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Reciprocity, energy conservation, and time-reversal invariance are three general properties of the
wave fields that imply algebraic scattering matrix properties. In this paper, these scattering matrix
properties are established for waveguides when evanescent modes are taken into account. The
situations correspond to guided acoustic pressure waves in fluids and Lamb waves in solids treated
with the same formalism. The relations between the three properties verified by the scattering matrix
are then discussed, and it is found that, as soon as two properties are verified, the third is also
verified. © 2004 Acoustical Society of AmericdDOI: 10.1121/1.1786293

PACS numbers: 43.20.Fn, 43.20.Gp, 43.20.\WAO] Pages: 1913-1920

I. INTRODUCTION wave in a fluid with hard wall and the second case corre-
sponds to the guided propagation of either a scalar Wakk

A very convenient quantity to characterize the scatteringvave or a vectorial wavegLamb wave in an elastic wave-
of a wave by a scattering region is the so-called scatteringuide with free boundaries. We treat the waveguides in fluids
matrix (S matriX. The versatility of this formulation is due and solids with the same formalism that appears to be useful
to the fact that it relates the outgoing wave to the ingoingto consider the S matrix.
wave directly, with respect to the scattering region, which are  The plan of the paper is as follows. In Sec. Il, we define
intuitive quantities:™ The scattering problem is then to de- the scattering matrix for the waveguides. Then, the method
termine the S matrix and not to determine the wave field inused to project the acoustic fields on the waveguide modes is
the whole spac&® From an experimental point of view, the presented in Sec. lIl. In Sec. IV, we find the three properties
S matrix is a very convenient tool since the measurementsgerified by the S matrix due to reciprocity, time-reversal
have to be performed outside of the scattering region onlgymmetry, and energy conservation of the wave propagation,
and do not have to be intrusive. when evanescent modes are taken into account. Finally, in

In waveguides, when the interest is only in the far fieldSec. V, we summarize the three properties and discuss the
of the scattering region, the S matrix is restricted to therelation between the three properties of the S matrix: we find
propagative components. Then, the fundamental propertigbat as soon as two properties are verified the third relation is
of the wave propagatiofi.e., reciprocity, energy conserva- automatically verified.
tion, and time-reversal symmejrgre very simply translated
into relationships verified by the S matrfiXor instance, the
energy conservation implies that the S matrix is unitary with”_ DEEINITION OF THE SCATTERING MATRIX
proper normalization. Besides their fundamental interest,
these algebraic properties of the S matrix can be very useful We consider the problem corresponding to Fig. 1. It con-
in experimental and numerical works, where they provide aists of a bidimensional waveguide of longitudinal axis
convenient way to check if the fundamental properties of thayith constant height fox<0 andx=L. In the scattering
wave propagation are verified. Nevertheless, as soon as thégion, 0<x<L, the waveguide is of variable height{x).
near field is considered, the S matrix has to include the evarhe harmonic time dependence with pulsationis e '~
nescent waves; such a need can exist for example if severghd it will be omitted in the following.
scattering regions are taken into account and if they are close Qutside of the scattering region, the wave fields can be
enough. Then, the usual properties of the S matrix, correcxpressed as a sum over the transverse modes of the homo-
for the propagative waves only, are not correct anynidre. geneous waveguide with coefficients dependingcofihese

In this paper, we investigate the general relationshipgoefficients can be split into right-going componeAtand
verified by the S matrix with evanescent waves in the casegft-going component8, that is,A andB are vectors whose
of the propagation in 2D waveguides in fluids or solids. Thecomponents are the projections of the wave field on the wave
first case corresponds to the guided propagation of a scalafodes. For the sake of clarity, we note in the followib
(respectively,B'") at x=0 and A" (respectively,B'") at x
¥Electronic mail: vincent.pagneux@univ-lemans.fr =L. We defineW;, as the ingoing waves an#,,, as the
YElectronic mail: agnes.maurel@espci.fr outgoing waves, with respect to the scattering region
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FIG. 1. Geometry of the waveguide. where
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is the displacement vector and
Then, the scattering matrix links together the outgoing s t
wavesW,  and the ingoing waveW;, at both extremities of U':( )

the scattering region tor

W,,~=SW,. (2.2)  the corresponding stress tensor.
It is shown in Appendix A that both sets of equations can
Actually, S is defined with the reflection and transmission pe written in the same generic form
matricesR', T' (respectivelyR", T'") corresponding to

wave incident from the leftrespectively, from the right i X _ 0 F X) 3.2)
T ax|Y G 0/\Y) .
R T
S= ( T R ) (2.3 with boundary conditions

0 r~1 0 r~1 _ —
Here, R and T are matrices linking ingoing and outgoing (CxTh'COX+(Cy+h'Cy)Y=0, aty=h(x),

wave components. Note that the scattering matrix could be cIx+cly=0, aty=0,

used for the case of more than two terminating waveguides.
whereh’=dh/dx.

