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A number of unsolved issues in materials physics suggest there is a need for an improved quantitative
understanding of the interaction between acoustic(more generally, elastic) waves and dislocations. In this
paper we study the coherent propagation of elastic waves through a two dimensional solid filled with randomly
placed dislocations, both edge and screw, in a multiple scattering formalism. Wavelengths are supposed to be
large compared to a Burgers vector and dislocation density is supposed to be small, in a sense made precise in
the body of the paper. Consequently, the basic mechanism for the scattering of an elastic wave by a line defect
is quite simple(“fluttering”): An elastic wave will hit each individual dislocation, causing it to oscillate in
response. The ensuing oscillatory motion will generate outgoing(from the dislocation position) elastic waves.
When many dislocations are present, the resulting wave behavior can be quite involved because of multiple
scattering. However, under some circumstances, there may exist a coherent wave propagating with an effective
wave velocity, its amplitude being attenuated because of the energy scattered away from the direction of
propagation. The present study concerns the determination of the coherent wavenumber of an elastic wave
propagating through an elastic medium filled with randomly placed dislocations. The real part of the coherent
wavenumber gives the effective wave velocity and its imaginary part gives the attenuation length(or elastic
mean free path). The calculation is performed perturbatively, using a wave equation for the particle velocity
with a right hand side term, valid both in two and three dimensions, that accounts for the dislocation motion
when forced by an external stress. In two dimensions, the motion of a dislocation is that of a massive particle
driven by the incident wave; both screw and edge dislocations are considered. The effective velocity of the
coherent wave appears at first order in perturbation theory, while the attenuation length appears at second order.
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I. INTRODUCTION

A. Motivation

Dislocation dynamics is a problem at the root of a number
of outstanding issues in materials physics. Mechanically ex-
cited phonons in interaction with dislocations appear in
acoustics experiments, and the vibrating string model of dis-
location damping1–3 has been quite successful in explaining a
wealth of data, such as measurements of damping, internal
friction and modulus change of solids. Thermally excited
phonons in interaction with dislocations appear in thermal
conductivity measurements, where the situation at low tem-
peratures seems to be less satisfactory than in the acoustics
case. Kneezel and Granato4 conducted a careful study of
phonon damping with the vibrating string model; they con-
sidered many effects, including angular effects emphasized
by Ninomiya,5 and found no accord with the data6 on ther-
mal resistivity at low temperature in alkali halides when dis-
locations are assumed to vibrate independently. A fit could be
obtained, however, with dislocationdipoles at long wave-
lengths(hence vibrating “optically,” that is, in opposition),
which would require many dislocations to be arranged in
dipoles. More recent work by Anderson and collaborators7

has confirmed the inability of the model to account for the
data. Qualitative, but not quantitative agreement with mea-

surements in high purity niobium and tantalum can be ob-
tained with a picture in which the dominant effect is the
interaction of phonons with kinks on dislocations.8 The im-
portance of radiation damping due to kink oscillations9 was
already noted by Hikata and Elbaum.10 The review of
Anderson11 has highlighted the need for an improved theo-
retical understanding of the elastic wave-dislocation interac-
tion in order to use the thermal conductivity measurements
of deformed bodies as a diagnostic tool for studying defect
structures in solids.

The vibrating string model is based on the formulation of
Koehler12 in which the dislocation is modeled as a scalar
string driven by a scalar time dependent stress. This model is
very simple, a fact that allows for many applications, and it
certainly captures the essence of the physics of the elastic
wave-dislocation interaction. However, it does not consider
the many complexities of this interaction. For example, it
does not differentiate between edge and screw dislocations,
nor among the various polarizations available to an elastic
wave, and a significant body of current literature addresses
this issue through numerical computations, both in a con-
tinuum, mesoscopic, approximation and at the atomic scale.
The vibrating string model also treats dislocations singly, and
the effect of many dislocations is simply accounted for by
multiplication. However, the presence of many obstacles
upon the path of a wave has collective effects in addition to
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the sum of single body effects: for example, a random array
of scatterers will attenuate a wave, even in the absence of an
internal viscosity mechanism. Our purpose in the present pa-
per is to offer results toward filling this gap: we consider first
antiplane waves in interaction with screw dislocations, and
then in plane(vector) waves in interaction with edge dislo-
cations in which their vector nature is considered in full, and
we get formulas describing the behavior of elastic waves in a
continuum filled with randomly distributed dislocations.

There are further outstanding problems in materials phys-
ics, such as the brittle to ductile transition13 and fatigue14

where there is wide agreement that dislocations play a sig-
nificant, possibly determinant, role. From an engineering de-
sign point of view the issue of brittle to ductile transition is
well controlled in the sense that structures can be, and are,
successfully constructed. From a basic physics point of view,
however, those phenomena are very far from being under-
stood, in the sense that current theoretical modeling has, to
the best of our knowledge, no predictive power: If a new
form of steel, say, is fabricated, current theory cannot make
quantitative predictions concerning its mechanical properties
as a function of temperature or cyclic loading. It is our opin-
ion that one important cause for this lack of basic knowledge
lies in the paucity of experimental measurements(as op-
posed to visualizations) concerning dislocations. This is so
because dislocations need to be seen through electron mi-
croscopy of samples that must be specially prepared. It
stands thus to reason that it would be very desirable to have
quantitative measurements carried out with noninvasive
probes. Is this possible? We believe acoustic, or ultrasonic,
measurements may provide such quantitative data.15 How-
ever, for this approach to be feasible, an improved theoretical
understanding of the sound-dislocation interaction is needed,
which is an additional reason for undertaking the calcula-
tions described in this paper.

B. Elastic waves in random media

The behavior of waves in random media has a long and
distinguished history of scholarship and the literature is
vast.16–18 Current interest stems at least from two sources:
the possibility that disorder will induce a change in wave
behavior from transmission to diffusion to localization,19–21

and the enhanced understanding of radiation transfer22 their
study has allowed.

There are many studies of elastic wave propagation in
random media, from at least two domains: the geophysics
literature seeks to understand the effect of inhomogeneities
within the Earth’s1 crust on seismic waves,23 and the nonde-
structive evaluation literature seeks to gauge the effect that
flaws in elastic materials have on elastic waves.24 In the case
of an isotropic heterogeneous medium, the elastic wave
equation takes the form

rsxdüi −
]

] xj
cijklsxd

] ul

] xk
= 0, s1.1d

wherecijkl =ldi jdkl+msdikd jl +dild jkd are the elastic constants.
Heterogeneities can be treated as continuous or discontinu-
ous. The case of continuous heterogeneities has been widely

studied.25–29 One way to solve this problem is to use a per-
turbative method assuming that the elastic constants are
close to the values in the homogeneous medium. The case of
discontinuous heterogeneities has been mainly studied to ac-
count for inclusions in the medium.24,30–35 In this case,
boundary conditions of force and displacement continuity at
the inclusion surface have to be considered. In both cases,
the problem of scattering by the random distribution of weak
elastic heterogeneities can be solved starting from an integral
representation for the scattered field and considering simpli-
fications to reach a desired order of accuracy, as the Born
approximation28,32or the averaged T-matrix approximation.36

We mention also the work of Zhang and Gross,37 who treat
the problem of coherent propagation of an elastic wave
though many cracks, defined as lines of finite length, free of
traction, and with a displacement discontinuity. The authors
calculate numerically the scattering functions for one scat-
terer and use Foldy’s approach17 to treat the multiple scatter-
ing configuration.

