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Reciprocity, energy conservation, and time-reversal invariance are three general properties of the
wave fields that imply algebraic scattering matrix properties. In this paper, these scattering matrix
properties are established for waveguides when evanescent modes are taken into account. The
situations correspond to guided acoustic pressure waves in fluids and Lamb waves in solids treated
with the same formalism. The relations between the three properties verified by the scattering matrix
are then discussed, and it is found that, as soon as two properties are verified, the third is also
verified. © 2004 Acoustical Society of America.@DOI: 10.1121/1.1786293#
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I. INTRODUCTION

A very convenient quantity to characterize the scatter
of a wave by a scattering region is the so-called scatte
matrix ~S matrix!. The versatility of this formulation is due
to the fact that it relates the outgoing wave to the ingo
wave directly, with respect to the scattering region, which
intuitive quantities.1–4 The scattering problem is then to d
termine the S matrix and not to determine the wave field
the whole space.5,6 From an experimental point of view, th
S matrix is a very convenient tool since the measureme
have to be performed outside of the scattering region o
and do not have to be intrusive.

In waveguides, when the interest is only in the far fie
of the scattering region, the S matrix is restricted to
propagative components. Then, the fundamental prope
of the wave propagation~i.e., reciprocity, energy conserva
tion, and time-reversal symmetry! are very simply translated
into relationships verified by the S matrix.7 For instance, the
energy conservation implies that the S matrix is unitary w
proper normalization. Besides their fundamental inter
these algebraic properties of the S matrix can be very us
in experimental and numerical works, where they provid
convenient way to check if the fundamental properties of
wave propagation are verified. Nevertheless, as soon as
near field is considered, the S matrix has to include the e
nescent waves; such a need can exist for example if sev
scattering regions are taken into account and if they are c
enough. Then, the usual properties of the S matrix, cor
for the propagative waves only, are not correct anymore8,9

In this paper, we investigate the general relationsh
verified by the S matrix with evanescent waves in the ca
of the propagation in 2D waveguides in fluids or solids. T
first case corresponds to the guided propagation of a sc

a!Electronic mail: vincent.pagneux@univ-lemans.fr
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wave in a fluid with hard wall and the second case cor
sponds to the guided propagation of either a scalar wave~SH
wave! or a vectorial wave~Lamb wave! in an elastic wave-
guide with free boundaries. We treat the waveguides in flu
and solids with the same formalism that appears to be us
to consider the S matrix.

The plan of the paper is as follows. In Sec. II, we defi
the scattering matrix for the waveguides. Then, the met
used to project the acoustic fields on the waveguide mode
presented in Sec. III. In Sec. IV, we find the three propert
verified by the S matrix due to reciprocity, time-revers
symmetry, and energy conservation of the wave propagat
when evanescent modes are taken into account. Finally
Sec. V, we summarize the three properties and discuss
relation between the three properties of the S matrix: we fi
that as soon as two properties are verified the third relatio
automatically verified.

II. DEFINITION OF THE SCATTERING MATRIX

We consider the problem corresponding to Fig. 1. It co
sists of a bidimensional waveguide of longitudinal axisx
with constant height forx<0 and x>L. In the scattering
region, 0,x,L, the waveguide is of variable heighth(x).
The harmonic time dependence with pulsationv is e2 ivt

and it will be omitted in the following.
Outside of the scattering region, the wave fields can

expressed as a sum over the transverse modes of the h
geneous waveguide with coefficients depending onx. These
coefficients can be split into right-going componentsA and
left-going componentsB, that is,A andB are vectors whose
components are the projections of the wave field on the w
modes. For the sake of clarity, we note in the followingAI

~respectively,BI) at x50 and AII ~respectively,BII ) at x
5L. We defineCin as the ingoing waves andCout as the
outgoing waves, with respect to the scattering region
19134)/1913/8/$20.00 © 2004 Acoustical Society of America
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Cin5S AI

BII D , Cout5S BI

AII D . ~2.1!

Then, the scattering matrix links together the outgo
wavesCout and the ingoing wavesCin at both extremities of
the scattering region

Cout5SCin . ~2.2!

Actually, S is defined with the reflection and transmissi
matrices RI , TI ~respectivelyRII , TII ) corresponding to
wave incident from the left~respectively, from the right!