Expressions of, G, Cix, andCiY(i =0,1) in both cases
are given in Appendix A. In the following, we use two prop-
erties of these matrices

(1) (Property 3: F, G, Cy, andCy (i=0,1) are real; _
Guided wave propagation in fluids and solids is consid~2) (Property 2: (FY|Y)+(X|GX)=(Y|FY)+(GX|X)

ered. The fluid case corresponds to the Helmholtz equation +h’(Y->~(—X-\~()(h),

on the pressur@ associated with boundary conditiahp s

=0 on the wallsy=0 andy=h(x) (n denotes the vector where (X,Y) and (X)Y) are two solutions of

normal to the wall. The solid case corresponds to the NavierEq. (3.1) with boundary condition (3.2 and

equation on the displacement vectorwith the boundary (U|V)=®U(x,y)-V(x,y)dy denotes a bilinear form.

condition for a wall free of tractiom-n=0 ony=0 andy  Properties 1 and 2 are demonstrated in Appendix B. In Sec.

=h(x), wherea=\V -wl + u(Vw+'Vw) denotes the stress |V, it will appear that property 1 is related to the time-

tensor, and\,u) are the Lami constants. Results can be reversal invariance, property 2 is related to the reciprocity,

easily generalized to inhomogeneous media with varigple and both properties are related to energy conservation.

A, and u and to other boundary conditions, e.g+0 for It can be noticed that both properties 1 and 2 involve the

fluids orw=0 for solids on the walls. boundary conditions. For instance in the fluid case, if the
We choose to present both cagtiaid and solid in the  walls were lined, property 2 would be conserved while prop-

same formalism. This is done working with two quantites erty 1 would not.

andY presented below. In addition to permitting a unified

presentation, that formalism allows us to easily tackle the

projection on the Lamb moded$or propagation in solids .

The idea is to write the equations as an evolution equatior?' Modal decomposition

(with respect to the axis of the waveguidgon X andY that The scattering matribXS links together the right-going

leads to a canonical eigenvalue problem in the transverseomponents and the left-going components thro(&B). In

direction when transverse modes are sought as in Sec. Il Bhis section, we expose the modal decomposition that permits

For solids, this formulation is similar to the one presentedus to define the right-going componems and left-going

recently in Ref. 10 in that it describes the evolution of acomponents.

stress-displacement 4-vector, but here that 4-vector is suit- The transverse modes used in the decomposition, de-

ably split in two 2-vectors that permit one to project easilynotedX,(y) andY,(y), correspond to the natural basis in a

on the transverse modés. uniform waveguide. They are associated with a wave number
For fluids,X andY are scalar quantities defined by k, and are defined by

(3.2

I1l. FORMALISM
A. System
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Xn

kol "

(3.3

o0

with boundary conditions corresponding to E§.2) setting
h'=0

CiX,+C%,=0, aty=0 andy=h(x).

Xn
Yo'

(3.9

These modes are well known: they are proportional to

the cosine functior$ in the fluid case and are the Lamb
modes in the solid ca$&(their expressions are given in Ap-
pendix Q. They are linked by a biorthogonality relation

(Xn|Ym):jn5nm- (35)

(X'|?')—(;('|Y')=(X”|?”)—()~(”|Y”).
This comes from

dy((X[Y)—(X]Y))

4.9

X

) {7 -{5 )

+h' (XY =XY)(h)=(FY|Y)+(X|GX) - (FY[Y)

T 19 ]+ [ x
IX

—(X|GX)+h' (XY =XY)(h)=0.

