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A number of unsolved issues in materials physics suggest there is a need for an improved quantitative
understanding of the interaction between acougtiore generally, elasticwaves and dislocations. In this
paper we study the coherent propagation of elastic waves through a two dimensional solid filled with randomly
placed dislocations, both edge and screw, in a multiple scattering formalism. Wavelengths are supposed to be
large compared to a Burgers vector and dislocation density is supposed to be small, in a sense made precise in
the body of the paper. Consequently, the basic mechanism for the scattering of an elastic wave by a line defect
is quite simple(“fluttering”): An elastic wave will hit each individual dislocation, causing it to oscillate in
response. The ensuing oscillatory motion will generate outg@iog the dislocation positiorelastic waves.
When many dislocations are present, the resulting wave behavior can be quite involved because of multiple
scattering. However, under some circumstances, there may exist a coherent wave propagating with an effective
wave velocity, its amplitude being attenuated because of the energy scattered away from the direction of
propagation. The present study concerns the determination of the coherent wavenumber of an elastic wave
propagating through an elastic medium filled with randomly placed dislocations. The real part of the coherent
wavenumber gives the effective wave velocity and its imaginary part gives the attenuation (lemgtastic
mean free path The calculation is performed perturbatively, using a wave equation for the particle velocity
with a right hand side term, valid both in two and three dimensions, that accounts for the dislocation motion
when forced by an external stress. In two dimensions, the motion of a dislocation is that of a massive particle
driven by the incident wave; both screw and edge dislocations are considered. The effective velocity of the
coherent wave appears at first order in perturbation theory, while the attenuation length appears at second order.
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[. INTRODUCTION surements in high purity niobium and tantalum can be ob-
tained with a picture in which the dominant effect is the
interaction of phonons with kinks on dislocatich¥he im-

Dislocation dynamics is a problem at the root of a numbefPortance of radiation damping due to kink oscillatibmss

of outstanding issues in materials physics. Mechanically exalready nloted by Hikata and Elbadfh.The review of
cited phonons in interaction with dislocations appear inAndersont has highlighted the need for an improved theo-
acoustics experiments, and the vibrating string model of disretical understanding of the elastic wave-dislocation interac-

location damping3has been quite successful in explaining ation in order to use the thermal conductivity measurements

wealth of data, such as measurements of damping, interng[ deformed bodies as a diagnostic tool for studying defect
ructures in solids.

.- . . S
friction and modulus change of solids. Thermally excited The vibrating string model is based on the formulation of

phonong _in interaction with dislocations_app_ear in therm‘""Koehler?‘-2 in which the dislocation is modeled as a scalar
conductivity measurements, whgre the Situation at low tem.'string driven by a scalar time dependent stress. This model is
peratures seems to be less satisfactory than in the acoust\t;éry simple, a fact that allows for many applications, and it
case. Kneezel and Granétpond_ucted a careful study of cerainly captures the essence of the physics of the elastic
phonon damping with the vibrating string model; they con-yaye-dislocation interaction. However, it does not consider
sidered many effects, including angular effects emphasizeghe many complexities of this interaction. For example, it
by Ninomiya? and found no accord with the détan ther-  does not differentiate between edge and screw dislocations,
mal resistivity at low temperature in alkali halides when dis-nor among the various polarizations available to an elastic
locations are assumed to vibrate independently. A fit could bevave, and a significant body of current literature addresses
obtained, however, with dislocatiodipoles at long wave- this issue through numerical computations, both in a con-
lengths(hence vibrating “optically,” that is, in oppositign  tinuum, mesoscopic, approximation and at the atomic scale.
which would require many dislocations to be arranged inThe vibrating string model also treats dislocations singly, and
dipoles. More recent work by Anderson and collabordtorsthe effect of many dislocations is simply accounted for by
has confirmed the inability of the model to account for themultiplication. However, the presence of many obstacles
data. Qualitative, but not quantitative agreement with meaupon the path of a wave has collective effects in addition to

A. Motivation
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the sum of single body effects: for example, a random arragtudied?>~2° One way to solve this problem is to use a per-
of scatterers will attenuate a wave, even in the absence of dnrbative method assuming that the elastic constants are
internal viscosity mechanism. Our purpose in the present paslose to the values in the homogeneous medium. The case of
per is to offer results toward filling this gap: we consider firstdiscontinuous heterogeneities has been mainly studied to ac-
antiplane waves in interaction with screw dislocations, ancFount for inclusions in the mediuff:*=°In this case,
then in plane(vecton waves in interaction with edge dislo- boundary conditions of force and displacement continuity at
cations in which their vector nature is considered in full, andthe inclusion surface have to be considered. In both cases,
we get formulas describing the behavior of elastic waves in &1€ problem of scattering by the random distribution of weak
continuum filled with randomly distributed dislocations, ~ €!astic heterogeneities can be solved starting from an integral
There are further outstanding problems in materials phys[EPresentation for the scattered field and considering simpli-
ics, such as the brittle to ductile transitidrand fatigué? fications to reach a desired order of accuracy, as the Born

imatioR®32 : —
where there is wide agreement that dislocations play a Sig\%)é)rr?élr?t]i?)tr;oglso ?rz;hfvgﬁlkeL?gfﬁaﬁgmzﬁgngéggjﬂ??rtf;'
nificant, possibly determinant, role. From an engineering defhe problem of coherent propagation of an elastic wave
sign point of vigw the issue of brittle to ductile transition is though many cracks, defined as lines of finite length, free of
well controlled in the sense that structures can be, and argation, and with a displacement discontinuity. The authors
successfully constructed. From a basic physics point of viewes|cylate numerically the scattering functions for one scat-
however, those phenomena are very far from being undefgrer and use Foldy’s approdétio treat the multiple scatter-
stood, in the sense that current theoretical modeling has, g configuration.
the best of our knowledge, no predictive power: If a new “The neterogeneity we consider in the present paper is a
form of steel, say, is fabricated, current theory cannot makgjsjocation. In two dimensions it is characterized as a point
quantitative predictions concerning its mechanical propertiegefect with a displacement discontinuity measured by its
as a function of temperature or cyclic loading. It is our Opi“'Burgers'vectorb. The mechanism of wave scattering by a
ion that one important cause for this lack of basic knowledgasingle dislocation is quite simple. An elastic wave will hit
lies in the paucity of experimental measureme(@s op-  each individual dislocation, causing it to oscillate in re-
posed to v_isualization)s:oncerning dislocations. This is so sponse. The ensuing oscillatory motion will generate outgo-
because dislocations need to be seen through electron Mg (from the dislocation positionelastic waves. Although
croscopy of samples that must be specially prepared. lhe mechanism of scattering by a dislocation appears simple,
stands thus to reason that it would be very desirable to havig js unusual compared with the mechanism of scattering by
quantitative measurements carried out with noninvasivenciysion type scatterers or by a continuous variation of the
probes. Is this possible? We believe acoustic, or ultrasoniGjastic constants. In these latter cases, the scattering results
measurements may provide such quantitative tatdow-  from a particular structure of the medium but no dynamical
ever, for this approach to be feasible, an improved theoreticalffect occurs. In contrast, the mechanism we are interested in
understanding of the sound-dislocation interaction is needegjoes not contain any structural effect that would describe the
which is an additional reason for undertaking the calculaxtrycture of the dislocation core. This is a good approxima-

tions described in this paper. tion provided wavelengths are large compared to core size, a
good approximation even at high ultrasonic frequencies.
B. Elastic waves in random media An integral representation for the elastic wave generated

