger than r0. In the following, spatial coordinates z and

the stagnation point. ��r; z� denotes the axial stretching and
� � @zVz�r � 1; z � 0� > 0 the external stretching at z � 0.
Numerical simulations [1,2] as well as real experi-
ments [3] indicate that, in turbulent flows, vorticity is
concentrated in localized regions in the form of filaments.
Since strain and vorticity are dynamically coupled in the
Navier-Stokes equations, it is natural to investigate how
such filamentary structures undergo the action of stretch-
ing. The Burgers solution [4] Vr � ��r=2, V� � ��1�
exp���r2=4���=2�r, Vz � �z (Vr, V�, and Vz, respec-
tively, denote the radial, azimuthal, and axial velocity
component) or its asymmetric companion [5] constitute
paradigmatic models for a viscous filament of circulation
�, stretched along its axis. However, the stretching @zVz
of such analytical velocity fields remains radially
constant, a feature which departs from what has been
observed in experimental stretched filaments [6,7]. The
present work defines a heuristic model including this
radial dependence and a slow evolution of @zVz along
the vortex axis, i.e., an explicit z dependence of radial
and azimuthal velocities. Both features are new and
important when modeling stretched vortices in turbulent
flows. Indeed, such characteristics that have been ob-
served in experimental situations (in particular, the one
presented below), may affect the vortex stability or the
value of various quantities when compared to the classi-
cal Burgers case. For instance, it has been experimentally
checked that the global energy balance of the stretched
vortex is very much modified due to an extra energy
dissipation term caused by the axial velocity shear
@rVz�r; z�.

The theoretical model.—Let L and r0 be the length
scale of variation of the stretched vortex, respectively,
along its axis and along the radial direction. The first one
L is given by the global flow geometry while the second
one r0 �

���������
�=�

p
is determined by the balance between

external stretching � � @zVz�r � 1; z � 0� > 0 and vor-
ticity diffusion by viscosity �. The length r0 provides a
scale for the region in which vorticity is localized (the
inner region of Fig. 1). Circulation � is practically defined
0031-9007=04=92(5)=054504(4)$22.50 
r are put in a nondimensional form using scales L and r0,
velocity components Vr; V�; Vz, and pressure p using,
respectively, �r0, �=2�r0, �L, and ���=2�r0�2. The
flow is assumed to be incompressible, axisymmetric,
and symmetric with respect to the stagnation point lo-
cated at �r; z� � �0; 0�. The dynamics can then be com-
pletely written in terms of axial stretching � � @zVz (see
Fig. 1) and axial vorticity ! � 1=r@r�rV�� since

Vr�r; z� � �
1

r

Z r

0
r0��r0; z� dr0;

V��r; z� �
1

r

Z r

0
r0!�r0; z� dr0;

Vz�r; z� �
Z z

0
��r; z0� dz0:

(1)

Two dimensionless parameters naturally appear in the
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model: the inverse of a Reynolds number � � 2��=� and
the aspect ratio �1 � r0=L. If they are both assumed
small, the axisymmetric incompressible Navier-Stokes
equations at leading order read as a boundary layer ap-
proximation

Vr!
 Vz@zV� � @r!; (2)

�Vr@r 
 Vz@z�Vz �
1

r
@r�r@rVz�

� T2@z

 
p�1; z� �

Z 1

r

V2
�

r0
dr0

!
: (3)

The term in T2 � ��1=��2 expresses the effect of the
pressure gradient @zp�r; z�. It is composed of the contri-
bution of an external pressure gradient @zp�1; z� and of
the centrifugal forces.