S5S RI TII

TI RII D . ~2.3!

Here, R and T are matrices linking ingoing and outgoin
wave components. Note that the scattering matrix could
used for the case of more than two terminating waveguid

III. FORMALISM

A. System

Guided wave propagation in fluids and solids is cons
ered. The fluid case corresponds to the Helmholtz equa
on the pressurep associated with boundary condition]np
50 on the wallsy50 and y5h(x) ~n denotes the vecto
normal to the wall!. The solid case corresponds to the Nav
equation on the displacement vectorw with the boundary
condition for a wall free of tractions•n50 on y50 andy
5h(x), wheres5l¹•wI 1m(¹w1 t¹w) denotes the stres
tensor, and~l,m! are the Lame´’s constants. Results can b
easily generalized to inhomogeneous media with variablr,
l, and m and to other boundary conditions, e.g.,p50 for
fluids or w50 for solids on the walls.

We choose to present both cases~fluid and solid! in the
same formalism. This is done working with two quantitiesX
and Y presented below. In addition to permitting a unifie
presentation, that formalism allows us to easily tackle
projection on the Lamb modes~for propagation in solids!.
The idea is to write the equations as an evolution equa
~with respect to the axisx of the waveguide! on X andY that
leads to a canonical eigenvalue problem in the transv
direction when transverse modes are sought as in Sec. I
For solids, this formulation is similar to the one presen
recently in Ref. 10 in that it describes the evolution of
stress-displacement 4-vector, but here that 4-vector is s
ably split in two 2-vectors that permit one to project eas
on the transverse modes.11

For fluids,X andY are scalar quantities defined by

FIG. 1. Geometry of the waveguide.
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]x
p and Y5p.

For solids, they are 2-vectors

X5S u
t D and Y5S 2s

v D ,

where

w5S u
v D

is the displacement vector and

s5S s t

t r D
the corresponding stress tensor.

It is shown in Appendix A that both sets of equations c
be written in the same generic form

]

]x S X
Y D5S 0 F

G 0D S X
Y D , ~3.1!

with boundary conditions

~CX
01h8CX

1 !X1~CY
01h8CY

1 !Y50, at y5h~x!,
~3.2!

CX
0X1CY

0Y50, at y50,

whereh85dh/dx.
Expressions ofF, G, CX

i , andCY
i ( i 50,1) in both cases

are given in Appendix A. In the following, we use two prop
erties of these matrices

~1! ~Property 1!: F, G, CX
i , andCY

i ( i 50,1) are real;
~2! ~Property 2!: (FYuỸ)1(XuGX̃)5(YuFỸ)1(GXuX̃)

1h8(Y"X̃2X"Ỹ)(h),

where ~X,Y! and ~X̃,Ỹ! are two solutions of
Eq. ~3.1! with boundary condition ~3.2! and
(UuV)5*0

h(x)U(x,y)•V(x,y)dy denotes a bilinear form
Properties 1 and 2 are demonstrated in Appendix B. In S
IV, it will appear that property 1 is related to the time
reversal invariance, property 2 is related to the reciproc
and both properties are related to energy conservation.

It can be noticed that both properties 1 and 2 involve
boundary conditions. For instance in the fluid case, if
walls were lined, property 2 would be conserved while pro
erty 1 would not.

B. Modal decomposition

The scattering matrixS links together the right-going
components and the left-going components through~2.2!. In
this section, we expose the modal decomposition that per
us to define the right-going componentsA and left-going
componentsB.

The transverse modes used in the decomposition,
notedXn(y) andYn(y), correspond to the natural basis in
uniform waveguide. They are associated with a wave num
kn and are defined by
Pagneux and Maurel: Scattering matrix with evanescent modes
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iknS Xn

Yn
D5S 0 F

G 0D S Xn

Yn
D , ~3.3!

with boundary conditions corresponding to Eq.~3.2! setting
h850

CX
0Xn1CY

0Yn50, at y50 and y5h~x!. ~3.4!

These modes are well known: they are proportiona
the cosine functions12 in the fluid case and are the Lam
modes in the solid case13 ~their expressions are given in Ap
pendix C!. They are linked by a biorthogonality relation

~XnuYm!5Jndnm . ~3.5!