The behavior of waves in random media has a long an y amoving d'SIOCt:.at'OP htarlf bdgeln kntpwn for somettili é’. .
distinguished history of scholarship and the literature is owever, an equation for the disiocation response 1o an inci-
vast!5-18 Current interest stems at least from two sources9€Nt Wave is a more recent waftk.In particular cases,
the possibility that disorder will induce a change in WaveKlusaIaas a’?d Muré; using Nabarros results, dgrlved the
behavior from transmission to diffusion to localizati§n2t total scattering cross section for the scattering of stress

and the enhanced understanding of radiation traffsfieeir waves by a d|s!oc§1t|on. The work of Lufftprovided a the-
study has allowed. oretical underpinning, as well as a full tensor treatment, of

There are many studies of elastic wave propagation iﬁhe phenomenological string model of Koehférthat was

random media, from at least two domains: the geophysicsgccessmny implemented by Granato and Lickehereaf-

literature seeks to understand the effect of inhomogeneitie r GL) to explain internal friction measurements. They con-
within the Earthd crust on seismic wave.and the nonde- Sidered the response to an external stress wave of a damped,

structive evaluation literature seeks to gauge the effect th fring-like dislocation segment endowed with mass and fine

flaws in elastic materials have on elastic wa¥em the case  cHoloM: subject to viscous loss, and pinned between two

of an isotropic heterogeneous medium, the elastic wanO?mS‘ In a single scz_ittering approach, the d_amping of _the
equation takes the form ' string leads to a damping of the wave, the inertia of the string

leads to a modification of the wave speed of propagation, and

. d au, the line tension leads to the possibility of having resonances.

p(x)G; - 5y ik (X)E =0, (1.1) As mentioned above, one reason for a study on the effect

! K of dislocations on wave propagation lies in the desire to de-

wherecij =\ 8+ u( 85 + 6, 5j) are the elastic constants. velop new probes to study phenomena such as the brittle to
Heterogeneities can be treated as continuous or discontingtuctile transitiont® where dislocation structure and dynamics
ous. The case of continuous heterogeneities has been widedppear to play a prominent role. In keeping with this moti-
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vation, we shall not consider the scattering of elastic waves
by the effective elastic constant changes at the core of a
dislocation since even at the highest frequencies likely to be
generated by ultrasonic transducésay, up to the GHz re-
gime) the acoustic wavelengths will be much larger than dis-
location core size. In this paper we compute the properties of
a coherent elastic wave propagating through an elastic me-
dium that is filled with randomly placed dislocations. It
makes sense to study in some detail the properties of coher-
ent elastic waves because in acoustics the phase can be mea-
sured. This is of course not the case for electromagnetic
waves, nor for de Broglie waves such as electrons in solids.
This paper is organized as follows: In Sec. Il we give a
brief review of those aspects of dislocation dynamics that are A. GENERATION OF ELASTIC WAVES BY A MOVING
needed to understand the scattering of elastic waves by dis- DISLOCATION
locations. It also serves to unify notation. In Sec. Il we 1. General case
present the calculation of the properties of a coherent anti- . . .
plane wave traveling through a two-dimensional elastic me- The pllsplacer_nentsj generate_d by a dislocation loop
dium filled with randomly located screw dislocations. This is M0Ving in an arbitrary but prescribed way through an homo-

done first with a simple minded approach whose limitationgd€"€ous elastic medium are obtaiffetly solving the- dy-

are pointed out and then through the perturbative calculatiof2™!C equations
of a mass operator for Dyson’s equation. In Sec. IV we P P
present the calculation of the properties of a coherent inplane P 3Ui(X, 1) — Cjy T w(x,t) =0, 2.
. . . . . . Jt I X (9Xk
elastic wave traveling through a medium that is filled with ]
randomly placed edge dislocations. This is also done at firswith boundary conditions
with a simple minded approach and then through the calcu-
lation of a mass operator. Calculations here are more in- 1. =h g IU | =
. [ul]S bn Cljk| nj 0. (2-2)
volved than in Sec. Il due to the vector nature of the equa- IX¢ s

tions, and the matrix nature of the operators describing therhe first condition is the discontinuity of displacement al-

gi\é?r;dlfleonfgifsn g;?;icé'; ?1 dlgriigét\é ggo%rtersneuqtti Sloe n;igggﬁgady mentioned, and the second equation is the continuity
9 ) P of the stress across the surfage

ing, as adapte_d to the elast_ic wave-dislocation interaction, In the isotropic case there are only two independent elas-
are collected in two appendices. Throughout the pafer, tic constants

denotes the frequency of the incident wave whilds the
frequency variable in the Fourier transforms. Cijki = NGjj & + (88 + 61 6jk)

FIG. 1. Definition of the Burgers vector.

Il. DISLOCATION DYNAMICS—A BRIEF REVIEW where (\, ) are the Lamé coefficients. Using the Green'’s

. . . . . function for free spac&®®?, defined b
Consider three dimensional space with coordinates P y

=(x1,%,Xg). The dynamical variables are thiemal) dis- ﬁG-O(SD)(X—X' - & GO~ t— 1)
placementsi of pointsx away from their equilibrium posi- P 5 2im ' ”"'axj Ix ™ '

tions as a function of timé& A dislocation loop is described , )

by a closed curvéX(o,t), wheres is a Lagrangian coordi- = 8x=x") ot —t') Sim, (2.3

nate along the loojh.. The dislocation loop is characterized the displacement,, can be written as an integral represen-
by a Burgers vectob, defined by a discontinuity of the dis- ation:

placement fieldu:
J
ur(X,t) = C; Jf dt’ dS hn—G2P (x — x’ t - t'),
§ du=-b. m ijkl s kﬁX] im
C

(2.9

wheren denotes the unit normal 8(t), the surface of dis-
continuity for the displacement. This surface is time depen-
dent since the dislocation ling(o,t) may change in time,
and its chang@s during a small time intervaht obeys

The integral is taken along a closed cu@round the dis-
location with a direct orientation respect t=0X/do, the
tangent to the loop(Fig. 1). This means that the displace-
ment fieldu is multivalued, with a jump equal tb when
crossing a surfacé& bounded by the loof. This condition

can be formally written as )
f ds = €knh§ do XnTh At,
[uls=b. AS L
The surfaceS is arbitrary, and should not appear in expres-where an overdot means time derivative aggdis the usual
sions involving physically measurable guantities. completely antisymmetric tensor. Equati¢h4) is a convo-
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(0]
X G (X1, %o, 1) = f dxg GIP) (X, Xg, X3, 1)
Xy is the Green’s function in two dimensions. In other words,
X(t): the source term becomes
: . d
I S(Xat) = Ciaclecbxbbl_é(x - X) (2-9)
9%q
FIG. 2. Configuration of the 2D problem. and(2.8) can be written in the frequency domain as
- Jd
lution of the Green’s function with a source that is localized v(X, @) = Echiac|b|Xn(w)§Gﬁn(X,w), (2.10
a

along the surface of discontinuity. Since this surface does
not have a special physical significance, it should be POSSib|ﬂ/hereG?m(x—X(t’),t—t’) has been taken, to leading order
to express physically meaningful quantities in terms of ayjth respect to the small amplitudé(t), equal oGO (x,t

source that is localized along the lodp Indeed, it is not _¢) 'when the dislocation equilibrium position is at the ori-
displacementss but their time and space derivatives that ;-

have physical meaning, since it is they that appear in expres-
sions for energy and momentum. From above, the veIocit;g3