The heterogeneity we consider in the present paper is a
dislocation. In two dimensions it is characterized as a point
defect with a displacement discontinuity measured by its
Burgers’vectorb. The mechanism of wave scattering by a
single dislocation is quite simple. An elastic wave will hit
each individual dislocation, causing it to oscillate in re-
sponse. The ensuing oscillatory motion will generate outgo-
ing (from the dislocation position) elastic waves. Although
the mechanism of scattering by a dislocation appears simple,
it is unusual compared with the mechanism of scattering by
inclusion type scatterers or by a continuous variation of the
elastic constants. In these latter cases, the scattering results
from a particular structure of the medium but no dynamical
effect occurs. In contrast, the mechanism we are interested in
does not contain any structural effect that would describe the
structure of the dislocation core. This is a good approxima-
tion provided wavelengths are large compared to core size, a
good approximation even at high ultrasonic frequencies.

An integral representation for the elastic wave generated
by a moving dislocation has been known for some time;38,39

however, an equation for the dislocation response to an inci-
dent wave is a more recent work.40 In particular cases,
Kiusalaas and Mura,41 using Nabarro’s results,42 derived the
total scattering cross section for the scattering of stress
waves by a dislocation. The work of Lund40 provided a the-
oretical underpinning, as well as a full tensor treatment, of
the phenomenological string model of Koehler,12 that was
successfully implemented by Granato and Lücke1–3 (hereaf-
ter GL) to explain internal friction measurements. They con-
sidered the response to an external stress wave of a damped,
string-like dislocation segment endowed with mass and fine
tension, subject to viscous loss, and pinned between two
points. In a single scattering approach, the damping of the
string leads to a damping of the wave, the inertia of the string
leads to a modification of the wave speed of propagation, and
the line tension leads to the possibility of having resonances.

As mentioned above, one reason for a study on the effect
of dislocations on wave propagation lies in the desire to de-
velop new probes to study phenomena such as the brittle to
ductile transition,13 where dislocation structure and dynamics
appear to play a prominent role. In keeping with this moti-
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vation, we shall not consider the scattering of elastic waves
by the effective elastic constant changes at the core of a
dislocation since even at the highest frequencies likely to be
generated by ultrasonic transducers(say, up to the GHz re-
gime) the acoustic wavelengths will be much larger than dis-
location core size. In this paper we compute the properties of
a coherent elastic wave propagating through an elastic me-
dium that is filled with randomly placed dislocations. It
makes sense to study in some detail the properties of coher-
ent elastic waves because in acoustics the phase can be mea-
sured. This is of course not the case for electromagnetic
waves, nor for de Broglie waves such as electrons in solids.

This paper is organized as follows: In Sec. II we give a
brief review of those aspects of dislocation dynamics that are
needed to understand the scattering of elastic waves by dis-
locations. It also serves to unify notation. In Sec. III we
present the calculation of the properties of a coherent anti-
plane wave traveling through a two-dimensional elastic me-
dium filled with randomly located screw dislocations. This is
done first with a simple minded approach whose limitations
are pointed out and then through the perturbative calculation
of a mass operator for Dyson’s equation. In Sec. IV we
present the calculation of the properties of a coherent inplane
elastic wave traveling through a medium that is filled with
randomly placed edge dislocations. This is also done at first
with a simple minded approach and then through the calcu-
lation of a mass operator. Calculations here are more in-
volved than in Sec. III due to the vector nature of the equa-
tions, and the matrix nature of the operators describing the
wave-dislocation interaction. In Sec. V we present some con-
cluding remarks. Some standard facts about multiple scatter-
ing, as adapted to the elastic wave-dislocation interaction,
are collected in two appendices. Throughout the paper,V
denotes the frequency of the incident wave whilev is the
frequency variable in the Fourier transforms.

II. DISLOCATION DYNAMICS—A BRIEF REVIEW

Consider three dimensional space with coordinatesx
=sx1,x2,x3d. The dynamical variables are the(small) dis-
placementsu of pointsx away from their equilibrium posi-
tions as a function of timet. A dislocation loop is described
by a closed curveXss ,td, wheres is a Lagrangian coordi-
nate along the loopL. The dislocation loop is characterized
by a Burgers vectorb, defined by a discontinuity of the dis-
placement fieldu:

R
C

du ; − b.

The integral is taken along a closed curveC around the dis-
location with a direct orientation respect tot=]X /]s, the
tangent to the loop.(Fig. 1). This means that the displace-
ment fieldu is multivalued, with a jump equal tob when
crossing a surfaceS bounded by the loopL. This condition
can be formally written as

fugS = b.

The surfaceS is arbitrary, and should not appear in expres-
sions involving physically measurable quantities.

A. GENERATION OF ELASTIC WAVES BY A MOVING
DISLOCATION

1. General case

The displacementsu generated by a dislocation loop
moving in an arbitrary but prescribed way through an homo-
geneous elastic medium are obtained39 by solving the dy-
namic equations

r
]2

] t2
uisx,td − cijkl

]2

] xj ] xk
ulsx,td = 0, s2.1d

with boundary conditions

fuigS = bi, Fcijkl
] ul

] xk
njG

S
= 0. s2.2d

The first condition is the discontinuity of displacement al-
ready mentioned, and the second equation is the continuity
of the stress across the surfaceS.

In the isotropic case there are only two independent elas-
tic constants,

cijkl = ldi jdkl + msdikd jl + dild jkd,

where sl ,md are the Lamé coefficients. Using the Green’s
function for free spaceG0s3Dd, defined by

r
]2

] t2
Gim

0s3Ddsx − x8,t − t8d − cijkl
]2

] xj ] xk
Glm

0s3Ddsx − x8,t − t8d

= dsx − x8ddst − t8ddim, s2.3d

the displacementum can be written as an integral represen-
tation:

umsx,td = cijkl E E
Sst8d

dt8 dS blnk
]

] xj
Gim

0s3Ddsx − x8,t − t8d,

s2.4d

wheren denotes the unit normal toSstd, the surface of dis-
continuity for the displacement. This surface is time depen-
dent since the dislocation lineXss ,td may change in time,
and its changeDS during a small time intervalDt obeys

E
DS

dS nk = eknhR
L

ds Ẋnth Dt,

where an overdot means time derivative andei jk is the usual
completely antisymmetric tensor. Equation(2.4) is a convo-

FIG. 1. Definition of the Burgers vector.
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lution of the Green’s function with a source that is localized
along the surface of discontinuityS. Since this surface does
not have a special physical significance, it should be possible
to express physically meaningful quantities in terms of a
source that is localized along the loopL. Indeed, it is not
displacementsu but their time and space derivatives that
have physical meaning, since it is they that appear in expres-
sions for energy and momentum. From above, the velocity
vm; u̇m satisfies the integral representation

vmsx,td = eknhcijkl E R
L

dt8 ds blẊnss,t8dthssd

3
]

] xj
Gim

0s3Dd
„x − Xss,t8d,t − t8…, s2.5d

which is a convolution of the Green’s function with a source
localized along the loop and not on the surfaceS:

vmsxd =E
V

dx8 Gim
0 sx − x8dsisx8d,

with

sisx,td = cijklemnkR
L

ds Ẋmtnb
]

] xj
dsx − Xd, s2.6d

and whereV denotes the volume of considered space. Con-
sequently, an inhomogeneous wave equation for particle ve-
locity can be written as

rv̈isx,td − cijkl
]2vlsx,td
] xj ] xk

= sisx,td. s2.7d

We shall need this equation when discussing scattering.