The result is deduced from property 2 singeY) and(;(,\?)
are solutions 0f3.1)—(3.2). This form of the reciprocity re-

This relation corresponds to the orthogonality of the cosindation is similar to the one found in Ref. 15 in the fluid case,
functions in the fluid case and to the Fraser’s biorthogonalitywhere it is called a reciprocity theorem of the convolution

relation in the solid cas¥:In the fluid case.7,=ik,, and in

type. Obviously, Eqg.(4.1) can also be deduced from the

the solid case, its expression can be found in Ref. 11. Heraysual integral representation of the reciprocity property.

this biorthogonality relation can be easily demonstrated us-

ing (3.3) and the symmetry property & andG when they
are applied toX, and Y,: (FY,|Ym=(Y,|FY,) and
(GXp| Xm) = (Xn|GXym). The biorthogonality equatiof3.5)
is of interest because it permits one to easily projeeindY
on the modes,, andY,.

In the following, k,, is indexed byn>0 when it refers to
a right-going wave anth<<0 when it refers to a left-going
wave. Using the symmetry properties of the baXis,=
—X,andY_,=Y,, X andY are decomposed as

X<x,y>=n§0 (An(X) = Bo(X)Xn(y),

(3.6
Y(x,y>=n§0 (An(X) +B(X)Yn(y).

Using the modal decompositidB.6) and the biorthogo-
nality (3.5), the reciprocity relatior{4.1) takes the form

tAIJIEI_'_tBIIJII;\II _tBIJI;‘I_tAIIJIIEII =0.

Here, we have used*="'J% a=1, II. With Egs.(2.1) and
(3.8), this latter expression is equivalent to

t‘I"in\]\’i"out_ t‘I’oul‘]iirin: 0.
Eventually, using the scattering mati$ we obtain
JS—1'SJ=0, (4.2

which is the property of the scattering matrix induced by
reciprocity of the propagation in the scattering region. It has
to be noted that Eq4.2) has the same form with or without
evanescent modes.

The S matrix is concerned with values of the compo-g Time-reversal invariance

nentsA andB at x=0 andx=L (Fig. 1). At these twox
positions, the values oX,, Y,, and J, [Eq. (3.5] area
priori distinct and we note in the followin¥;, Y5, and 7
with a=1, Il for X,, Y,, and 7, on the cross sectior

~ In both cases, fluid and solid, matricés G, cl, and
C{ (i=0,1) in(3.1 are real(property 1. As a consequence,
if (X,Y) is a solution 0f(3.1), then(X,Y) is also a solution of

=0, L, respectively. At each cross section, we define theg3.1). This solution corresponds to the time-reversed solu-

matrices
Inn= (X5l Y1) = Th8mns
~ ViR (3.7
and the same fod"' andJ". Then,J andM are such that
J o 3o
J= I ~
0 J 0 JII

By definition, J is a diagonal matriXEqg. (3.7)]. In the fluid
case M is simply the identity matrix while in the solid case,

(3.9

) -

tion, noted KR, YR) in the following. Thus, the time-reversal

invariance is translated in the harmonic regime by
XR=X

solution= | solution.
(YR Y)

Y 4.3

To obtain a property for the S matrix from the time reversal,
the idea is to usal} = SWp and to expresag, , and Wi
with W, asWR=K(S)W;, and W =L (S)W;,; thereafter,
the relationL (S) = SK(S) is deduced. We detail this calcu-
lation below.

According to the modal decomposition, we ha@e6)

M has a more complicated structure, as illustrated in Sec. V

and detailed in Appendix C.

IV. PROPERTIES OF THE SCATTERING MATRIX
A. Reciprocity

The reciprocity relation corresponds to a relation be-

tween two solutiongX,Y) and (X,Y) of (3.1)—(3.2. We
show below that this relation can be written

J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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XR=2 (AR-BR)X,, and YR=2 (AR+BR)Y,,
n n
(4.9

X=2 (Ay=Bn)X,, and Y=3 (A +By)Y,.
n n
With XR=X and YR=Y, the equalities XRY,)
=(X]Y,) and (YR|X,)=(Y|X,) become, using3.5 and
(4.9
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- V. DISCUSSION
(AR =BRITn= 2 (An=Bm)(Xq|Yo),
m=0 We have seen in both caséduid and solid that the
- - reciprocity relation, the time-reversal invariance, and the en-
(Ap+Bn)Jh= ZO (Am+Bm) (Y| Xn). ergy conservation lead to three relations on the scattering
" matrix S
Summing and subtracting these relationsga0 (a«=1) and
atx=L (a=Il), leads to