. o . . . Response of a dislocation to an incoming stress wave in two
vm= U, satisfies the integral representation

dimensions

_ , N , In the following, we consider the two dimensional motion
Om(X,0) = i f ﬁ dt" do byXe(0,t) 7r(0) of a dislocation line, oriented along thg axis, moving un-
der the action of a stress wag,. In this case, a method of
finding an equation of motion for a dislocation loop can be
found in Ref. 40, based on the observation that the equations
o ) ) , ) of dynamic elasticity follow from a variational principle.
which is a convolution of the Green’s function with a source\yhen dislocation velocity is small compared to the speed of

localized along the loop and not on the surfdte .
g P longitudinal and shear wavesX<a,B, where «

1%
XEG?,;SD)(X—X(o,t’),t—t’), (2.5
]

0 ) ) =\J(\+2u)/p and B=\ulp, the equation of motion in the
Um(X) :J dx’ Gi(x = x")s(x"), first Born approximatior(i.e., neglecting the radiation reac-
v tion) is
with d(aL
_ 3 S\ o )T €atbiZin, (2.1
s(x,0) = Cijq emné do Xpmb——-8x=X), (2.6 I Xa
L

! where X, =Ci,i dU/ %, is the stress tensor evaluated at the
and where) denotes the volume of considered space. Condislocation position£ is the Lagrangian,

sequently, an inhomogeneous wave equation for particle ve- 5 52
locity can be written as [=- 4ﬂln<—> b2<1 _2_2) " bi{Z(l -y?
2 T \€ B
51,0~ e T2 @7
PUIX U = Gijg =~ = SIX . . Ve '\2
X I% X _ (b, OX) _
177k —p(1+74)}+L—2(1—74) ,
We shall need this equation when discussing scattering. B B
with y=a/pB and 8, e are long- and short-distance cutoff
2. Two dimensions lengths, respectivelyb, andb, are the components of the

Burgers vector parallel and perpendicular to the dislocation
line, and ub?/° has dimension of mass per unit length.
Equation(2.11) is a second order in time ordinary differen-
X(o,t) = (X4(1),X,(1), 0), tial equation for a point particléhe dislocation position in

. . . two dimensiong subject to the usual Peach-Koehler fofée.
and _dlsplace_ments_ are mdep_endenb@(ﬁg. 2, the prob- |, a more general case, say for oblique wave incidence, there
lem is two dimensional. In this case are additional terms arising from the line tension associated
with the dislocation line curvature.

When a dislocation loop is an infinite straight line, say,
along thexs direction,

S
Ursn(X,t) = €cpCiacl f dt’ b|xb(t’)EG|?n(X - X(t,),t - t,),
a

(2.9

Ill. THE ANTIPLANE CASE

The antiplane case corresponds to the interaction of an
wherea,b,c, --=1,2,e.,= €3 and antiplane shear wave=(0,0,v) with a screw dislocation
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(o] A. Simple—but incomplete—calculation
A classic result that goes back at least to Foldgstab-
A b lishes that, if a scalar plane waves expl(ik gx, —i€2t) is inci-
. dent upon a slab with many, randomly placed, scatterers, for
mc e :
A" X5 low densities n there will be a coherent wavev)
=expiK gpx; —iQt) characterized by an effective wave vector,
]
X 1v 2
Kg=kg+ny/ —(f(0))e’ ™, 3.5
B, p=Kg K B< (0)) (3.5
X1 where f(0) is the forward scattering amplitude for a single

scatterer, and the brackets denote an average over the inter-
FIG. 3. Scalar problem of the shear wave interacting with ahal variables that characterize .the scatterers. In our case fthis
screw dislocation. would be an average over various Burgers vectors, if a dis-
tribution of Burgers vectors was allowed.
The scattering amplitude for an antiplane wave incident

b=(0,0,b) (Fig. 3. It is easy to see i2.7) and(2.9) that no i . . ~
( ) (Fi9.39 y @7 and(2.9 head-on on a screw dislocation*fswith 6,=(0x;,X),

interaction can occur with an in-plane Burgers vedsege

also Ref. 44. In this case the wave equation takes the form, ub? g
using(2.9), f(6,) =- NWCOS Oy, (3.6
. o0 . . . .
pv(X,t) = wV2u(x,t) = Mbeabxb(?—xa‘(x—x). so that the effective wave vector is, when all dislocations
a

have the same Burgers vector,

We consider now a distribution &f screw dislocations in L2
thex-plane . XN(t)-denotes the location of tHéth dislocation Kg= k3<1 - '“—2> . (3.7
in a volumeV (actually, here a surfagand the bulk limit is 2MQ
taken withn=N/V, the density of dislocations, assumed uni-  Thjg expression provides an effective speed of propaga-
form. b denotes the Burgers vector of thith dislocation,  tion for antiplane waves traveling through many, randomly
assumed small compared to any other lengths, sueh’@  pjaced, dislocations. However, being real, it does not provide
the typical distance between dislocations, and any elastign expression for the attenuation due to the energy that is
wavelength. In this case, and for wavelengths large comeaken away from the incident direction by the scatterers. In

pared to the dislocation core size, the wave equation keeRsider to get this, we turn to a Green's function formalism,
the same form as for one dislocation and the source terfjnose general ideas are reviewed in Appendix A.

corresponds to the sum over all dislocations: The modification in wave velocitf2/K implicit in Eg.
N L9 (3.7) can be compared with the result of Granato and Lifcke.
pv(x,t) — uV2u(x,t) = qu b€ Xp— a(x — X"). The authors performed calculations for one dislocation loop
n=1 JXa of total lengthL with fixed ends and submitted to an external

(3.2 periodic stress. The Koehférequation of motion they use
contains an inertial term, a drag force and a line tension. This
As previously said, the wave equation has to be comequation is coupled with a wave equation, similar to our Eq.
pleted with the law for the dislocation motiot(t)in order to  (3.2). In this model, the inertial term is responsible for the
have a self consistent problem. This is given by E11),  modification of the wave velocity, the drag force is respon-

which, in the antiplane case becomes sible for the wave attenuation, and the line tension force
leads to resonant phenomena. If the drag and line tension are
Mkb(t) - ,ubebciu(x,t), (3.3 neglected, the modified speed of propagation of GL is simi-
aXe lar to (3.7). In the GL model, our dependencerins replaced

by a dependence ih. However, for many dislocationd,
becomes the total length of dislocation per unit volume,
ub® & similar to ourn.
M= 5in—. (3.9

47B° €

whereM is the classical mass per unit lengt>

. . . B. Green’s function formalism—Antiplane case
We consider in the following a plane wave of frequency

dium filled with randomly distributed dislocations, as de- OPerator, given by Eq.(A7), in terms of which the effec-
scribed by Eq(3.2). We are interested in characterizing the tiveé wave number is given b§8.32. Using (3.2) and (3.3,
effective medium in terms of a complex wave vectop ~ W€ have the following equation in the frequency domain:

parallel tqu, whose real part gives a reno_rmalized speed pf (V2+ kz)v(x,w) =~ V(X 0)v(X,0), (3.9
propagation, and whose imaginary part gives an attenuation
length. where the potentiaV/ is
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bn 2
V(X,w) = E (—> —X5( - Xp) a_x . (39

nlM ax”

In this expression, the positions(t) of the screw disloca-
tions have been replaced by their mean val{pesitions at
resy Xg.