2. Two dimensions

When a dislocation loop is an infinite straight line, say,
along thex3 direction,

Xss,td = „X1std,X2std,s…,

and displacements are independent ofx3 (Fig. 2), the prob-
lem is two dimensional. In this case

vm
s sx,td = ecbciaclE dt8 blẊbst8d

]

] xa
Gim

0
„x − Xst8d,t − t8…,

s2.8d

wherea,b,c,¯ =1,2,ecb;ecb3 and

Gim
0 sx1,x2,td ; E dx3 Gim

0s3Ddsx1,x2,x3,td

is the Green’s function in two dimensions. In other words,
the source term becomes

sisx,td = ciaclecbẊbbl
]

] xa
dsx − Xd s2.9d

and (2.8) can be written in the frequency domain as

vm
s sx,vd = ecbciaclblẊnsvd

]

] xa
Gim

0 sx,vd, s2.10d

whereGim
0 (x−Xst8d ,t− t8) has been taken, to leading order

with respect to the small amplitudeXstd, equal toGim
0 sx ,t

− t8d, when the dislocation equilibrium position is at the ori-
gin.

B. Response of a dislocation to an incoming stress wave in two
dimensions

In the following, we consider the two dimensional motion
of a dislocation line, oriented along thex3 axis, moving un-
der the action of a stress waveSib. In this case, a method of
finding an equation of motion for a dislocation loop can be
found in Ref. 40, based on the observation that the equations
of dynamic elasticity follow from a variational principle.
When dislocation velocity is small compared to the speed of

longitudinal and shear wavesẊ!a ,b, where a
=Îsl+2md /r and b=Îm /r, the equation of motion in the
first Born approximation(i.e., neglecting the radiation reac-
tion) is

]

] tS ] L
] Ẋa

D = eabbiSib, s2.11d

whereSib=cibkl]uk/]xl is the stress tensor evaluated at the
dislocation position.L is the Lagrangian,

L = −
m

4p
lnSd

e
DHbi

2S1 −
Ẋ2

2b2D + b'
2 F2s1 − g−2d

−
Ẋ2

2b2s1 + g−4dG +
sb' ∧ Ẋd2

b2 s1 − g−4dJ ,

with g=a /b and d, e are long- and short-distance cutoff
lengths, respectively.bi and b' are the components of the
Burgers vector parallel and perpendicular to the dislocation
line, and mb2/b2 has dimension of mass per unit length.
Equation(2.11) is a second order in time ordinary differen-
tial equation for a point particle(the dislocation position in
two dimensions) subject to the usual Peach-Koehler force.43

In a more general case, say for oblique wave incidence, there
are additional terms arising from the line tension associated
with the dislocation line curvature.5

III. THE ANTIPLANE CASE

The antiplane case corresponds to the interaction of an
antiplane shear wavev=s0,0,vd with a screw dislocation

FIG. 2. Configuration of the 2D problem.
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b=s0,0,bd (Fig. 3). It is easy to see in(2.7) and(2.9) that no
interaction can occur with an in-plane Burgers vector(see
also Ref. 44). In this case the wave equation takes the form,
using (2.9),

rv̈sx,td − m¹2vsx,td = mbeabẊb
]

] xa
dsx − Xd.

We consider now a distribution ofN screw dislocations in
thex-plane.XNstd-denotes the location of theNth dislocation
in a volumeV (actually, here a surface) and the bulk limit is
taken withn=N/V, the density of dislocations, assumed uni-
form. bN denotes the Burgers vector of theNth dislocation,
assumed small compared to any other lengths, such asn−1/2

the typical distance between dislocations, and any elastic
wavelength. In this case, and for wavelengths large com-
pared to the dislocation core size, the wave equation keeps
the same form as for one dislocation and the source term
corresponds to the sum over all dislocations:

rv̈sx,td − m¹2vsx,td = mo
n=1

N

bneabẊb
n ]

] xa
dsx − Xnd.

s3.2d

As previously said, the wave equation has to be com-

pleted with the law for the dislocation motionẊstdin order to
have a self consistent problem. This is given by Eq.(2.11),
which, in the antiplane case becomes

MẌbstd = − mbebc
]

] Xc
usX,td, s3.3d

whereM is the classical mass per unit length,40,45

M =
mb2

4pb2ln
d

e
. s3.4d

We consider in the following a plane wave of frequency
V and wave vectorkb with kb=V /b traveling though a me-
dium filled with randomly distributed dislocations, as de-
scribed by Eq.(3.2). We are interested in characterizing the
effective medium in terms of a complex wave vectorK b

parallel tokb, whose real part gives a renormalized speed of
propagation, and whose imaginary part gives an attenuation
length.

A. Simple—but incomplete—calculation

A classic result that goes back at least to Foldy17 estab-
lishes that, if a scalar plane wavev=expsikbx1− iVtd is inci-
dent upon a slab with many, randomly placed, scatterers, for
low densities n there will be a coherent wavekvl
=expsiKbx1− iVtd characterized by an effective wave vector,

Kb = kb + nÎ2p

kb
kfs0dle−ip/4, s3.5d

where fs0d is the forward scattering amplitude for a single
scatterer, and the brackets denote an average over the inter-
nal variables that characterize the scatterers. In our case this
would be an average over various Burgers vectors, if a dis-
tribution of Burgers vectors was allowed.

The scattering amplitude for an antiplane wave incident

head-on on a screw dislocation is,44 with ux=sOx1̂,xd,

fsuxd = −
mb2

2M

eip/4

Î2pVb3/2
cosux, s3.6d

so that the effective wave vector is, when all dislocations
have the same Burgers vector,

Kb = kbS1 −
mnb2

2MV2D . s3.7d

This expression provides an effective speed of propaga-
tion for antiplane waves traveling through many, randomly
placed, dislocations. However, being real, it does not provide
an expression for the attenuation due to the energy that is
taken away from the incident direction by the scatterers. In
order to get this, we turn to a Green’s function formalism,
whose general ideas are reviewed in Appendix A.

The modification in wave velocityV /Kb implicit in Eq.
(3.7) can be compared with the result of Granato and Lücke.1

The authors performed calculations for one dislocation loop
of total lengthL with fixed ends and submitted to an external
periodic stress. The Koehler12 equation of motion they use
contains an inertial term, a drag force and a line tension. This
equation is coupled with a wave equation, similar to our Eq.
(3.2). In this model, the inertial term is responsible for the
modification of the wave velocity, the drag force is respon-
sible for the wave attenuation, and the line tension force
leads to resonant phenomena. If the drag and line tension are
neglected, the modified speed of propagation of GL is simi-
lar to (3.7). In the GL model, our dependence inn is replaced
by a dependence inL. However, for many dislocations,L
becomes the total length of dislocation per unit volume,
similar to ourn.