The ansatz,

��r; z� � ��0��r� 
 ��2��r�z2;

!�r; z� �!�0��r� 
!�2��r�z2;
(4)

is proposed for systems (2) and (3). From Eq. (1), veloci-
ties Vr, V� should take the same polynomial form in z and
velocity Vz should be of the form az
 bz3. This heuristic
expression satisfies the symmetry with respect to the
stagnation point at z � 0 and can be seen as a truncated
Taylor expansion which contains a feature found in ex-
perimental stretched vortices: the evolution of the vortex
core along the vortex axis. Within this approximation, the
external pressure reads as p�1; z� � �z2=2T2, and
stretching tends for large r (the outer region of Fig. 1)
towards ��r! 1; z� � 1
 B=2z2. The term B �
2��2��1� precisely introduces the nonuniformity of
stretching in the axial direction, and ��0��1� � 1 by
definition since the external stretching � � @zVz�r �
1; z � 0� > 0 is a scaling parameter in the nondimen-
sionalization procedure. In the spirit of this truncated
expansion, the terms in z0, z, and z2 are identified in
systems (2) and (3) and higher orders are discarded.
First, we identify the various powers of z in Eq. (2).
The order z0 provides a relation between axial vorticity
!�0��r� and stretching ��0��r� which can be easily solved
as follows:

!�0��r�

!�0��0�
� exp

 Z r

0
V�0�
r dr0

!

with V�j�
r ��

1

r

Z r

0
r0��j� dr0:

(5)

The quantity !�0��0� is determined so that the nondimen-
sional circulation is equal to one as imposed by our non-
dimensionalization procedure. The identification of
power z terms in Eq. (2) is trivially satisfied and the z2

terms lead to a second relation:

V�2�
r !�0� 
 V�0�

r !�2� 
 2��0�V�2�
� � @r!

�2�

with V�j�
� �

1

r

Z r

0
r0!�j� dr0:

(6)
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Finally, let us consider the identification of powers of z
in Eq. (3): The even powers z0 and z2 identically vanish
and the z terms provide a last condition:

��0�2 �
@r��0�

r

Z r

0
r0��0� dr0 �

1

r
@r�r@r�

�0�� � 1
 T2F:

(7)

Quantity F � 4
R
1
r �V

�0�
� V

�2�
� =r

0� dr0, which depends on
��0��r�, V�2�

� �r�, quantitatively expresses that the pressure
gradient, generated along the axis because of the conical
nature of the stretched vortex, induces an internal jet.

The system of Eqs . (5)–(7) is not closed. Such an
indeterminacy is typical of boundary layer equations: It
does not originate from ansatz (4) but was already present
in systems (1) and (2). For instance, in a classical bound-
ary layer flow, the streamwise velocity profile at the in-
flow region can be freely chosen. In the present case, one
might impose a relation between V�2�

� �r� and ��0��r�. As a
first attempt, the closure V�2�

� � 0 can be chosen: It ac-
tually leads to exact Navier-Stokes solutions with V� �
V�0�
� �r�, V�2�

r �r� � 0 [see Eq. (6)], and B � 0. These steady
solutions have been studied in detail in [8]. However, the
stretching associated with these solutions is not evolving
along z, a feature not observed in our experiment.
Recently, these solutions have been extended [9] to incor-
porate an axial velocity component independent of z or
some nonaxisymmetry. However, the stretching associ-
ated with these new solutions is still not evolving along z.
Moreover, except for the classical Burgers solution, such
flows are characterized by a reverse axial velocity; i.e.,
Vz�r� changes sign in r 2 �0;1� (see Appendix A). Since
the experimental velocity field [7] we are considering
here below has no reverse flow [Fig. 4 below], a solution
with V�2�

� � 0; i.e., B � 0 is not appropriate.
Another closure is presented for a vortex submitted to

an external stretching which is nonuniform along the
axial direction, i.e., B � 0. It is characterized by an
azimuthal velocity depending on z and a stretching which
varies in the radial direction. In that instance, radial
components V�0�

r �r� and V�2�
r �r� are both non-null since,

for r r0 (see Appendix B)

V�0�
r ! �

r
2
; V�2�

r ! �
Br
4
: (8)

Replacing in Eq. (6) velocity components V�0�
r �r�, V�2�

r �r�
by their asymptotic values (8), we expect V�2�

� �r� to de-
crease for large r as

V�2�
� �r� �

B
12
r!�0��r�: (9)

A possible closure consists of extending the validity of
relation (9) throughout the whole r domain. This assump-
tion satisfies as well two other requirements. First, the
overall circulation remains constant along the vortex z
axis since V�0�

� ! 1
r and V�2�

� �r� is exponentially decreasing
to zero for r! 1. Second, velocity V�2�

� behaves linearly
054504-2
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in r close to r � 0. Moreover, two relations follow for
V�2�
r �r� and ��2��r�:

V�2�
r �r� � �

B
4
r��0��r�;

��2��r� �
B
2
��0��r� 


Br
4

@��0�

@r
�r�:

(10)

Finally Eqs. (5), (7), and (9) can be written as a
unique integrodifferential equation for ��0��r�. From a
given value of B, one may thus recover all other field
components.