The Green’s function§&® and G satisfy the equations

(V2+ K9G (x - x') == 8(x = x'), (3.10

(V2+kfg+v(x))G(x,x’):—6(x—x’), (3.11)

with the potentialV defined by(3.9). To proceed, we need
the average o¥:

<V>(X)—— f padb* - - py db

Xl"' XN m2
O X ()

VN M Wii(X,Xg), (312)
n

where

(3.13

wij (X, Xo) = a_5(X Xo) ——

This average is taken over all realizations\bhssuming no
correlation betweetuniformly distributed scatterers and de-
noting py, the probability distribution function of the Burgers
vector.(V) is the sum ofN identical terms so that

b? [ dX
<V>(X)=§prb dbeTOWii(nyo)- (3.19

Concerning the integral ovet,, we use that

J J &
deO Wij(X,Xo)ZEJ dXO 6(X_XO)(9XO = I Ix
i | 177
(3.195

To calculate the integral ovéx;, we use the explicit relatidf
M = Ck?n(L/b) with C a constant and, for the sake of clar-

ity, we defineM” as
b? b?
M M

For instance, when all Burgers vectors are identiggl,
=8(b-by), and we haveM” =M (by). For a uniform distribu-
tion, p,=1/by if 0<b<b,, and zero otherwise, we have

M”*=M(by)/3 using
s buCIn(L/b)  Cin(Lby) Mby)

b2
M/
(3.17

The calculation of(V) can be achieved and we finally
obtain

fbM db 1 1 bZ,

PHYSICAL REVIEW B 70, 024303(2004

(V)0 = —En(bA V2 (3.189

In the frequency domain this is

W) == (B, (3.19

In order to derive the second order effectSirwe write
Vv=3N_ V". Thus, we have

N
(VGOV) = (N )<V>G°<V> + <2 V”GOV“>, (3.20

n=1

when no correlation exists among different dislocations. For
large values oN this means

(VGV) — (WYGUV) = N(VIGOVY). (3.21)
We now calculatéV'GoV?) [using(3.9)]:

(VHX)GO(x = x")VH(x"))

2 b* [ dX
:(w%) fpbdb J =, Wi (X Xo)
XGO(x = x")w;(x", Xo). (3.22

This integral has a divergence at short distances. However,
the continuum theory we are using does not make sense at
short wavelengths, that is, wavelengths that are comparable
to the atomic spacingi.e., the Burgers vectarin order to

face this issue, we go to Fourier space and introduce a cutoff
function f(k) to suppress the effect of short wavelengkhs
=1/b [the qualitative nature of our results does not depend
on the detailed nature dfk)]

Gox) = J dg G(q)€¥*f(q). (3.23

(2m)?

In the Fourier space, we have thus

2 b4
(VIGVY(K) = (ﬁ) ¥ f dX, dg G2(q)f(q)

dex e KXy, (x, X o) €9
xf dx’ e“q'x'wjj(x’,xo)eik'x'. (3.29

We have introduced in this latter expression a coefficienft

order 1, such that
b* (b%
— )= . 3.2
<|v|2> (rM")? (3.29

For instance, withp,=8(b—bg), we haver=1 and with p,
=1/by, a uniform distribution from O tdby, we haver
3/\
We now use

024303-6



ELASTIC WAVE PROPAGATION THROUGH A RANDOM.. PHYSICAL REVIEW B 70, 024303(2004)

i d , (]
fdx g(x)wii(x,xo)e'k"(:fdx g(x)gﬁ(x—Xo)ikie""x0
i
(3.26
P | R A V/K
= ik  Xo——g(Xo), 3.2 ‘ ] I Aah x %
ikie aXOig( 0 (3.27) h IT H : Il" ;X:
. R '=l‘i;'s'-'n
with g(x)=e k> or g(x’)=€79% in (3.24 to get X v \ ';, iy ! b
v v
o\ ! k,
<V1G°V1>(k):<2—*2) (b*)nkk; J dg 0i9;G%a)f(a)
M w
2/
_ © b5n , 0
- <2rM*w2> T k“| dg q3 f@G(a), FIG. 4. Scalar problem of the shear wave interacting with a
3.28 distribution of screw dislocationgsolid arrows correspond to
(3.28 positive Burgers vectors and dotted arrows correspond to negative
where Burgers vectors
3 2p*2
o= [ dgi @ = e ( ¢ ) A=gi 3.3
qu Tf(aG%q) quqz—kfa K2 '+<b2>k§, : g2t 5 (3.32

(3.29 As it is expectedA decreases when increasing the density of
scatterersn or the scatterer strength, in term . The
increase of the attenuationl/A with increasingn has been
experimentally observe(see, for instance Ref. 14A very

with C=1/7 a numerical constant depending weakly on the
cutoff functionf. We have finally the mass operator,

2 4 c interesting behavior would be the dependence of the attenu-
S(K) = wkzl_ +-—P @(, + )} ation on the frequency, that is here found to be surprisingly
M’ w? M (b \ Ki(b?) decreasing for increasing frequen¢see the discussion in

(3.30 Sec. lIQ. An experimental verification of this behavior
does not appear to be available, although it may become
The Dyson equatiotalgebraic in the Fourier spacean now  possible with the techniques described in Ref. 15.

be solved to determine the effective wave numkgy pole The physical mechanism for the attenuati8mB2) lies in

of (G)(k):[kz—kzﬁ—E(k)]‘l; asKg is expected to be close to the multiple scattering of the wave by the randomly located

ks, we get dislocations that takes out energy from the wave propagating
in the forward direction. This is different from the mecha-

3 (Kg) nism of Granato and Liickewhere the attenuation is due to
Kp=kg| 1+ K2 ) internal loss because of viscous damping of the string-like
B dislocation(see the discussion in Sec. ll)D

un(b?) p bH(. C C. Comments and discussion
=K\ 1+ oz "1t oo e \ T e || [ ,
2MQ 8roM (b \ k(b An apparently surprising result has to be underlined at

(3.3) this point. The elastic mean free path32) is found to de-
crease when increasing the wavelengtbe also the calcula-