B. Green’s function formalism—Antiplane case

The heart of the matter is the calculation of the mass
operatorS, given by Eq.(A7), in terms of which the effec-
tive wave number is given by(3.32). Using (3.2) and (3.3),
we have the following equation in the frequency domain:

s¹2 + kb
2dvsx,vd = − Vsx,vdvsx,vd, s3.8d

where the potentialV is

FIG. 3. Scalar problem of the shear wave interacting with a
screw dislocation.
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Vsx,vd = o
n=1

N
m

M
Sbn

v
D2 ]

] xa
dsx − X0

ndU ]

] xa
U

X0
n
. s3.9d

In this expression, the positionsXnstd of the screw disloca-
tions have been replaced by their mean values(positions at
rest) X0

n.
The Green’s functionsG0 andG satisfy the equations

s¹2 + kb
2dG0sx − x8d = − dsx − x8d, s3.10d

„¹2 + kb
2 + Vsxd…Gsx,x8d = − dsx − x8d, s3.11d

with the potentialV defined by(3.9). To proceed, we need
the average ofV:

kVlsxd =
m

v2 E rb1db1
¯ rbN dbN

3
dX0

1
¯ dX0

N

VN o
n

sbnd2

M
wiisx,X0

nd, s3.12d

where

wijsx,X0d ;
]

] xi
dsx − X0dU ]

] xj
U

X0

. s3.13d

This average is taken over all realizations ofV assuming no
correlation between(uniformly distributed) scatterers and de-
noting rb the probability distribution function of the Burgers
vector.kVl is the sum ofN identical terms so that

kVlsxd =
m

v2NE rb db
b2

M
E dX0

V wiisx,X0d. s3.14d

Concerning the integral overX0, we use that

E dX0 wijsx,X0d =
]

] xi
E dX0 dsx − X0d

]

] X0j
=

]2

] xi ] xj
.

s3.15d

To calculate the integral overb, we use the explicit relation40

M .Cb2lnsL /bd with C a constant and, for the sake of clar-
ity, we defineM* as

Kb2

M
L ;

kb2l
M* . s3.16d

For instance, when all Burgers vectors are identical,rb
=dsb−b0d, and we haveM* =Msb0d. For a uniform distribu-
tion, rb=1/bM if 0 ,b,bM and zero otherwise, we have
M* =MsbMd /3 using

Kb2

M
L =E

0

bM db

bM

1

C ln sL/bd
.

1

C ln sL/bMd
=

bM
2

MsbMd
.

s3.17d

The calculation ofkVl can be achieved and we finally
obtain

kVlsxd =
m

M*v2nkb2l¹2. s3.18d

In the frequency domain this is

kVlskd = −
m

M*v2nkb2lk2. s3.19d

In order to derive the second order effects inS we write
V=Sn=1

N Vn. Thus, we have

kVG0Vl =
sN − 1d

N
kVlG0kVl +Ko

n=1

N

VnG0VnL , s3.20d

when no correlation exists among different dislocations. For
large values ofN this means

kVG0Vl − kVlG0kVl . NkV1G0V1l. s3.21d

We now calculatekV1G0V1l [using (3.9)]:

kV1sxdG0sx − x8dV1sx8dl

= S m

v2D2E rb db
b4

M2E dX0

V wiisx,X0d

3G0sx − x8dwjjsx8,X0d. s3.22d

This integral has a divergence at short distances. However,
the continuum theory we are using does not make sense at
short wavelengths, that is, wavelengths that are comparable
to the atomic spacing(i.e., the Burgers vector). In order to
face this issue, we go to Fourier space and introduce a cutoff
function fskd to suppress the effect of short wavelengthsk
ù1/b [the qualitative nature of our results does not depend
on the detailed nature offskd]

G0sxd =
1

s2pd2 E dq G0sqdeiq·xfsqd. s3.23d

In the Fourier space, we have thus

kV1G0V1lskd = S m

2prM*v2D2kb4l
V
E dX0 dq G0sqdfsqd

3E dx e−ik·xwiisx,X0deiq·x

3E dx8 e−iq·x8wjjsx8,X0deik·x8. s3.24d

We have introduced in this latter expression a coefficientr of
order 1, such that

K b4

M2L ;
kb4l

srM*d2 . s3.25d

For instance, withrb=dsb−b0d, we haver =1 and withrb

=1/bM, a uniform distribution from 0 tobM, we haver
=3/Î5.

We now use
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E dx gsxdwiisx,X0deik.x =E dx gsxd
]

] xi
dsx − X0dikie

ik.X0

s3.26d

=− ikie
ik.X0

]

] X0i
gsX0d, s3.27d

with gsxd=e−ik.x or gsx8d=e−iq.x8 in (3.24) to get

kV1G0V1lskd = S m

2prM*v2D2

kb4lnkikj E dq qiqjG
0sqdfsqd

= S m

2rM*v2D2kb4ln
p

k2E dq q3 fsqdG0sqd,

s3.28d

where

E dq q3fsqdG0sqd=E dq
q3fsqd
q2 − kb

2 = pkb
2/2Si +

C
kb2lkb

2D ,

s3.29d

with C.1/p a numerical constant depending weakly on the
cutoff function f. We have finally the mass operator,

oskd =
mnkb2l
M*v2 k2F− 1 +

r

8M*r2

kb4l
kb2lSi +

C
kb

2kb2l
DG .

s3.30d

The Dyson equation(algebraic in the Fourier space) can now
be solved to determine the effective wave numberKb, pole
of kGlskd=fk2−kb

2 −Sskdg−1; asKb is expected to be close to
kb, we get

Kb . kbS1 +
Sskbd
2kb

2 D ,

.kbH1 +
mnkb2l
2M*V2F− 1 +

r

8r2M*

kb4l
kb2lSi +

C
kb

2kb2l
DGJ .

s3.31d

To leading order, this expression reduces to the simple
minded result(3.7). The effective group velocity is decreased
from its value in the absence of scatterers while phase veloc-
ity is increased. As mentioned in Ref. 31, there is no particu-
lar tendency to be expected from this latter quantity as a
function of the scatterer density: In the case of inclusion, the
phase velocity is found to increase while it is found to de-
crease for cracks and cavities. This modification of speed of
propagation appears at first order inV and it is actually the
only effect at this order. From(3.32), we obtain the elastic
mean free pathL−1=2IsKbd, that gives the distance scale
over which the coherent wave is attenuated due to the energy
that is taken away from the incident wave by the scattering
from the randomly placed scatterers:

L = 8
r2M*2

nr2kb4l
kb. s3.32d

As it is expected,L decreases when increasing the density of
scatterersn or the scatterer strength, in term ofkb4l. The
increase of the attenuation,1/L with increasingn has been
experimentally observed(see, for instance Ref. 14). A very
interesting behavior would be the dependence of the attenu-
ation on the frequency, that is here found to be surprisingly
decreasing for increasing frequency(see the discussion in
Sec. III C). An experimental verification of this behavior
does not appear to be available, although it may become
possible with the techniques described in Ref. 15.

The physical mechanism for the attenuation(3.32) lies in
the multiple scattering of the wave by the randomly located
dislocations that takes out energy from the wave propagating
in the forward direction. This is different from the mecha-
nism of Granato and Lücke,1 where the attenuation is due to
internal loss because of viscous damping of the string-like
dislocation(see the discussion in Sec. III D).

C. Comments and discussion

An apparently surprising result has to be underlined at
this point. The elastic mean free path(3.32) is found to de-
crease when increasing the wavelength[see also the calcula-
tion of L for edge dislocations below, Eq.(4.39)], although
the scattering is usually expected to vanish for wavelengths
long compared with the size of the obstacle. The explanation
is found in the particular behavior of dislocations as scatter-
ers, a fact that has been emphasized by Nabarro.42 Indeed,
two mechanisms of wave scattering by a dislocation have to
be distinguished. The first mechanism is related to the micro-
structure of the dislocation core and has to vanish for long
wavelengths; the second mechanism, which is the one con-
sidered in the present study, is that the dislocation moves
under the influence of the incoming wave and reradiates a
cylindrical (scattered) wave. Most previous studies consider
scatterers such as inclusions and voids, involving a scattering
mechanism of the first type. Thus, a scattering vanishing for

FIG. 4. Scalar problem of the shear wave interacting with a
distribution of screw dislocations(solid arrows correspond to
positive Burgers vectors and dotted arrows correspond to negative
Burgers vectors).
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long wavelength is not surprisingly found. In the present
paper(see also Ref. 44), the investigated scattering mecha-
nism is the second one. Thus, there is no reason to expect
similar results here. Preferably, the scattering strength has to
be found in the equation of motion of the dislocation in the
presence of an incoming wave, whose amplitude increases
with the wavelength in the dynamical models of Refs. 38, 40,
and 42.(See Fig. 4).