This relation corresponds to the orthogonality of the cos
functions in the fluid case and to the Fraser’s biorthogona
relation in the solid case.14 In the fluid case,Jn5 ikn , and in
the solid case, its expression can be found in Ref. 11. H
this biorthogonality relation can be easily demonstrated
ing ~3.3! and the symmetry property ofF andG when they
are applied toXn and Yn : (FYnuYm)5(YnuFYm) and
(GXnuXm)5(XnuGXm). The biorthogonality equation~3.5!
is of interest because it permits one to easily projectX andY
on the modesXn andYn .

In the following,kn is indexed byn.0 when it refers to
a right-going wave andn,0 when it refers to a left-going
wave. Using the symmetry properties of the basisX2n5
2Xn andY2n5Yn , X andY are decomposed as

X~x,y!5 (
n.0

~An~x!2Bn~x!!Xn~y!,

~3.6!
Y~x,y!5 (

n.0
~An~x!1Bn~x!!Yn~y!.

The S matrix is concerned with values of the comp
nentsA and B at x50 andx5L ~Fig. 1!. At these twox
positions, the values ofXn , Yn , and Jn @Eq. ~3.5!# are a
priori distinct and we note in the followingXn

a , Yn
a , andJn

a

with a5I , II for Xn , Yn , and Jn on the cross sectionx
50, L, respectively. At each cross section, we define
matrices

Jmn
I 5~Xn

I uYm
I !5J n

I dmn ,
~3.7!

J̃mn
I 5~Xn

I uYm
I !,

and the same forJII and J̃II . Then,J andM are such that

J5S JI 0

0 JII D , JM5S J̃I 0

0 J̃II D . ~3.8!

By definition,J is a diagonal matrix@Eq. ~3.7!#. In the fluid
case,M is simply the identity matrix while in the solid case
M has a more complicated structure, as illustrated in Se
and detailed in Appendix C.

IV. PROPERTIES OF THE SCATTERING MATRIX

A. Reciprocity

The reciprocity relation corresponds to a relation b

tween two solutions~X,Y! and ~X̃,Ỹ! of ~3.1!–~3.2!. We
show below that this relation can be written
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 P
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~XI uỸI !2~X̃I uYI !5~XII uỸII !2~X̃II uYII !. ~4.1!

This comes from

dx~~XuỸ!2~X̃uY!!

5S ]

]x
XUỸD1S XU ]

]x
ỸD2S ]

]x
X̃UYD2S X̃U ]

]x
YD

1h8~XỸ2X̃Y!~h!5~FYuỸ!1~XuGX̃!2~FỸuY!

2~X̃uGX!1h8~XỸ2X̃Y!~h!50.

The result is deduced from property 2 since~X,Y! and~X̃,Ỹ!
are solutions of~3.1!–~3.2!. This form of the reciprocity re-
lation is similar to the one found in Ref. 15 in the fluid cas
where it is called a reciprocity theorem of the convoluti
type. Obviously, Eq.~4.1! can also be deduced from th
usual integral representation of the reciprocity property.

Using the modal decomposition~3.6! and the biorthogo-
nality ~3.5!, the reciprocity relation~4.1! takes the form

tAIJIB̃I1 tBII JII ÃII 2 tBIJIÃI2 tAII JII B̃II 50.

Here, we have usedJa5 tJa, a5I , II . With Eqs.~2.1! and
~3.8!, this latter expression is equivalent to

tCinJC̃out2
tCoutJC̃in50.

Eventually, using the scattering matrixS, we obtain

JS2 tSJ50, ~4.2!

which is the property of the scattering matrix induced
reciprocity of the propagation in the scattering region. It h
to be noted that Eq.~4.2! has the same form with or withou
evanescent modes.

B. Time-reversal invariance

In both cases, fluid and solid, matricesF, G, CX
i , and

CY
i ( i 50,1) in ~3.1! are real~property 1!. As a consequence

if ~X,Y! is a solution of~3.1!, then~X̄,Ȳ! is also a solution of
~3.1!. This solution corresponds to the time-reversed so
tion, noted (XR,YR) in the following. Thus, the time-reversa
invariance is translated in the harmonic regime by

S X
Y D solution⇒S XR5X̄

YR5ȲD solution. ~4.3!