To leading order, this expression reduces to the simplé¢ion of A for edge dislocations below, E¢.39)], although
minded result3.7). The effective group velocity is decreased the scattering is usually expected to vanish for wavelengths
from its value in the absence of scatterers while phase velodeng compared with the size of the obstacle. The explanation
ity is increased. As mentioned in Ref. 31, there is no particuis found in the particular behavior of dislocations as scatter-
lar tendency to be expected from this latter quantity as ars, a fact that has been emphasized by Nadarhadeed,
function of the scatterer density: In the case of inclusion, thewo mechanisms of wave scattering by a dislocation have to
phase velocity is found to increase while it is found to de-be distinguished. The first mechanism is related to the micro-
crease for cracks and cavities. This modification of speed oftructure of the dislocation core and has to vanish for long
propagation appears at first order\ihand it is actually the wavelengths; the second mechanism, which is the one con-
only effect at this order. Fron8.32, we obtain the elastic sidered in the present study, is that the dislocation moves
mean free patM‘1:23(Kﬁ), that gives the distance scale under the influence of the incoming wave and reradiates a
over which the coherent wave is attenuated due to the energyylindrical (scatteregl wave. Most previous studies consider
that is taken away from the incident wave by the scatteringcatterers such as inclusions and voids, involving a scattering
from the randomly placed scatterers: mechanism of the first type. Thus, a scattering vanishing for
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long wavelength is not surprisingly found. In the present TABLE I. Experimental values of, b, L (the length of the
paper(see also Ref. 44the investigated scattering mecha- dislocation ling and n from Ref. 15, with @=580 MHz. Corre-
nism is the second one. Thus, there is no reason to expegponding values ot [from (3.34], A [from (3.32] and Asaic
similar results here. Preferably, the scattering strength has {ffom (3.39] are calculatedwith M"=M andr=1 in (3.4 and
be found in the equation of motion of the dislocation in theusingp=4640 kg m* for LiNbOj].

presence of an incoming wave, whose amplitude increases
with the wavelength in the dynamical models of Refs. 38, 40 («m) b (nm) L (um) n(m™?) Le (um) A (€M) Agatc (M)
and 42.(See Fig. 4.

Actually, the attenuation 1N has an upper bound. This is 6 05 200 210 0 4 210
because the weak scattering approximation implies that
wavelength must be small compared to a cut-off length: -
<L,. This can be seen froi(8.19 and(3.8) [as well as the b<A<1Nn=L<A<Agpaic (3.37

forthcoming Equationg4.29 with (4.16)], where weak scat- so the assumptions needed in our calculations are satisfied

tering means by the parameters of the experimental setup described
2 in Ref. 15.
(NN 3.33
MQ2 "~ L. <1, (3.33 D. Discussion: Influence of dislocation drag and line tension

Here we give a brief discussion on the influence of the
dislocation drag term and line tension term, introduced in the
M 1 Granato-Liicke(GL) modelX? In this model, the equation
\ = (3.34  for the motion of a dislocation lin¢with length L) corre-
npb™ \n sponds to a mathematical model introduced by KoéRler,
To obtain the equivalence i3.34, we have usedM  Wwhere the line tension is defined = 2ub?/ m(1-v) (with
= pb? from (3.4). Indeed,5~L the length of the dislocation » the Poisson ratjpand the viscous drag coefficieBtis a
line, e~b and typically L=10°-1Cb, so that we have free parameter. The expressions for the velogily and the

with

C

In(8/ €)/ 47 roughly equals unity. attenuation/\(glL in the GL model are as follows:
A recent experiment on acoustic wave interaction with 4 unt? 02-02
dislocations in LiINbQ'® provides a convenient system to lhvg =118 1+—£ 5 02 5 5 |
estimate the parameters that appear in our formulas. ™ M Q5 - 09"+ (Qd)
This experimental configuration is of particular interest in
the framework of our study because, even if the measure- _ 4 npb? BO%d
UAg = (3.38

ments of the velocity and attenuation are not yet available, it
shows that our calculations can be expected to have a rea- N
sonable region of validitysee also Sec. Ill D Indeed, the Whered=B/M andQy=(=/L)VC/M. In applying these for-
wavelength is smaller than the cutoff lendth: A\ ~107L.. ~ mulas, it is generally assumed th@,>d> (), leading to
Since the ration/L, measures the scattering strengiiee  simplifications in the previous expressions. These simplified
(3.33)], we also see that the scattering effect can be expectegkpressions are used, notably in Ref. 14, to interpret experi-
to be significant. Besides, this is also seen since visualizanental results. Note, however, that an estimatiofgtising
tions of the scattered wave are possible in this experiment.the experimental data of Ref. 1&om Table I, withv=0.3)
Finally, the static scattering by the dislocation core hagdives{,=50 MHz which is one order of magnitude smaller
been neglected. It has thus to be checked that the corresporiftan the frequency used in that experimésg0 MH2).
ing static mean free pathg,;c is large compared to all other A two dimensional situation as is considered in the
characteristic lengthd,. and A. As previously said, such present paper means there is no dislocation line curvature,
scattering has a vanishing strength at long wavelengths. And hence no effect of line tension. (I, is neglected, one
discussion on this mechanism can be found in Ref. 42 wherebtains

2 M (Q3-07)7+(Qd)?’

the author estimates the scattering cross section of order 4 uni? 1
b?Q/ B, leading to = - =
B g g, 1/ﬁ<1 iy 92+d2),
1
Astatic:FkB- (3.39 ~ 4 I’lpbz Ad
Hhe ™ 2w e (399
It is easy to check that
- and these expressions can be compared with our expressions
Astatic= A(kg b)™*> A, (3.7 [with Q/v=9(Kp)] and (3.32. Defining R=d/Q and
_ usingM =pb? in the GL model, we get the following relation
Astatic= Le(Kg D) (In bt > L, (3.36)  between our scheme, A) and GLvg,Ag):
. < -1 “{__1 . s . —_
sinceb<ky", Vn™". A typical value of Agpyc in Ref. 15 is vl - B~ v-p

given in Table I. In this experiment, we have 1+R?
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AN,
S
S

FIG. 6. Acoustic waveuv, velocity) and in-plane shear-wave
(v velocity) interacting with a distribution of gliding edge disloca-
tions. Thenth dislocation is characterized by its mean positih
and its in plane Burgers vectobf.

FIG. 5. Acoustic waveguv, velocity) and in-place shear-wave
(vg velocity) interacting with a 2D gliding edge dislocation.

R

-1 -
AgL=A 11+R2'

3.40 i i Xq=i j Kpgxg i
( ) @"(x,t) = Aaelka,xl—lﬂt, P(x, 1) = Aﬁelkﬁxl—lﬂt’ (4.4)

In the GL model, the viscosity is the unique source ofwe find that scattered potentiat§ and ¢° are given by
damping so vanishing viscosity implies vanishing attenua-
tion. This would be the case whdR<1, that is, for high
enough frequencies. However, the value8afsually quoted
as good fits to experimeliisee, for instance Ref,)2uggest,
for the system studied in Ref. 15?0 ~10°%kg mts™?) a gkpx-iot
value of R~ 1 so that the effect of viscous drag and multiple P, 1) = [T (B)A, + T a6 Agl—F, (4.5
scattering would be comparable. VX

ik x-iQt
(x,t) = [faa(ax)Aa + fa/}(ax)A,B]fi

with (see Ref. 44

IV. THE IN-PLANE CASE i a)= ,u_bz g4 (E)ZSin zesin(zg _26
The in-plane case corresponds to the interaction of edge @ 2M V2mk,\ a 2 X ’
dislocations with the in-plane waves, propagating at veloci-
ties a (longitudina) a_ndﬁ (transversg (Fig. 5); _again, it i_s sz i w4 ,3 2005 X
easy to see that an in-plane wave can only interact with an fop(6y) = oM 5—sin(26, - 20),
edge dislocation. We restrict ourselves to the case of gliding \’ZWk B
edge dislocations, for which the line dislocation moves only
along its Burgers vector. Again, we assume that the Burgers o= ,u_b2 ™ sin 260 26, - 26
vector is small compared with any length scale in the prob- pal ) = oM VZWkﬁ a2 co ).
lem.
2 Amld
_ ub® €™ cos»
A. The simplified approach for the in-plane case Fpp(6) == M V2mk, B cos26,-26), (4.6