The numerical solution of this integrodifferential
equation is obtained via a shooting method. The equation
previously discretized by a finite difference algorithm is
integrated from r � 0 towards r � 1. Since @��0�

@r �r � 0�
must be zero for obvious regularity reasons, we need to
provide ��0��r � 0� to start the integration. The study of
the asymptotic behavior of these solutions indicates that
there is only one solution—hence, a unique ��0��r � 0�—
which tends for large r towards ��0��1� � 1, the other
solutions diverging for large r. This naturally imposes a
relation between ��0��r � 0� and B. The shooting method
is implemented so that the value of ��0��r� for large r is
minimized with respect to the choice of ��0��r � 0�.
Moreover, the solution at B � 0 is known to be the clas-
sical Burgers vortex��r� � ��1� � 1. By increasing step
by step the value of B, we follow this unique solution.

Comparison between theoretical model and measure-
ments—We refer here to experimental results obtained in
a water channel in which a single stretched vortex is
produced. The channel section is 7 cm� 12 cm. The
typical longitudinal velocity is of the order of a few
cm s�1. A small bump added on the bottom wall (Fig. 2)
induces the separation of a laminar boundary layer pro-
file. This initial vorticity then rolls up and is strongly
enhanced by stretching which is produced by sucking the
flow through a hole on each lateral wall. A stretched
vortex is then produced that remains attached to the
suction holes (for details, see Ref. [7]). In this experiment,
both assumptions of large Reynolds number and small
FIG. 2. Sketch of the experimental water channel. Vorticity is
generated in a boundary layer which is developing over a flat
plate due to the presence of a constant flow U. Such a boundary
layer is then separated behind an obstacle. At the very same
location, the input mass flux is entirely sucked into two tubes,
each one originating from each lateral wall. Both mechanisms
induce the roll-up of vorticity into a vortex structure (whose
axis is along the z coordinate as in Fig. 1). A dye visualization
is displayed in the inserted box.
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aspect ratio are satisfied (with �1 � 3� 10�2 � 1, ��
3� 10�3 � 1).

Typical azimuthal and axial velocities are, respec-
tively, displayed in Figs. 3 and 4(a). At a fixed r location,
the instantaneous velocity Vz�r; z� is fitted with a
polynomial of the form ��0�

expz
 ��2�
expz3=3 [as assumed

by Eqs. (1) and (4)]. Since this is performed for each r,
the profiles ��0�

exp�r� and ��2�
exp�r� are obtained from the

experimental measurements of Vz�r; z�. Results are shown
in Figs. 4(b) and 4(d). Note that the obtained Vz profiles
are smoothed also in the radial direction although the fits
were performed in the z direction. The discrepancy
�Vz=Vz (overbars indicate that mean values are taken
over the whole r and z domain) measures the dif-
ference between the experimental data and the fit
�Vz � Vz�r; z� � ���0�

exp�r�z
 ��2�
exp�r�z3=3�. It is of the or-

der of 10%.
In our theoretical model, B is the only free parameter.

It is fixed so that ��0��0� is similar to the experimental
value. The theoretical stretching ��0��r�, obtained by
integrating the integrodifferential equation, nicely com-
pares with the experimental one [see Fig. 4(d)]. Simi-
larly, comparisons first between the theoretical solutions
V��r; z� � V�0�

� �r� 
 z2V�2�
� �r� and the experimental pro-

files (presented in Fig. 3) and, second, between the theo-
retical solution Vz�r; z� � ��0�z
 ��2�z3=3 and the
experimental field [presented in Figs. 4(a) and 4(c)]
both show a very satisfactory agreement.