T Reciprocity relation: JS—'SJ=0, (5.19
ZJaAR,a: (Ja+tJa)Aa+ (Ja_tJa)Ba,
2J°BRe=(J*—1J) A%+ (J*+'13%) B, Time-reversal invariance:
for a=1, Il. Using the definitiong2.1) and(2.2), these re- He+ HyS=JS3"L(Hy+ H,:S), (5.1b

lations become

2JWR=H W, + HyWou= (Ho + HyS) Wi, - -
= HpWint HintWou= (Hy+ HinS) Wi Energy conservation: Hy+H,S="'S(H,+H,S).

23WR = H Wi+ HyWou= (Hn+ HyS) Wy, (5.19
where H,=JM+ {(IM), H,=JIM—IM), and W ,=SW,,
have been used. In these relations, the presence of evanescent modes is
Finally, knowing thatWR =SW~  we obtain the time- taken into account by thel, matrix. Notably, the term in-
reversal invariance property for the scattering matrix volving H, in the energy conservation represents the energy
) _ _ flux carried by evanescent modes.
JSJ™*(Hp+HpS)=Hp+HyS. (4.5 Note that the same kind of relations have been shown in

This time-reversal invariance property of the S matrix with R€f- 9 in the angular spectrum representation, but in the sca-

evanescent modes is different from the version without eval-ar case only.

nescent modes because of the extra terms involMpgsee  A. Structure of H,, and H,

Sec. V. . :
Y To gain some hints of the structurestdf andH,,, let

us take an example in both cases. In the fluid case, let us
assume that we have, at=0, one propagating modg'l
C. Energy conservation =jk} (k} rea) and we account for one evanescent matle
(purely imaginary; at x=L, we suppose that we have two
propagating model;'lI and k'2' and we account for one eva-
nescent moddx'sI . With M=1 (Appendix Q, we have thus

The energy conservation comes directly from the reci
procity relation and time-reversal invarianfaking in the
reciprocity relationX,Y) and XR=X, YR=Y) as solution

XYD) = (XTYH = (X" YT = (XTT|Y™). (4.6 .
This relation can be expressed, fer1, Il, as the conser- K
vation of the energy flux proportional toV,=(X“Y®) 2
—(X?Y9) Hp=2i 0 ,

W, =A% 3o~ o) AT~ 1B Jo+ o)A o

~ T — ~ T — k3
+tAa(Ja+tJa)Ba_tBa(Ja_IJa)Ba (52)
= constant. K,

This can be written 0
l‘I'inHm‘I’in"' tlI’ian\I’out_ t\IfouthlI’in_ [\I’outh\IIout: 0. Hm: 2i klll
Finally, we obtain the energy conservation property for the klzl
scattering matrix 0

Hint HpS="S(Hy+HpS), 4.7)
whereH, implies extra terms due to the presence of evanes-  In the solid case, properties gfare given in Appendix
cent modes. B. Let us assume that, at=0, we have one propagating

As for the reciprocity relation, Eq(4.6) can also be mode (7} purely imaginary and we account for two eva-
deduced from an integral representation. It would permit oneescent modes such that,=75; atx=L, we assume that
to generalize Eq(4.6) to geometry with more than two ter- we have only one propagating mode and one evanescent
minating waveguides. mode with a purely real75 . In this caseM takes the form
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1 SI Y (Hy+HpS) =3 X (Hp+H,S). (5.6)

Then, the energy conservation is written
M= 10 . (5.3 _
(Hp="SHm)S=('SHp—Hp). (5.7

1 Finally, using(5.6) in (5.7) to eliminateS yields a relation

Thus, we have between'S andS

0 (Hp—'SHp) 3™ X(Hp+ H,S)
| _
0 7 =('SHp—Hm)d ™ X(Hp+HpS). (5.8
_ Al
Ho=2 J2 0 ' Thus, we have
0
7! 'SH,S—H,+'SH,—H,S=0, (5.9
5.4 with
7t (5.9 ) )
0 0 Ha=Hpd ™ "Hp+ Hpd " HH,, (5.10
Hn,=2 0 e e
m ot Hp=Hpd ™ "Hy+Hpd " 1H,,. (5.10)
1
0 Using that, by construction, is diagonal, we obtain a simple
expression oH, andHj
B. Relationships without evanescent modes Ha=2(JMM—‘(MM)J), (5.12
A consequence of the results of the preceding section is — =
that the three relationships on the S matrix can be simplified ~Hp=2(IJMM+(MM)J). (5.13
to It is shown in Appendix C that, in both fluid and solid cases,
Reciprocity relation: JS—'SJ=0, (5.5a MM=I. As a consequence, we find,=0 andH,=4J, so
) ) i _ P~ that Eq.(5.9) corresponds to the reciprocity relation.
Time-reversal invariance: Hy=JSJ™"Hy,S, (5.5 We have demonstrated that as soon as two relations of