The simplified approach to the effect of random scatterers
on a scalar wave can also be used in the in-plane case intrdhereé= =(0x,X) and #=(Ox;,b). In order to get a relation
ducing two scalar potentials: Particle velocity is described inPetween effective wave vector and forward scattering ampli-

terms of a longitudinale) and sheafy) potential: tude similar to(3.5), a slight generalization of Foldy’s sim-
plified approach is used, taking into account the possibility
v=Vo+V Xy (4.1)  of mode conversion due to scattering:
with ¢#=(0,0,/). Each one obeys a scalar wave equation _ N _ _
with e(X) = @"(X) + 2 [F 006 X)@(X') + F 0 X)X,
=
(92 2v72 |
(ﬁ—aV ¢=0, (4.2 N
2 P) = (%) + 2 [F a3, X @(XT) + F g0, X (X))
i=1
Al V7l
(atz v >¢ 0. (4.3 4.7

We use a previous resdftwhere the scattered potentiaté  In this expression, for instanc€,s(x,X;)#(X") is the con-
andy® have been establishéBig. 6). With an incident wave tribution to the longitudinal potentiab(x) atx due to theith
of the form scatterer receiving the shear potenij@X'). Taking the av-
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erages over all realizations of the random distribution of Po,(x,1) .9
A 1 — ) n+ n Xn—
scatterers, we get pUi(X,1) — Cijig 7% 9% Mn% (€ips + €anhi) Xp &Xa5(x
(@)(x) = @"(x) + nf AX[(F aab,o(X, X){@)(X) = X"). (4.12
+(F oo s X X)], In order to describe the motioK(t) of a gliding edge

submitted to an externally generated wave displacement field
. u we introduce coordinate&;,X,), with X; alongb. The
(P (x) = Y"(x) + nf dX[{F gab,o(X, X){@)(X) equation of motion2.11) becomes

+ (F )66 X (X, (4.9 MX (1) = o73b, (4.13

where(-)y, , indicates the average over all possible Burgerswvhere

vector orientationgd) and magnitudesgb). We assume that

no correlation exists among the dislocation positions a_nd 053 = Cya—T(%, 1) (4.14
Burgers vectors. As in the scalar case, we look for a solution X

of (¢) and(y) as plane waves and the functidhg,(x,X) are

related to the scattering functiofig,6,) of a single scatterer is the stress tensor arM is the effective mass for an edge

[see Eq(B10)], dislocation:
eika\><—x| ~ ,LLbZ EA é
Fap(X,X) = fp( ) —=. (4.9 M= A 1+ i In " (4.15
V[x = X]

Since (f, g),6(0)=(f 5..0,4(0)=0, the result is that a plane where § and_e have the same definition as (8.4). .
wave (longitudinal or transversplwith undisturbed wave _ 'Ve consider now a plane wave of frequeri@ytraveling

_ ; ; through an elastic medium filled with randomly located and
numberk, (c=«, B) will propagate coherently with an effec- "' ; ) ) .
tive wa\ica (nurrcrbfr) propag y oriented edge dislocations, described(8yl2). The acoustic

component has a wave vecthy, (k,=Q/«) and the shear
_ 2 imfa component a wave vectar; (k;=(/g). The task is to see if
Ke=ke+n E“Ca b,/ 0™, we can define two effective wave vectdts(c=«, 8) paral-
lel to k. to describe the medium as an effective mediiig.
nu(b?) A, 5). The procedure using the modified Green’s formalism is
= ( ——2>, (4.10 similar to the procedure we used for the antiplane case al-
4MQ though calculations are more involved because of the vector
with nature of the wave equation. The homogeneous wave equa-
A= Fle? tion for particle velocity is now a vector equation,
o = a,

[VZ+IG+ (= 1) V V. V(X,0) == V(X 0)V(X, ),
Ag=1. (4.19) (4.16)

It can be noticed that there is no cross-coupling for the reyhere the interaction operatdr now has a matrix structure,
sulting multiple scattered coherent wave. This has been also

observed in Ref. 28. In that case, this results from a particu- w(b™?

lar behavior of the cross-coupled waves scattered by a Vii(x, ) = 2 WV?(X)ﬁ(X = XpVj(x)

unique scatterer, that remain always apart from the incident n=1 M®

wave. Thus, the mer conversion 'S.S'T“P'y negllected n th9\/ith V], V3 scalar operators describing the interaction of the

pure forward scattering proble'm that is |'nvolved in the Foldynth dislocation with the stress wave:

approach. In our case, there is no particular behavior of the

cross-coupled scattered waés. (4.6)] in the incident di- _ 9 9

rection. To determine the coherent wave characteristics, the 1x) = (‘ sin 219"&— +Cos 29"—>
: . o X1 Xy

full vectorial problem has to be considered. However, it is

found that cross-coupled waves for the coherent waves van-

ish because the averaged cross-coupled scattering functions

vanish.

As in the antiplane cas€4.10 is real and this approach - _ _ )
cannot describe the attenuation of the wave. A Green’s func- <o D" denote, respectively, for theth dislocation, the
tion approach is needed for this. position vector and the Burgers vector afid=(Ox;,b"). As
previously, the Green'’s functioG,, for the propagation in
the presence of dislocations is related to the Green'’s function
The wave equatio2.7) with (2.9) is now vectorial: G for the free propagation by the integral representation,

XS! (417)

o) - R i)
2(x)—(cos 29“&X1+sm Zﬁ”&xz . (4.18

B. Green’s function approach for the in-plane case
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Gap(X,X") = Goy(x = x')

+ f dx” ch(x = X")WVed(X") Ggp(X",X"),
(4.19
whereG,;, and G, satisfy
C.
GG (x =) + = BV G x = X') = = 5 8(x =X,

(4.20

C.
kG (x,x") + (%WV. + Vim(X)>ij(X,X')

(4.21

Let us now calculate the mass operatofalso, this time,
a two by two matriy to order 2 inV=3N, V", as defined in
(4.17). V" is rewritten agwhere superscriph for b and X,
are suppressed for clarjty

=-§jox—x).