Actually, the attenuation 1/L has an upper bound. This is
because the weak scattering approximation implies that
wavelength must be small compared to a cut-off length:l
!Lc. This can be seen from(3.19) and (3.8) [as well as the
forthcoming Equations(4.29) with (4.16)], where weak scat-
tering means

mnb2

MV2 = S l

Lc
D2

! 1, s3.33d

with

Lc =Î M

nrb2 .
1
În

. s3.34d

To obtain the equivalence in(3.34), we have usedM
.rb2 from (3.4). Indeed,d,L the length of the dislocation
line, e,b and typically L.106−108b, so that we have
lnsd /ed /4p roughly equals unity.

A recent experiment on acoustic wave interaction with
dislocations in LiNbO3

15 provides a convenient system to
estimate the parameters that appear in our formulas.

This experimental configuration is of particular interest in
the framework of our study because, even if the measure-
ments of the velocity and attenuation are not yet available, it
shows that our calculations can be expected to have a rea-
sonable region of validity(see also Sec. III D). Indeed, the
wavelength is smaller than the cutoff lengthLc:l,10−1Lc.
Since the ratiol /Lc measures the scattering strength[see
(3.33)], we also see that the scattering effect can be expected
to be significant. Besides, this is also seen since visualiza-
tions of the scattered wave are possible in this experiment.

Finally, the static scattering by the dislocation core has
been neglected. It has thus to be checked that the correspond-
ing static mean free pathLstatic is large compared to all other
characteristic lengths,Lc and L. As previously said, such
scattering has a vanishing strength at long wavelengths. A
discussion on this mechanism can be found in Ref. 42 where
the author estimates the scattering cross section of order
b2V /b, leading to

Lstatic.
1

nb2kb

. s3.35d

It is easy to check that

Lstatic. Lskb bd−2 @ L,

Lstatic. Lcskb bd−1sÎn bd−1 @ Lc, s3.36d

since b!kb
−1, În−1. A typical value ofLstatic in Ref. 15 is

given in Table I. In this experiment, we have

b ! l ! 1/În . Lc ! L ! Lstatic, s3.37d

so the assumptions needed in our calculations are satisfied
by the parameters of the experimental setup described
in Ref. 15.

D. Discussion: Influence of dislocation drag and line tension

Here we give a brief discussion on the influence of the
dislocation drag term and line tension term, introduced in the
Granato–LückesGLd model.1,2 In this model, the equation
for the motion of a dislocation line(with length L) corre-
sponds to a mathematical model introduced by Koehler,12

where the line tension is defined byC=2mb2/ps1−nd (with
n the Poisson ratio) and the viscous drag coefficientB is a
free parameter. The expressions for the velocityvGL and the
attenuationLGL

−1 in the GL model are as follows:

1/vGL = 1/bF1 +
4

p2

mnb2

M

V0
2 − V2

sV0
2 − V2d2 + sVdd2G ,

1/LGL =
4

p2

nrb2

M

bV2d

sV0
2 − V2d2 + sVdd2 , s3.38d

whered=B/M andV0=sp /LdÎC/M. In applying these for-
mulas, it is generally assumed thatV0@d@V, leading to
simplifications in the previous expressions. These simplified
expressions are used, notably in Ref. 14, to interpret experi-
mental results. Note, however, that an estimation ofV0 using
the experimental data of Ref. 15(from Table I, withv=0.3)
givesV0=50 MHz which is one order of magnitude smaller
than the frequency used in that experiments580 MHzd.

A two dimensional situation as is considered in the
present paper means there is no dislocation line curvature,
and hence no effect of line tension. IfV0 is neglected, one
obtains

1/vGL = 1/bS1 −
4

p2

mnb2

M

1

V2 + d2D ,

1/LGL =
4

p2

nrb2

M

bd

V2 + d2 , s3.39d

and these expressions can be compared with our expressions
(3.7) [with V /v=RsKbd] and (3.32). Defining R=d/V and
usingM =rb2 in the GL model, we get the following relation
between our scheme(v , L) and GLsvGL,LGLd:

vGL − b .
v − b

1 + R2 ,

TABLE I. Experimental values ofl, b, L (the length of the
dislocation line) and n from Ref. 15, with v=580 MHz. Corre-
sponding values ofLc [from (3.34)], L [from (3.32)] and Lstatic

[from (3.35)] are calculated[with M* =M and r =1 in (3.4) and
usingr=4640 kg m−3 for LiNbO3].

l smmd b snmd L smmd n sm−2d Lc smmd L scmd Lstatic smd

6 0.5 200 2.108 70 4 2.104
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LGL
−1 . L−1 R

1 + R2 . s3.40d

In the GL model, the viscosity is the unique source of
damping so vanishing viscosity implies vanishing attenua-
tion. This would be the case whenR!1, that is, for high
enough frequencies. However, the values ofB usually quoted
as good fits to experiment(see, for instance Ref. 2) suggest,
for the system studied in Ref. 15srb2V,10−6 kg m−1 s−1d a
value ofR,1 so that the effect of viscous drag and multiple
scattering would be comparable.

IV. THE IN-PLANE CASE

The in-plane case corresponds to the interaction of edge
dislocations with the in-plane waves, propagating at veloci-
ties a (longitudinal) and b (transverse) (Fig. 5); again, it is
easy to see that an in-plane wave can only interact with an
edge dislocation. We restrict ourselves to the case of gliding
edge dislocations, for which the line dislocation moves only
along its Burgers vector. Again, we assume that the Burgers
vector is small compared with any length scale in the prob-
lem.

A. The simplified approach for the in-plane case

The simplified approach to the effect of random scatterers
on a scalar wave can also be used in the in-plane case intro-
ducing two scalar potentials: Particle velocity is described in
terms of a longitudinalswd and shearscd potential:

v = =w + = Ã c s4.1d

with c=s0,0,cd. Each one obeys a scalar wave equation
with

S ]2

] t2
− a2¹2Dw = 0, s4.2d

S ]2

] t2
− b2¹2Dc = 0. s4.3d

We use a previous result,44 where the scattered potentialsws

andcs have been established(Fig. 6). With an incident wave
of the form

wincsx,td = Aaeikax1−iVt, cincsx,td = Abeikbx1−iVt, s4.4d

we find that scattered potentialsws andcs are given by

wssx,td = ffaasuxdAa + fabsuxdAbg
eikax−iVt

Îx
,

cssx,td = ffbasuxdAa + fbbsuxdAbg
eikbx−iVt

Îx
, s4.5d

with (see Ref. 44)

faasuxd =
mb2

2M

eip/4

Î2pka

Sb

a
D2sin 2u

a2 sins2ux − 2ud,

fabsuxd =
mb2

2M

eip/4

Î2pka

Sb

a
D2cos 2u

b2 sins2ux − 2ud,

fbasuxd = −
mb2

2M

eip/4

Î2pkb

sin 2u

a2 coss2ux − 2ud,

fbbsuxd = −
mb2

2M

eip/4

Î2pkb

cos 2u

b2 coss2ux − 2ud, s4.6d

whereux=sOx1̂,xd andu=sOx1̂,bd. In order to get a relation
between effective wave vector and forward scattering ampli-
tude similar to(3.5), a slight generalization of Foldy’s sim-
plified approach is used, taking into account the possibility
of mode conversion due to scattering:

wsxd = wincsxd + o
i=1

N

fFaasx,X idwsX id + Fabsx,X idcsX idg,

csxd = cincsxd + o
i=1

N

fFbasx,X idwsX id + Fbbsx,X idcsX idg.

s4.7d

In this expression, for instance,Fabsx ,X idcsX id is the con-
tribution to the longitudinal potentialwsxd at x due to theith
scatterer receiving the shear potentialcsX id. Taking the av-

FIG. 5. Acoustic wave(va velocity) and in-place shear-wave
(vb velocity) interacting with a 2D gliding edge dislocation.