Energy conservation: Hm=‘SHm§, (5.50 (5.1) are verified, the third relation is also verified.

when the modes are restricted to propagating components,
since in that casel, is zero. Then, as it can be expected by
a proper normalization, the reciprocity property implies that!- CONCLUDING REMARKS
S is symmetric and the energy conservation implies St The main results of this paper are the relationships in
unitary. Eq. (5.1) that are verified by the scattering matrix with eva-
nescent modes. To the best of our knowledge, this is the first
time that such general equations are found for the fluid case
and the solid case. These results can be easily generalized to
other boundary conditions, to waveguide with inhomoge-
So far it has been assumed that the propagation is gowieous medig\ and w variable for instance and to 3D ge-
erned by the equatiof8.1) with boundary condition§3.2). It ~ ometry. They are exact whatever the distance from the scat-
corresponds to the Helmholtz equation for fluids bounded byering region, in contrast to usual relations involving only the
rigid walls or to the Navier equation for solids with traction propagating modes and assuming that one is in the far field
free boundaries. Nevertheless, even if the governing equaf the scattering region. The equati@1) can be useful, in
tions in the scattering region are unknown, each equation ima numerical calculation, to test the energy conservation,
(5.1) can be used as a test of the corresponding physicdlme-reversal invariance, or the reciprocity of a scattering
property. region. They could be useful also to test the results of an
It is clear that if the reciprocity relation is verified experiment if this latter is able to provide the evanescent
(JSJ 1='s)), then time-reversal invariance and energycomponents.
conservation are equivalerit.e., time-reversal invariance Besides, with evanescent modes taken into account, we
implies energy conservation and vice versa have shown that, as soon as two physical properties among
It is more difficult to prove that the reciprocity relation energy conservation, time-reversal invariance, and reciproc-
comes from time-reversal invariance and energy conservaty are verified, the third is also verified. Consequently, this
tion. To do that, we use the following procedure. The com-reduces the number of tests that have to be conducted with
plex conjugate of the time-reversal invariance is written in(5.1). These relationships can be also helpful to works re-
the form lated to time-reversal mirror in waveguid¥s.

C. Relations between reciprocity, time-reversal, and
energy conservation
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APPENDIX A: EVOLUTION EQUATIONS IN
WAVEGUIDES

1. Fluid case

We start from the Helmholtz equation

wZ
VZp+— p=0, (A1)
c
where p denotes the acoustic pressure anthe acoustic
wave speed in the considered fluid. In xaxis waveguide
of heighth(x), the boundary conditio@,p=0 (with n the
normal to the wall can be written

d J
—h’(X)&p+@p=O, aty=h(x),

5 (A2)

Wp=0, at y=0.
With X=(d/dx)p andY =p, (Al) takes the form

(92
Jd [ X _ 0 - —2+w2/02 X
1 0
and the boundary conditiofA2)
J
—h X+WY:0’ aty=h(x) and
(Ad)

J
gy V=0 aty=o.

We thus identify F= —[ (4% dy?) + w?/c?], G=1, C3=0,
Ck=-1,C%=0ldy, andCi=0.