2
V(X, w) = J—Zz[cos’-ze A(x,Xo) + Sir? 26 B(x,Xo)

+cos 2 sin 20 C(x,Xg)], (4.22
where
Woo W
A(x,XO):< 22 21), (4.23
Wip Wypg
Wi1  —Wpp
B(x,X ):< ) (4.24)
0 —Wpp  Wpp
—Woo—Wy; —Wqq+ W
C(X,XO):< 20~ Wp1 11 22) (4.29
~WiptWoo  WiptWpy

with w;; defined in(3.13).
As it was the case for screw dislocatiokg)(x) is a sum
of N identical terms:

ICEE f

do dXx ) )
= nf pbdeTOdX e kXL (x)glkx

do dX,g

pbdbz Y dx e—ik.xin‘l Vn(x)eik.x

(4.26)

The calculation is simplified by use of the following pro-
cedure: In the integral definingy)(k), we change the spatial
coordinates fronfO, x;,%,) to (Xg,X1,X%,) corresponding to a
translation of vectoX, and a rotation of angl®. In this
transformation,k =(k, ) becomesk=(k, #=6,—#6). Thus,
(V)(k) takes the form

(W)(K) =n f pbdb%idf(e-i?-"*Y/l&)é?% (4.27)

Using (4.22 we see that in the new coordinatésbecomes

PHYSICAL REVIEW B 70, 024303(2004)

2
VAX) = h’;—bzA&,ox (4.28
and using(3.27) we get
__ M 202 1 0)
V)l == o —nib ok (0 1) (4.29

whereM" is defined as in(3.16).

The second order terfvVGV)—(V)GXV) is calculated,
as in the antiplane case, usingVGV)—(V)G%V)
=N(VIG®VY). With the same change of coordinates as in the
previous paragraph, we get

1 de dX
1 1 == 0 2
VIEVH( = f pudb, —— Ca dx

Xe—ik.xvl(X)GO(X _ Xr)vl(x/)eik.x’

1 46 _ ~ =

== J ppdb—dxdx’e " V()

% 2

X GOX - X )VA(X") &k x| (4.30

The calculation of the matrix operators is tedious but
straightforward, and uses the same procedure as for the an-
tiplane casdeach element is of the forig8.22]. The final
result in Fourier space is

'LL )2@2214-—74('4.
aM w?) YV P

o 1)

wherer is defined as in3.25. We finally obtain the mass
operator(k),

c
VIR = ( k2<b2>)
B

(4.31

10
E(k):Sk2<0 1), (4.32
with
s:’m<b2){— p @1+y4(.+ c )}
2M” w? 8r2M” (b?) Ksb?/ |’
(4.33

The modified Green’s function in Fourier space is given by
(A4), with

1

Y =K (% - k)

X(kz—k§+(y2— 1)k3
= (¥~ Dkeko

G(k) =

- (¥ = Dkik, )
-G+ (P#-DKE)
(4.39
Using (A5) we have
[1-SIK - K5+ (¥ - DK (¢—1>k1k2>
(Y- Dkiky  [1-SIK-K5+ ("= DK/
(4.395

(G k) = (
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The modified Green’s function formalism is developed assible for the scattering. The effective medium approach
previously and>(k) is found, to second order i, to be allows us to determine modified wave numbers whose real

5 . c part provides the change of wave speeds due to the presence

S(K) = un(b >k2 _ 1+(1+l) P @(I + ) of scatterers and whose imaginary part corresponds to the
2M" ? Y 8rPM (b K5(b?) attenuation of the waves in the forward direction. The calcu-

(1 0) lations have been performed in both cases, assuming that the

(4.36 scattering strength was small. This strength is measured by
the potentialsv appearing in the wave equatio(i3.8) and
(4.16). Calculations at second order Yhare then performed
using a Green’s function approach. Second order gives the
attenuation length while first order gives the wave speed
Modification. This leading order behavior can also be ob-
tained with a simpler, Foldy-Twersky, calculatibh.
Calculations have been performed distinguishing edge
and screw dislocation configurations. Many real materials
{ ;Ln(bZ)Ac{ 1 p (Y (e.g., ip silvey involve mixed dislocations yvhose_ Burgers
Ke=ky1l-—F—7 5|1 —( —4) CIVEITEN vector is the sum of an edge and a screw dislocation Burgers
4M°Q Y/ 8r°M (b%) vectors. Since all phenomena discussed in this paper are lin-
C ear, the case of mixed dislocations can be simply obtained by
x(i + 2—2>] ) (4.37 superposition. Also, since we use continuum elasticity, there
ke(o) is no restriction on the value of the Burgers vector, which
where does not need to be a lattice vector and our results apply
without change to partials.
Ay = Bla?, While ultrasonic waves are routinely used in the nonde-
structive evaluation of materials because of theiell stud-
Ag=1. (4.39 ied) interaction with flaws>%they do not appear to have
o ) ] . been considered as probes to explore the characteristics of
The qualitative behavior of the effective wave number is thephenomena, such as the brittle-to-ductile transition, where

same as in the antiplane case; the effective ph_a_se velocitigfs|ocations are believed to play a prominent role. A very
are increased, and the effective group velocities are degcent publication, howevéf,describes an experiment of ul-
creased, from their values in the absence of scatterers. Thigzsound propagation during fatigue of pearlitic rail steel,
result can be read off the leading order development of Seghowing that the attenuation and velocity of ultrasound are
IVB, and it coincides with the result obtained using ayery sensitive to the presence of dislocations while they ap-
simple-minded approach in Sec. Il A. '!'he imaginary_ part Ofpear to be unaffected by the onset and growth of
the second order term in Sec. IV B gives the elastic meamjcrocracks. Such experiments and the calculations pre-

X
01

whereC is a numerical constant of order 4/ M” is again a
mean effective mass per unit length and numerical con-
stant close to 1 and depending on the distribution functio
for b. The resulting modified wave numbefs, andK; cor-
respond to the in-plane wave solutions(&), given by the
roots of the determinant a&%(k)™1-3,(k):

free path for both waves: sented in the present paper work suggest this may be a fruit-
r2M*248 ful road to undertake. Work along these lines is in progress.
=16————k,
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V. CONCLUSIONS APPENDIX A: THE MODIFIED GREEN'S FUNCTION

We have determined that elastic waves traveling through a FORMALISM

two dimensional elastic material filled with randomly placed  |n the medium in the absence of any scatterer,G8t
dislocations behave as an effective medium that allows thgenote the usual Green’s function characterized by the linear
propagation of a coherent wave with effective velocities forgperatorz,
longitudinal and transverse waves, and their respective at-
tenuations. In the case of screw dislocations this leads to a L(%,0)Gx =X, w) == 8x = x'). (A1)
e e e e i i he presence of sateers, Gho designte e G

- . . unction associated with the modified operatbt V:
volving the coupled in-plane shear and acoustical waves. In
contrast to the mechanism usually studied in the multiple L(X,0)G(X, X", w) ==X =X") = V(X)G(X,X", ).
scattering of stress waves by static inhomogeneities or inclu- (A2)
sions, the scattering mechanism considered in this paper in-

volves a dynamic response by the dislocation that is resporfhe modified Green'’s function can be expressed as
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G(x,x") =G%x - x') + f dx"G%(x = X")V(X")G(X",x"),

(A3)

formally written G=G%+Go%G. The scattering matrit=V
+VGV+VGVGWV+- - is introduced and verifiess=GP

PHYSICAL REVIEW B 70, 024303(2004)

3(x,x") = (V(X))d(x = x") + (V(x)G(x = x")V(X'))
—(V(x)GO(x = X }V(X)). (A12)