FIG. 6. Acoustic wave(va velocity) and in-plane shear-wave
(vb velocity) interacting with a distribution of gliding edge disloca-
tions. Thenth dislocation is characterized by its mean positionX0

n

and its in plane Burgers vectorbn.
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erages over all realizations of the random distribution of
scatterers, we get

kwlsxd = wincsxd + nE dXfkFaalb,usx,XdkwlsXd

+ kFablb,usx,XdkclsXdg,

kclsxd = cincsxd + nE dXfkFbalb,usx,XdkwlsXd

+ kFbblb,usx,XdkclsXdg, s4.8d

where k·lb,u indicates the average over all possible Burgers
vector orientationssud and magnitudessbd. We assume that
no correlation exists among the dislocation positions and
Burgers vectors. As in the scalar case, we look for a solution
of kwl andkcl as plane waves and the functionsFabsx ,Xd are
related to the scattering functionsfabsuxd of a single scatterer
[see Eq.(B10)],

Fabsx,Xd = fabsuxd
eikaux−X u

Îux − X u
. s4.9d

Since kfa,blb,us0d=kfb,alb,us0d=0, the result is that a plane
wave (longitudinal or transversal) with undisturbed wave
numberkc sc=a ,bd will propagate coherently with an effec-
tive wave number,

Kc = kc + nÎ2p

kc
kfcclb,us0de−ip/4,

=kcS1 −
nmkb2lAc

4MV2 D , s4.10d

with

Aa = b2/a2,

Ab = 1. s4.11d

It can be noticed that there is no cross-coupling for the re-
sulting multiple scattered coherent wave. This has been also
observed in Ref. 28. In that case, this results from a particu-
lar behavior of the cross-coupled waves scattered by a
unique scatterer, that remain always apart from the incident
wave. Thus, the mode conversion is simply neglected in the
pure forward scattering problem that is involved in the Foldy
approach. In our case, there is no particular behavior of the
cross-coupled scattered waves[Eq. (4.6)] in the incident di-
rection. To determine the coherent wave characteristics, the
full vectorial problem has to be considered. However, it is
found that cross-coupled waves for the coherent waves van-
ish because the averaged cross-coupled scattering functions
vanish.

As in the antiplane case,(4.10) is real and this approach
cannot describe the attenuation of the wave. A Green’s func-
tion approach is needed for this.

B. Green’s function approach for the in-plane case

The wave equation(2.7) with (2.9) is now vectorial:

rv̈isx,td − cijkl
]2vlsx,td
] xj ] xk

= mo
n=1

N

seibba
n + eabbi

ndẊb
n ]

] xa
dsx

− Xnd. s4.12d

In order to describe the motionẊstd of a gliding edge
submitted to an externally generated wave displacement field
u we introduce coordinatessx̃1, x̃2d, with x̃1 along b. The
equation of motion(2.11) becomes

MẌstd = s1̃2̃b, s4.13d

where

s1̃2̃ = c12kl
]

] x̃l

ũksx̃,td s4.14d

is the stress tensor andM is the effective mass for an edge
dislocation:

M =
mb2

4pb2S1 +
b4

a4D ln
d

e
, s4.15d

whered ande have the same definition as in(3.4).
We consider now a plane wave of frequencyV traveling

through an elastic medium filled with randomly located and
oriented edge dislocations, described by(4.12). The acoustic
component has a wave vectorka ska=V /ad and the shear
component a wave vectorkb skb=V /bd. The task is to see if
we can define two effective wave vectorsK csc=a ,bd paral-
lel to kc to describe the medium as an effective medium(Fig.
5). The procedure using the modified Green’s formalism is
similar to the procedure we used for the antiplane case al-
though calculations are more involved because of the vector
nature of the wave equation. The homogeneous wave equa-
tion for particle velocity is now a vector equation,

f¹2 + kb
2 + sg2 − 1d ¹ ¹ . gvsx,vd = − Vsx,vdvsx,vd,

s4.16d

where the interaction operatorV now has a matrix structure,

Vijsx,vd = o
n=1

N
msbnd2

Mv2 Vi
nsxddsx − X0

ndVj
nsxduX0

n, s4.17d

with V1
n, V2

n scalar operators describing the interaction of the
nth dislocation with the stress wave:

V1
nsxd = S− sin 2un ]

] x1
+ cos 2un ]

] x2
D ,

V2
nsxd = Scos 2un ]

] x1
+ sin 2un ]

] x2
D . s4.18d

X0
n, bn denote, respectively, for thenth dislocation, the

position vector and the Burgers vector andun=sOx1̂,bnd. As
previously, the Green’s functionGab for the propagation in
the presence of dislocations is related to the Green’s function
G0 for the free propagation by the integral representation,
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Gabsx,x8d = Gab
0 sx − x8d

+E dx9 Gac
0 sx − x9dVcdsx9dGdbsx9,x8d,

s4.19d

whereGab andGab
0 satisfy

kb
2Gij

0sx − x8d +
ciklm

m
¹k¹lGmj

0 sx − x8d = − di jdsx − x8d,

s4.20d

kb
2Gijsx,x8d + Sciklm

m
¹k¹l + VimsxdDGmjsx,x8d

= − di jdsx − x8d. s4.21d

Let us now calculate the mass operatorS (also, this time,
a two by two matrix) to order 2 inV=Sn=1

N Vn, as defined in
(4.17). Vn is rewritten as(where superscriptn for b andX0
are suppressed for clarity),