To obtain a property for the S matrix from the time revers
the idea is to useCout

R 5SCin
R and to expressCout

R and Cin
R

with Cin as Cin
R5K(S)Cin and Cout

R 5L(S)Cin; thereafter,
the relationL(S)5SK(S) is deduced. We detail this calcu
lation below.

According to the modal decomposition, we have~3.6!

XR5(
n

~An
R2Bn

R!Xn , and YR5(
n

~An
R1Bn

R!Yn ,

~4.4!

X̄5(
n

~An2Bn!Xn , and Ȳ5(
n

~An1Bn!Yn.

With XR5X̄ and YR5Ȳ, the equalities (XRuYn)
5(X̄uYn) and (YRuXn)5(ȲuXn) become, using~3.5! and
~4.4!
1915agneux and Maurel: Scattering matrix with evanescent modes
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~An
R2Bn

R!Jn5 (
m.0

~Am2Bm!~XmuYn!,

~An
R1Bn

R!Jn5 (
m.0

~Am1Bm!~YmuXn!.

Summing and subtracting these relations, atx50 (a5I ) and
at x5L (a5II ), leads to

2JaAR,a5~ J̃a1 tJ̃a!Aa1~ J̃a2 tJ̃a!Ba,

2JaBR,a5~ J̃a2 tJ̃a!Aa1~ J̃a1 tJ̃a!Ba,

for a5I , II . Using the definitions~2.1! and ~2.2!, these re-
lations become

2JCin
R5HpCin1HmCout5~Hp1HmS̄!Cin,

2JCout
R 5HmCin1HpCout5~Hm1HpS̄!Cin,

whereHp5JM1 t(JM), Hm5JM2 t(JM), and Cout5S̄Cin

have been used.
Finally, knowing thatCout

R 5SCin
R , we obtain the time-

reversal invariance property for the scattering matrix

JSJ21~Hp1HmS̄!5Hm1HpS̄. ~4.5!

This time-reversal invariance property of the S matrix w
evanescent modes is different from the version without e
nescent modes because of the extra terms involvingHp ~see
Sec. V!.

C. Energy conservation

The energy conservation comes directly from the re
procity relation and time-reversal invariance@taking in the
reciprocity relation~X,Y! and (XR5X̄, YR5Ȳ) as solutions#

~XI uYI !2~XI uYI !5~XII uYII !2~XII uYII !. ~4.6!

This relation can be expressed, fora5I , II , as the conser-
vation of the energy flux proportional toWa5(XauYa)
2(XauYa)

Wa5 tAa~ J̃a2 tJ̃a!Aa2 tBa~ J̃a1 tJ̃a!Aa

1 tAa~ J̃a1 tJ̃a!Ba2 tBa~ J̃a2 tJ̃a!Ba

5constant.

This can be written

tCinHmCin1 tCinHpCout2
tCoutHpCin2 tCoutHmCout50.

Finally, we obtain the energy conservation property for
scattering matrix

Hm1HpS̄5 tS~Hp1HmS̄!, ~4.7!

whereHp implies extra terms due to the presence of evan
cent modes.

As for the reciprocity relation, Eq.~4.6! can also be
deduced from an integral representation. It would permit o
to generalize Eq.~4.6! to geometry with more than two ter
minating waveguides.
1916 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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V. DISCUSSION

We have seen in both cases~fluid and solid! that the
reciprocity relation, the time-reversal invariance, and the
ergy conservation lead to three relations on the scatte
matrix S

Reciprocity relation: JS2 tSJ50, ~5.1a!

Time-reversal invariance:

Hm1HpS̄5JSJ21~Hp1HmS̄!, ~5.1b!

Energy conservation: Hm1HpS̄5 tS~Hp1HmS̄!.
~5.1c!

In these relations, the presence of evanescent mod
taken into account by theHp matrix. Notably, the term in-
volving Hp in the energy conservation represents the ene
flux carried by evanescent modes.

Note that the same kind of relations have been show
Ref. 9 in the angular spectrum representation, but in the
lar case only.

A. Structure of Hm and Hp

To gain some hints of the structures ofHp andHm , let
us take an example in both cases. In the fluid case, le
assume that we have, atx50, one propagating modeJ 1

I

5 jk1
I (k1

I real! and we account for one evanescent modek2
I

~purely imaginary!; at x5L, we suppose that we have tw
propagating modesk1

II andk2
II and we account for one eva

nescent modek3
II . With M5I ~Appendix C!, we have thus

Hp52iS 0

k2
I

0

0

k3
II

D ,

~5.2!