Conclusion —The proposed model, based on a bound-
ary layer approximation, is clearly closer to a real
stretched vortex, e.g., those found in turbulent flows,
than the classical Burgers vortex, particularly regarding
the localization of stretching in the vortex core. It seems
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0
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FIG. 3. In plain lines, V� profiles [averaged particle image
velocimetry (PIV) measurements] for nondimensional z � 0,
0.17, 0.3, 0.5 (L � 6 cm, imposed by the channel width) and
z � 0:7 (L � 3 cm when reducing the channel width). In
dotted lines, corresponding theoretical solutions V��r; z� �
V�0�
� �r� 
 V�2�

� �r�z2 (B � 1:6 for L � 3 cm and B � 11:5 for
L � 6 cm).
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FIG. 4. (a) Vz�r; z� field (instantaneous PIV measurement) for
L � 3 cm. (b) Fit of the previous field in ��0�

exp�r�z
 ��2�
exp�r�z3=3

performed at each r. (c) Theoretical field Vz�r; z� � ��0��r�z

��2��r�z3=3. (d) Comparison between ��0�

exp�r� and ��0��r�
[��2�

exp�r�, being of the same order of the noise, is not displayed].
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worthwhile to study the stability of the present vortex
model in relation to the scenario of transition to turbu-
lence proposed in [11] via primary and secondary insta-
bilities of an elliptic vortex.

Appendix A: Uniform stretching along the axis,
B � 0—. If B � 0, the solution is characterized by a
constant core size along the vortex axis and an azimuthal
velocity V� independent of the position z. Moreover,
stretching � � ��0��r� satisfies the dimensionless integro-
differential equation

��0�2 �
@r��0�

r

 
1


Z r

0
r0��0�dr0

!
�@r2�

�0� � 1: (A1)

The above solutions have been studied in detail in [8]. For
such cases, let us show that, on a general basis, stretching
or, equivalently, axial velocity Vz�r; z� � ��r�z are bound
to change sign in r 2 �0;1�. Assuming this is not the
case, two possibilities then arise: (a) 1< ��0� or else
(b) 0< ��0�< 1 [��0� � 1 corresponds to the Burgers
solution]. Equation (A1) at r � 0 shows that
2@2�=@r2�0� � �2�0� � 1. In the first instance (a),
stretching ��r� starts to increase as r increases near
r � 0. This quantity cannot decrease afterwards in
�0;1�: otherwise, a point rd > 0 would exist such that

@�
@r

�rd� � 0; ��rd� > ��0� > 1;

and
@2�

@r2
�rd� � �2�rd� � 1< 0:

(A2)

This inequality being clearly inconsistent, ��r� is then
always greater than ��0� > 1 and cannot reach one at r �
1. If one assumes case (b) to be valid, stretching ��r�
always decreases in the interval ��r� 2 �0; 1� for similar
054504-4
reasons. As a consequence, it cannot reach one at r � 1
without changing sign.

Appendix B: Boundary conditions for case B � 0.—
The solution presented in the main body of the paper is
typically focusing on the region close to the vortex which
scales with r0 (the inner region of Fig. 1). More precisely,
systems (2) and (3) constitute the leading order approxi-
mation in this zone [11]. Within the asymptotic expansion
theory, this inner region is associated to an outer region
and the expressions of the solution in the two regions
should match. In the present case, the outer region is
located away from the vortex, i.e., in a region which
scales in the radial direction with L. The vortex being
surrounded by an irrotational field, the leading order
outer expansion is thus characterized by a potential ve-
locity field Vr � @r , Vz � @z , with � � 0. The
matching principle states (see Ref. [12] for a presentation
of the asymptotic matching principles) that the leading
order inner solution for r r0 matches the leading order
outer solution for r! 0. For r! 0, the potential defining
the outer field generally reads as  �r; z� � �0�z� 

@2z�0�z�r2=4
 � � � . As a consequence, the outer vortex
field should be of the form

Vr ! �
r
2
@2z�0�z�; Vz ! @z�0�z�: (B1)

To match the inner solution ��r� at r! 1, i.e., ��r� �
1
 B

2 z
2 to the outer field at r! 0, one must choose

�0�z� � �z2=2� 
 B
24 z

4 which provides the conditions

V�0�
r ! �

r
2
; V�2�

r ! �
Br
4
: (B2)
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