Vnsx,vd =
mb2

Mv2fcos22u Asx,X0d + sin2 2u Bsx,X0d

+ cos 2u sin 2u Csx,X0dg, s4.22d

where

Asx,X0d = Sw22 w21

w12 w11
D , s4.23d

Bsx,X0d = S w11 − w12

− w21 w22
D , s4.24d

Csx,X0d = S− w22 − w21 − w11 + w22

− w11 + w22 w12 + w21
D , s4.25d

with wij defined in(3.13).
As it was the case for screw dislocations,kVlsxd is a sum

of N identical terms:

kVlskd =
1

VE rbdb
du

2p

dX0

V dx e−ik.xo
n

Vnsxdeik.x

= nE rbdb
du

2p

dX0

V dx e−ik.xV1sxdeik.x s4.26d

The calculation is simplified by use of the following pro-
cedure: In the integral definingkVlskd, we change the spatial
coordinates fromsO,x1,x2d to sX0, x̃1, x̃2d corresponding to a
translation of vectorX0 and a rotation of angleu. In this

transformation,k =sk,ukd becomesk̃ =sk, ũ=uk−ud. Thus,
kVlskd takes the form

kVlskd = nE rbdb
dũ

2p
dx̃e−i k̃.x̃Ṽ1sx̃dei k̃.x̃. s4.27d

Using (4.22) we see that in the new coordinatesV1 becomes

Ṽ1sx̃d =
mb2

Mv2Asx̃,0d, s4.28d

and using(3.27) we get

kVlskd = −
m

2M*v2nkb2lk2S1 0

0 1
D , s4.29d

whereM* is defined as in(3.16).
The second order termkVG0Vl−kVlG0kVl is calculated,

as in the antiplane case, usingkVG0Vl−kVlG0kVl
.NkV1G0V1l. With the same change of coordinates as in the
previous paragraph, we get

kV1G0V1lskd =
1

VE rbdb
du

2p

dX0

V dx dx8

3e−ik.xV1sxdG0sx − x8dV1sx8deik.x8

=
1

VE rbdb
dũ

2p
dx̃dx8̃e−i k̃.x̃Ṽ1sx̃d

3G0sx̃ − x8̃dṼ1sx8̃dei k̃.x8˜ . s4.30d

The calculation of the matrix operators is tedious but
straightforward, and uses the same procedure as for the an-
tiplane case[each element is of the form(3.22)]. The final
result in Fourier space is

kV1G0V1lskd = S m

4rM*v2D2kb4l
V kb

2k21 + g4

g4 Si +
C

kb
2kb2l

D
3S1 0

0 1
D , s4.31d

where r is defined as in(3.25). We finally obtain the mass
operatorSskd,

Sskd = Sk2S1 0

0 1
D , s4.32d

with

S=
mnkb2l
2M*v2F− 1 +

r

8r2M*

kb4l
kb2l

1 + g4

g4 Si +
C

kb
2kb2l

DG .

s4.33d

The modified Green’s function in Fourier space is given by
(A4), with

G0skd =
1

g2sk2 − ka
2dsk2 − kb

2d

3Sk2 − kb
2 + sg2 − 1dk2

2 − sg2 − 1dk1k2

− sg2 − 1dk1k2 k2 − kb
2 + sg2 − 1dk1

2D .

s4.34d

Using (A5) we have

kGl−1skd = Sf1 − Sgk2 − kb
2 + sg2 − 1dk1

2 sg2 − 1dk1k2

sg2 − 1dk1k2 f1 − Sgk2 − kb
2 + sg2 − 1dk2

2D .

s4.35d
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The modified Green’s function formalism is developed as
previously andSskd is found, to second order inV, to be

Sskd =
mnkb2l
2M*v2k2F− 1 +S1 +

1

g4D r

8r2M*

kb4l
kb2lSi +

C
kb

2kb2l
DG

3S1 0

0 1
D , s4.36d

whereC is a numerical constant of order 1/p; M* is again a
mean effective mass per unit length andr a numerical con-
stant close to 1 and depending on the distribution function
for b. The resulting modified wave numbersKa andKb cor-
respond to the in-plane wave solutions ofkGl, given by the
roots of the determinant ofG0skd−1−Sskd:

Kc = kcH1 −
mnkb2lAc

4M*V2 F1 −S1 +
1

g4D r

8r2M*

kb4l
kb2l

3Si +
C

kc
2kb2l

DGJ , s4.37d

where

Aa = b2/a2,

Ab = 1. s4.38d

The qualitative behavior of the effective wave number is the
same as in the antiplane case; the effective phase velocities
are increased, and the effective group velocities are de-
creased, from their values in the absence of scatterers. This
result can be read off the leading order development of Sec.
IV B, and it coincides with the result obtained using a
simple-minded approach in Sec. III A. The imaginary part of
the second order term in Sec. IV B gives the elastic mean
free path for both waves:

La = 16
r2M*2g8

nr2kb4lg4 + 1
ka,

Lb =
1

g4La. s4.39d

V. CONCLUSIONS

We have determined that elastic waves traveling through a
two dimensional elastic material filled with randomly placed
dislocations behave as an effective medium that allows the
propagation of a coherent wave with effective velocities for
longitudinal and transverse waves, and their respective at-
tenuations. In the case of screw dislocations this leads to a
scalar problem involving the antiplane shear wave. In the
case of edge dislocations this leads to a vector problem in-
volving the coupled in-plane shear and acoustical waves. In
contrast to the mechanism usually studied in the multiple
scattering of stress waves by static inhomogeneities or inclu-
sions, the scattering mechanism considered in this paper in-
volves a dynamic response by the dislocation that is respon-

sible for the scattering. The effective medium approach
allows us to determine modified wave numbers whose real
part provides the change of wave speeds due to the presence
of scatterers and whose imaginary part corresponds to the
attenuation of the waves in the forward direction. The calcu-
lations have been performed in both cases, assuming that the
scattering strength was small. This strength is measured by
the potentialsV appearing in the wave equations(3.8) and
(4.16). Calculations at second order inV are then performed
using a Green’s function approach. Second order gives the
attenuation length while first order gives the wave speed
modification. This leading order behavior can also be ob-
tained with a simpler, Foldy-Twersky, calculation.17

Calculations have been performed distinguishing edge
and screw dislocation configurations. Many real materials
(e.g., in silver) involve mixed dislocations whose Burgers
vector is the sum of an edge and a screw dislocation Burgers
vectors. Since all phenomena discussed in this paper are lin-
ear, the case of mixed dislocations can be simply obtained by
superposition. Also, since we use continuum elasticity, there
is no restriction on the value of the Burgers vector, which
does not need to be a lattice vector and our results apply
without change to partials.

While ultrasonic waves are routinely used in the nonde-
structive evaluation of materials because of their(well stud-
ied) interaction with flaws,45–50 they do not appear to have
been considered as probes to explore the characteristics of
phenomena, such as the brittle-to-ductile transition, where
dislocations are believed to play a prominent role. A very
recent publication, however,14 describes an experiment of ul-
trasound propagation during fatigue of pearlitic rail steel,
showing that the attenuation and velocity of ultrasound are
very sensitive to the presence of dislocations while they ap-
pear to be unaffected by the onset and growth of
microcracks. Such experiments and the calculations pre-
sented in the present paper work suggest this may be a fruit-
ful road to undertake. Work along these lines is in progress.
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APPENDIX A: THE MODIFIED GREEN’S FUNCTION
FORMALISM

In the medium in the absence of any scatterer, letG0

denote the usual Green’s function characterized by the linear
operatorL,

Lsx,vdG0sx − x8,vd = − dsx − x8d. sA1d

In the presence of scatterers, letG now designate the Green’s
function associated with the modified operatorL+V:

Lsx,vdGsx,x8,vd = − dsx − x8d − VsxdGsx,x8,vd.

sA2d

The modified Green’s function can be expressed as
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Gsx,x8d = G0sx − x8d +E dx9G0sx − x9dVsx9dGsx9,x8d,

sA3d

formally written G=G0+G0VG. The scattering matrixT=V
+VG0V+VG0VG0V+¯ is introduced and verifiesG=G0

+G0TG0. The integral representation of the scattering matrix
is T=V+VG0T.