Hm52iS k1
I

0

k1
II

k2
II

0

D .

In the solid case, properties ofJ are given in Appendix
B. Let us assume that, atx50, we have one propagatin
mode (J 1

I purely imaginary! and we account for two eva
nescent modes such thatJ 3

I 5J 2
I ; at x5L, we assume tha

we have only one propagating mode and one evanes
mode with a purely realJ 2

II . In this case,M takes the form
Pagneux and Maurel: Scattering matrix with evanescent modes
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M5S 1

0 1

1 0

1

1

D . ~5.3!

Thus, we have

Hp52S 0

0 J 2
I

J 2
I 0

0

J 2
II

D ,

~5.4!

Hm52S J 1
I

0 0

0 0

J 1
II

0

D .

B. Relationships without evanescent modes

A consequence of the results of the preceding sectio
that the three relationships on the S matrix can be simpli
to

Reciprocity relation: JS2 tSJ50, ~5.5a!

Time-reversal invariance: Hm5JSJ21HmS̄, ~5.5b!

Energy conservation: Hm5 tSHmS̄, ~5.5c!

when the modes are restricted to propagating compone
since in that caseHp is zero. Then, as it can be expected
a proper normalization, the reciprocity property implies th
S is symmetric and the energy conservation implies thatS is
unitary.

C. Relations between reciprocity, time-reversal, and
energy conservation

So far it has been assumed that the propagation is g
erned by the equation~3.1! with boundary conditions~3.2!. It
corresponds to the Helmholtz equation for fluids bounded
rigid walls or to the Navier equation for solids with tractio
free boundaries. Nevertheless, even if the governing eq
tions in the scattering region are unknown, each equatio
~5.1! can be used as a test of the corresponding phys
property.

It is clear that if the reciprocity relation is verifie
(JSJ215 tS,), then time-reversal invariance and ener
conservation are equivalent~i.e., time-reversal invariance
implies energy conservation and vice versa!.

It is more difficult to prove that the reciprocity relatio
comes from time-reversal invariance and energy conse
tion. To do that, we use the following procedure. The co
plex conjugate of the time-reversal invariance is written
the form
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 P
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S̄J̄21~Hp1HmS!5 J̄21~Hm1HpS!. ~5.6!

Then, the energy conservation is written

~Hp2 tSHm!S̄5~ tSHp2Hm!. ~5.7!

Finally, using~5.6! in ~5.7! to eliminateS̄ yields a relation
betweentS andS

~Hp2 tSHm!J̄21~H̄m1H̄pS!

5~ tSHp2Hm!J̄21~H̄p1H̄mS!. ~5.8!

Thus, we have

tSHaS2Ha1 tSHb2HbS50, ~5.9!

with

Ha5HpJ̄21Hm1HmJ̄21Hp, ~5.10!

Hb5HpJ̄21Hp1HmJ̄21Hp. ~5.11!

Using that, by construction,J is diagonal, we obtain a simple
expression ofHa andHb

Ha52~JMM̄2 t~MM̄!J!, ~5.12!

Hb52~JMM̄1 t~MM̄!J!. ~5.13!

It is shown in Appendix C that, in both fluid and solid case
MM̄5I. As a consequence, we findHa50 andHb54J, so
that Eq.~5.9! corresponds to the reciprocity relation.

We have demonstrated that as soon as two relation
~5.1! are verified, the third relation is also verified.

VI. CONCLUDING REMARKS

The main results of this paper are the relationships
Eq. ~5.1! that are verified by the scattering matrix with ev
nescent modes. To the best of our knowledge, this is the
time that such general equations are found for the fluid c
and the solid case. These results can be easily generaliz
other boundary conditions, to waveguide with inhomog
neous media~l andm variable for instance!, and to 3D ge-
ometry. They are exact whatever the distance from the s
tering region, in contrast to usual relations involving only t
propagating modes and assuming that one is in the far fi
of the scattering region. The equation~5.1! can be useful, in
a numerical calculation, to test the energy conservat
time-reversal invariance, or the reciprocity of a scatter
region. They could be useful also to test the results of
experiment if this latter is able to provide the evanesc
components.