As already mentioned, the coherent wave nuntbecor-
responding to a wave propagation in the fog#ft*, is simply
determined by the poles ¢6). In the antiplane cas€A4) is

+GCTG?. The integral representation of the scattering matrixa scalar equation and we have to determine the pol&pf

is T=V+VG°T.
Consider now the averaged Green's funct{@) defined

while in the in-plane cas€A4) has a matrix structure and
the task is to calculate the root of the determinan{@.

as the impulse response of the effective medium, defined as

the average of the media over all realization¥/ofWe obtain
(Gy=G%+G%VG), which can be written as a Dyson equa-
tion,

(Gy=G%+G’3(G), (A4)

where3 =(T)—-(T)G"Y is the mass operator. At this point, the
averaged Green'’s functioi@) can be determined simply by
solving the algebraic equatiofA4) in Fourier space. For-
mally this is written as

(G)=(G)*-3+ (A5)

and the coherent wave vector is given by the golepoles
of (G). In a general cas€[) is hard or even impossible to
determine. In our case, we considéras a small correction
of the operator of free propagation, and thus we have

(Ty=(V), atorderl,
(T)=(V) +(VG®), at order 2. (AB)
At second order irV, X takes the form
3 = (V) + (VGV) — (\)GX V). (A7)

We can now calculate the mass operai¢k) in the Fourier
space to solv€A5). Strictly speaking(A5) gives 3 (k k).
Using the invariance under translations of both Green’s func
tions(G) andG°, we have, in the Fourier space, fior(G) or

G% f(k,k")=f(k)s(k—k'). Equation(A5) becomes

<G>(k)=G°(k)+fdk’ 2(k,k')NG)k"),  (A8)
with

2(k,k’):f dx dx’ e kX3 (x,x" )k x" (A9)

APPENDIX B: SCATTERING FUNCTION AND FOLDY’S
APPROACH, THE ANTIPLANE CASE

1. Foldy’'s approach

Before presenting the calculations using Foldy’'s ap-
proach, we summarize here the analogy of this approach
with the usual potential approach we have used until now.
The integral representation,

G=G%+ 2 GG, (B1)

can be written for the velocity fieldv(x)=v"(x)
+Eifdx’ GoUx—x")Vi(x")v(x'). In the simplest case of iso-
tropic punctual scatterers located X, the operatolV' can
be written as Vi(x)=Vi&(x—-X). Then, with H(x,X?)
=VIG(x—X'), the integral representation takes the form
v(x) =0M(x) + 2 HO,XDo(X). (B2)
I
However, this relation is hard to exploit since there is no
physical interpretation o¥/'(x), notably, it is not related to
the operator of scattering for a unique scatterer, deribted
the following. Moreover(B2) makes appear a term of self-
irradiation H(x,X")H(X',X) (or, equivalently, the integral
representation ot makes appear a ter@V'GV'). Foldy!”
chose an alternative way where the operdtofor a single
scatterer is introduced. From Ref. 20 satisfies the integral
representatio®' =G°+G°T'GP for one scatterer and for a set
of scatterers,

G=G%+ Y GQ'G, (B3)
i
where Q' can be related toT through Q=T

+TIGO, j#iQ- Note thatziQi denotes the exact total scat-
tering operator including all the multiple scattering. Finally,

Note that this transformation, similar but not identical to thewe haveG=G%+3,G’T'G+3,G°T'S,; ,;G°TIG%+- --. We rec-

Fourier transform of a function of two vector variables, doesognize in the first sum the single scattering, in the second the

not have(2w) factors in its definition. We use now the in- double scattering, etc:;-. Again, we suppose the simplest

variance under the translation &fx,x’), in the sense that case of isotropia-function potentialsT'(x)=T'5(x - X'). In-

S(x,x")=3(u,u’) if (x=x")=(u-u’). Thus, we obtain troducing F(x,X")=T'G%x-X'), the representation for the
S(k.K') = ok —K)S(K). (AL0) velocity field is thus

with U(X) = Uinc(X) + E F(X,Xi)vi“C(Xi)
|

+ 0 DVE(XXDFEX XXy + - -
[ E

3(k) = %}f du du’ e™US(u,u)eky’. (A1l (B4)

In coordinate spaceA7) reads as This is equivalent to the usual notation in Foldy’s formalism,
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v(x) = vinC(X) + 2 F(X’Xi)vi(xi)’ 2. Calculation of the modified wavenumber, the antiplane case
i For an incident wave of unit amplitudey™(x,t)
=¢gkatiot it has been established in a previous p&ptat
the scattered wave in polar coordinates(x, 6,), far from
the scatterer reads as
v'(X) =0v"™(x) + >, F(x,XHv!(X)). B5 ikx—i ot
(x) (x) g (x, X (X") (B5) DS(X, B 1) :Af(ax)eT, (B6)
N
At this point, it is clear thaF(x,X') is directly propor-
tional to the Green functio®°(x—X') when punctual isotro-
pic scatterers are considered. If the scatterer is punctual but ub? @™t
not isotropic, we have to account for the direction of the f(0) =—7— M o T 3,,C0S b.
incident wave: nonisotropic means that the response of the V2mop
scatterer depends on the direction of the wave incident on the/e adopt the usual Foldy equatio(®4) averaged over all
scatteret® using F(x,X)=T (k' )G%(x-X'), wherek™ is a configurations of scattereffor the sake of clarity, the aver-
unitary vector |nd|cat|ng the direction of the incident wave. age ovelb is omitted,

with f as the scattering function,

(B7)

1 N N
)(X) = v""%(x) +J uﬁ F(x, X' (X =v""¢(x) + ]N}f dXt F(x,XYom(X1)

i=1

L NIN-1D
Vz

N(N-1)(N-2)
e

dX 1 dX2F(x, XHF(XL,X2)p"(X?)

dX® dX2 dX3F(x, XHF(XE, XHF (X2, X3)0"e(X3)

N(N-1 )
N > )f dXt dX?F(x, XHF(XELX2)F(XZ XYoo Xh) + - (B8)
[
The last integral and all others involving a scattering process X1 K X glkix=X|
that goes through the same scatterer more than once are ne- f f dX € " f)y( b)) ——= T=x

glected. Thus, for large value &f, one gets, witm=N/V

K ik
- 2_7T<f>b(0)e-iw/4w’ (Bll)
©)(X) =0v"™(x) +n f dx? F(x,xl)(uim(xl) k K-k
2 1y 2 inCig 2\ 4 ... where(f), indicates the average over Equation(B9) can
* nf dX = F(XE,XE)0™H(XE) + ) be solved to findv/, andK. This leads tovy=1 and

=p'"(x) +n f dX F(x,X){0)(X). (B9)
K= k+n\/ <f> (0)e ™4,

Lo_okir_mg for a solution as a plan_e wavew )(X)
=V, for an incident plane wave®a ' F is identi-

fied to the response of a unique scatterer, 2
%)
ik|x-X| kKl1--—"5], (B12
F(x,X)=f(0)—— | X| (B10) 2M°Q
The integral can be now calculated on a slab of infinite sizavhereM” is the mean square root &1 [M" appears as in
alongx, and of widthx;, using (3.16 taking the mean value df over b].
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