Consider now the averaged Green’s functionkGl defined
as the impulse response of the effective medium, defined as
the average of the media over all realizations ofV. We obtain
kGl=G0+G0kVGl, which can be written as a Dyson equa-
tion,

kGl = G0 + G0SkGl, sA4d

whereS=kTl−kTlG0S is the mass operator. At this point, the
averaged Green’s functionkGl can be determined simply by
solving the algebraic equation(A4) in Fourier space. For-
mally this is written as

kGl = „sG0d−1 − S…−1 sA5d

and the coherent wave vector is given by the pole(or poles)
of kGl. In a general case,kTl is hard or even impossible to
determine. In our case, we considerV as a small correction
of the operator of free propagation, and thus we have

kTl = kVl, at order 1,

kTl = kVl + kVG0Vl, at order 2. sA6d

At second order inV, S takes the form

S = kVl + kVG0Vl − kVlG0kVl. sA7d

We can now calculate the mass operatorSskd in the Fourier
space to solve(A5). Strictly speaking,(A5) gives Ssk ,k8d.
Using the invariance under translations of both Green’s func-
tionskGl andG0, we have, in the Fourier space, forf =kGl or
G0: fsk ,k8d= fskddsk −k8d. Equation(A5) becomes

kGlskd = G0skd +E dk8 Ssk,k8dkGlsk8d, sA8d

with

Ssk,k8d =E dx dx8 e−ik.xSsx,x8deik8.x8. sA9d

Note that this transformation, similar but not identical to the
Fourier transform of a function of two vector variables, does
not haves2pd factors in its definition. We use now the in-
variance under the translation ofSsx ,x8d, in the sense that
Ssx ,x8d=Ssu ,u8d if sx−x8d=su−u8d. Thus, we obtain

Ssk,k8d = dsk − k8dSskd, sA10d

with

Sskd =
1

VE du du8 e−ik.uSsu,u8deik.u8. sA11d

In coordinate space(A7) reads as

Ssx,x8d = kVsxdldsx − x8d + kVsxdG0sx − x8dVsx8dl

− kVsxdlG0sx − x8dkVsx8dl. sA12d

As already mentioned, the coherent wave numberK, cor-
responding to a wave propagation in the formeiK .x, is simply
determined by the poles ofkGl. In the antiplane case,(A4) is
a scalar equation and we have to determine the pole ofkGl
while in the in-plane case,(A4) has a matrix structure and
the task is to calculate the root of the determinant ofkGl.

APPENDIX B: SCATTERING FUNCTION AND FOLDY’S
APPROACH, THE ANTIPLANE CASE

1. Foldy’s approach

Before presenting the calculations using Foldy’s ap-
proach, we summarize here the analogy of this approach
with the usual potential approach we have used until now.
The integral representation,

G = G0 + o
i

G0ViG, sB1d

can be written for the velocity fieldvsxd=vincsxd
+Siedx8 G0sx−x8dVisx8dvsx8d. In the simplest case of iso-
tropic punctual scatterers located inXi, the operatorVi can
be written as Visxd=Vidsx−X id. Then, with Hsx ,X id
=ViG0sx−X id, the integral representation takes the form

vsxd = vincsxd + o
i

Hsx,X idvsX id. sB2d

However, this relation is hard to exploit since there is no
physical interpretation ofVisxd, notably, it is not related to
the operator of scattering for a unique scatterer, denotedTi in
the following. Moreover,(B2) makes appear a term of self-
irradiation Hsx ,X idHsX i ,X id (or, equivalently, the integral
representation ofG makes appear a termG0ViG0Vi). Foldy17

chose an alternative way where the operatorTi for a single
scatterer is introduced. From Ref. 20,Ti satisfies the integral
representationGi =G0+G0TiG0 for one scatterer and for a set
of scatterers,

G = G0 + o
i

G0QiG0, sB3d

where Qi can be related to Ti through Qi =Ti

+TiG0S jÞiQ
j. Note thatSiQi denotes the exact total scat-

tering operator including all the multiple scattering. Finally,
we haveG=G0+SiG

0TiG0+SiG
0TiS jÞiG

0TjG0+¯. We rec-
ognize in the first sum the single scattering, in the second the
double scattering, etc.,̄ . Again, we suppose the simplest
case of isotropicd-function potentialsTisxd=Tidsx−X id. In-
troducing Fsx ,X id=TiG0sx−X id, the representation for the
velocity field is thus

vsxd = vincsxd + o
i

Fsx,X idvincsX id

+ o
i

o
jÞi

Fsx,X idFsX i,X jdvincsX jd + ¯ . sB4d

This is equivalent to the usual notation in Foldy’s formalism,
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vsxd = vincsxd + o
i

Fsx,X idvisX id,

visxd = vincsxd + o
jÞi

Fsx,X jdv jsX jd. sB5d

At this point, it is clear thatFsx ,X id is directly propor-
tional to the Green functionG0sx−X id when punctual isotro-
pic scatterers are considered. If the scatterer is punctual but
not isotropic, we have to account for the direction of the
incident wave: nonisotropic means that the response of the
scatterer depends on the direction of the wave incident on the
scatterer16 using Fsx ,X id=TiskidG0sx−X id, where k inc is a
unitary vector indicating the direction of the incident wave.

2. Calculation of the modified wavenumber, the antiplane case

For an incident wave of unit amplitude,vincsx ,td
=eikx1−ivt, it has been established in a previous paper44 that
the scattered wave in polar coordinatesx=sx,uxd, far from
the scatterer reads as

vssx,ux,td = Afsuxd
eikx−ivt

Îx
, sB6d

with f as the scattering function,

fsuxd = −
mb2

2M

eip/4

Î2pvb3/2
cosux. sB7d

We adopt the usual Foldy equations(B4) averaged over all
configurations of scatterers(for the sake of clarity, the aver-
age overb is omitted),

kvlsxd = vincsxd +E dX1
¯ dXN

VN o
i=1

N

Fsx,X idvisX id=vincsxd +
N

VE dX1 Fsx,X1dvincsX1d

+
NsN − 1d

V2 E dX1 dX2Fsx,X1dFsX1,X2dvincsX2d

+
NsN − 1dsN − 2d

V3 E dX1 dX2 dX3Fsx,X1dFsX1,X2dFsX2,X3dvincsX3d

+
NsN − 1d

V2 E dX1 dX2Fsx,X1dFsX1,X2dFsX2,X1dvincsX1d + ¯ . sB8d

The last integral and all others involving a scattering process
that goes through the same scatterer more than once are ne-
glected. Thus, for large value ofN, one gets, withn=N/V

kvlsxd = vincsxd + nE dX1 Fsx,X1dSvincsX1d

+ nE dX2 FsX1,X2dsvincsX2d + ¯D
=vincsxd + nE dX Fsx,XdkvlsXd. sB9d

Looking for a solution as a plane wavekvlsxd
=V0e

iKx1−iVt for an incident plane waveeikx1−iVt, F is identi-
fied to the response of a unique scatterer,

Fsx,Xd = fsuxd
eikux−X u

Îux − X u
. sB10d

The integral can be now calculated on a slab of infinite size
alongx2 and of widthx1, using

E
0

x1E dX eiK X1kflbsuxd
eikux−X u

Îux − X u

=
2p

k
kflbs0de−ip/4seiKx1 − eikx1d

K − k
, sB11d

wherekflb indicates the average overb. Equation(B9) can
be solved to findV0 andK. This leads toV0=1 and

K = k + nÎ2p

k
kflbs0de−ip/4,

=kS1 −
mnkb2l
2M*V2D , sB12d

whereM* is the mean square root ofM [M* appears as in
(3.16) taking the mean value off over b].
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