Besides, with evanescent modes taken into account
have shown that, as soon as two physical properties am
energy conservation, time-reversal invariance, and recip
ity are verified, the third is also verified. Consequently, th
reduces the number of tests that have to be conducted
~5.1!. These relationships can be also helpful to works
lated to time-reversal mirror in waveguides.17
1917agneux and Maurel: Scattering matrix with evanescent modes
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APPENDIX A: EVOLUTION EQUATIONS IN
WAVEGUIDES

1. Fluid case

We start from the Helmholtz equation

¹2p1
v2

c2
p50, ~A1!

where p denotes the acoustic pressure andc the acoustic
wave speed in the considered fluid. In anx-axis waveguide
of height h(x), the boundary condition]np50 ~with n the
normal to the wall! can be written

2h8~x!
]

]x
p1

]

]y
p50, at y5h~x!,

~A2!
]

]y
p50, at y50.

With X5(]/]x)p andY5p, ~A1! takes the form

]

]x S X
Y D5S 0 2S ]2

]y2
1v2/c2D

1 0
D S X

Y D , ~A3!

and the boundary condition~A2!

2h8X1
]

]y
Y50, at y5h~x! and

~A4!
]

]y
Y50, at y50.

We thus identify F52@(]2/]y2)1v2/c2#, G51, CX
050,

CX
1521, CY

05]/]y, andCY
150.

2. Solid case

With (u,v) the vector of displacements ands the stress
tensor, the elasticity equation can be written

2rv2S u
v D5div s, ~A5!

where

s5S s t

t r D , with 5
s5l

]

]y
v1~l12m!

]

]x
u,

t5mS ]

]y
u1

]

]x
v D ,

r 5~l12m!
]

]y
v1l

]

]x
u,

~A6!

where r denotes the density,~l,m! the Lamé’s constants.
Boundary condition of a wall free of tractions•n50 ~n de-
notes the normal to the wall! in an x-axis waveguide of
heighth(x) can be written

2h8s1t50, 2h8t1r 50 at y5h~x!,
~A7!

t50, r 50 at y50.

With X5( t
u) andY5( v

2s), ~A5!–~A6! take the form
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]x S X
Y D51 0

2
b

l
2b

]

]y

b
]

]y
2S rv21a

]2

]y2D
rv2 ]

]y
0

2
]

]y

1

m

2
3S X

Y D , ~A8!

with a54m~l1m!/~l12m! and b5l/~l12m!. With r
5a(]/]y)v1bs, boundary conditions~A7! can be written

S 0 1

0 2h8
DX1S h8 0

2b a
]

]y
D Y50 at y5h~x!,

~A9!

and the same withh850 at y50.
We thus identify

F5S 2
b

l
2b

]

]y

b
]

]y
2S rv21a

]2

]y2D D ,

G5S rv2 ]

]y

2
]

]y

1

m

D , CX
05S 0 1

0 0D ,

CX
15S 0 0

0 21D , CY
05S 0 0

2b a
]

]y
D , and

CY
15S 1 0

0 0D .

APPENDIX B: PROPERTIES OF F AND G

Property 1 is obviously verified in both fluid and sol
cases, the expressions ofF andG being given in Appendix
A.

To obtain property 2, we calculate the products~FYuỸ!
and ~GXuX̃!, where~X,Y! and ~X̃,Ỹ! verify relations~A8!–
~A9!. We have to distinguish here the fluid and solid cases
detailed below.

1. Fluid case

It is obvious to see from the expressions ofF and G
given in Appendix A that

~FYuỸ!5~YuFỸ!1h8~YX̃2XỸ !~h!,

~GXuX̃!5~XuGX̃!,
Pagneux and Maurel: Scattering matrix with evanescent modes
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obtained simply by integration by parts and by using~A4!.
Subtracting these two relations, Property 2 is then clea
verified.

2. Solid case

We denote here (Z1 ,Z2) the two components of a vecto
Z5X, X̃, Y, Ỹ. We can calculate by integrating by parts

~FYuỸ!5~YuFỸ!1FY2S 2bỸ11a
]

]y
Ỹ2D

2Ỹ2S 2bY11a
]

]y
Y2D G

0

h

,

~GXuX̃!5~XuGX̃!1@X2X̃12X1X̃2#0
h ,

which are valid for any vectorsX, X̃, Y, Ỹ. Using the bound-
ary conditions~A9!, we finally write these relations

~FYuỸ!5~YuFỸ!1h8~Y2X̃22X2Ỹ2!~h!,

~GXuX̃!5~XuGX̃!2h8~Y1X̃12X1Ỹ1!~h!.

Consequently, we have

~FYuỸ!1~XuGX̃!5~YuFỸ!1~GXuX̃!1h8~Y"X̃

2X"Ỹ!~h!, ~B1!

which constitutes property 2.

APPENDIX C: TRANSVERSE MODES AND
STRUCTURE OF THE M MATRIX

1. Fluid case

The transverse modes, solutions of~3.3! with boundary
conditions~3.4! are ~for unu>1)

Yn~y!5A22dn1

h
cosS ~n21!py

h D , Xn~y!5 iknYn .

~C1!

Thus, we calculate forn>1

~XnuYm!5~XnuȲm!5 ikndnm , ~C2!

from which it is easy to deduce thatM5I, whereM is de-
fined in ~3.8!.

2. Solid case

For the sake of clarity, only symmetric Lamb modes a
presented~for antisymmetric modes, see for instance R
16!. Then,Xn5(U

Tn ) andYn5(
2S
Vn ), where
n n
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e
.

Un5 iknfn1
]

]y
cn ,

Vn5
]

]y
fn2 ikncn ,

~C3!

Sn5mF2~kn
212bn

22an
2!fn12ikn

]

]y
cnG ,

Tn5mF2ikn

]

]y
fn1~kn

21an
2!cnG ,

defined with the scalar potential fn5(kn
2

1an
2)cosh(bny)sinh(anh) and the potential vector (0,0,cn),

with cn(x,y)522iknbn sinh(any)sinh(bnh) and with an

5(kn
22kt

2)1/2, bn5(kn
22kl

2)1/2, kt5v/ct5(r/m)1/2v, and
kl5v/cl5(r/(l12m))1/2v.

The structure of the spectrum in the solid case is qu
more complicated than in the fluid case. The dispersion r
tion for symmetric modes is of the form16

~an
21kn

2!2

an
sinh~anh!cosh~bnh!

24kn
2bn sinh~bnh!cosh~anh!50. ~C4!

We refer to a previous paper whereJn has been explicitly
calculated11 and we summarize below the main results w
can extract from its calculation~results are considered fo
right-going waves, associated with wave numberkn ,
Imag(kn)>0 in conventione2 ivt).

~i! Propagating modes correspond to real wave num
kn ; in this case,Jn is purely imaginary.

~ii ! Evanescent modes that correspond to complex w
numberkn with a nonzero real part give a imaginar
Jn with nonzero imaginary part. Such a mode withkn

wave number can be associated with another one s
that km52kn. In this case, we haveJm5Jn and we
choose a numbering such thatm5n11.

~iii ! Finally, evanescent modes associated with pur
imaginary wave number give a real value forJn .

The relation~for right-going modes! (XnuYm)5Jndmn is
used to calculate (XnuȲm). Indeed, withȲm5Y( k̄m), the
latter product is nonzero only whenk̄m56kn . Thus, for real
wave number~propagating modes!, it is nonzero forn5m.
For complexkn with nonzero real part (kn1152 k̄n), it is
nonzero form5n11. Symmetrically, consideringkn11 , it is
nonzero form5n21. Finally, for purely imaginary wave
number, it is nonzero again forn5m. The structure of the
matrix (XnuȲm) is thus the following:

S J1 0 0 0

0 0 J2 0

0 J35J̄2 0 0

0 0 0 J4

D , ~C5!

where we have considered a propagating mode with w
numberk1 (J1 is purely imaginary!, and three evanescen
modes: two are associated withk2 and k352k2 with non-
1919agneux and Maurel: Scattering matrix with evanescent modes
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zero real part and one is associated with a purely imagin
wave numberk4 (J4 is real!.

We can now define theM in ~3.8!. It contains blocks of
identity matrices for real or purely imaginary wavenumbe
and blocks of the form (1 0

0 1) for two complex conjugate wave
numbers. In the previous example, we would have

M5S 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

D . ~C6!

An important property ofM is thatM25I with M̄5M.
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