2. Solid case

With (u,v) the vector of displacements amdthe stress
tensor, the elasticity equation can be written

2 u H
—po =divo, (A5)
where
( =\ i +(N+2 i
s= ay Y ( M)a—XU,
s t _ d ]
= = _ +_
Utr'Wlth<tM(9yu(3’XU’
=(\N+2 i + A J
\r—( M)ayv XU

(AB)

where p denotes the density\,u) the Lameés constants.
Boundary condition of a wall free of tractiom-n=0 (n de-
notes the normal to the walin an x-axis waveguide of
heighth(x) can be written

—h's+t=0, —h't+r=0 aty=h(x),
t=0, r=0 aty=0.
With X=({') andY=("°), (A5)—(A6) take the form

(A7)

1918 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004

B d
_K _EW
0
J 2, 3
Jd (X| ’Bay p® a(?yz
ax\Y
pw? ai
y 0
J 1
Iy u
X
X v/ (A8)
with a=4u(\+w)/(N+2u) and B=N(\+2w). With r

= a(dldy)v + Bs, boundary conditiongA7) can be written
h' 0
d |Y=0 aty=h(x),

X+

(A9)

and the same with’=0 aty=0.
We thus identify

B d
x By
F:
B& 2, P\
R S R
ay P ay?
9
2
pe ay 0 0 1
G= g 1] Cx= 0 0/)’
dy M
0 0
Ci= 0 0 co= d d
X 0 _11 Y —B e an
ay
10
1
=l o

APPENDIX B: PROPERTIES OF F AND G

Property 1 is obviously verified in both fluid and solid
cases, the expressions l6fand G being given in Appendix
A.

To obtain property 2, we calculate the produd&|Y)
and (GX|X), where(X,Y) and (X,Y) verify relations(A8)—
(A9). We have to distinguish here the fluid and solid cases, as
detailed below.

1. Fluid case

It is obvious to see from the expressions Fofand G
given in Appendix A that

(FY|Y)=(Y|FY)+h'(YX = XY)(h),

(GX|X)=(X|GX),

Pagneux and Maurel: Scattering matrix with evanescent modes



obtained simply by integration by parts and by usidg}). ' 9
Subtracting these two relations, Property 2 is then clearly Un=iknén+ anv
verified.

d .
Vn:@ dn—iKntn,

2. Solid case (C3)

J
— (L2 2_ 2 o
We denote hereZ, ,Z,) the two components of a vector Sn_r“{ (Kht2Bn—ap) ént 2|kn(9y Lﬁn}'
Z=X, X, Y, Y. We can calculate by integrating by parts

d ~

. d 2, 2
_ Tho=n 2|knw¢n+(kn+a’n)¢n ’
Yz(_BYl"f‘a@Yz

(FY|Y)=(Y|FY)+

defined with the scalar potential ¢n=(kﬁ

_ P h + a?)cosh@.y)sinh(a,h) and the potential vector (0,),
—Yz(—,BYlJra—Yz) , with  ¢,(X,y) = — 2ik, B, sinh(e,y)sinh(8,h) and with «,
W o = (K—k)) 2, py=(kg— kD)2 k= wlc,=(pl ) Y20, and

k=wl/c,=(p/(N+2u)) 0.
The structure of the spectrum in the solid case is quite
more complicated than in the fluid case. The dispersion rela-
tion for symmetric modes is of the forfh
(ant+k)?
(FY[Y)=(Y[FY)+h' (YoXo = XpY ) (h), “n
— 4k2B, sinh B,h)cosh a,h) =0.

(GX|X)=(X|GX) +[XX; — X1 X,15,

which are valid for any vectorX, >~(, Y, Y. Using the bound-
ary conditions(A9), we finally write these relations

sinh( @, h)cosh B,h)

(C4

(GX[X)=(X|GX)=h" (Y2 Xy = XyYa) (). We refer to a previous paper wherg, has been explicitly

calculated! and we summarize below the main results we
can extract from its calculatiofresults are considered for
right-going waves, associated with wave numbley,
Imag(k,)=0 in conventione™'“7).

Consequently, we have

(FY|Y) + (X|GX) = (Y|FY)+ (GX|X)+h'(Y-X

—X-Y)(h), (B1) (i) Propagating modes correspond to real wave number
. ' k,; in this case,7, is purely imaginary.
which constitutes property 2. (i)  Evanescent modes that correspond to complex wave

numberk,, with a nonzero real part give a imaginary
Jn with nonzero imaginary part. Such a mode with
wave number can be associated with another one such
thatk,,= —k,. In this case, we havg,,= J, and we
choose a numbering such that=n+1.

(i)  Finally, evanescent modes associated with purely
imaginary wave number give a real value {@.

APPENDIX C: TRANSVERSE MODES AND
STRUCTURE OF THE M MATRIX

1. Fluid case

The transverse modes, solutions(8f3) with boundary
conditions(3.4) are (for |n|=1)

2—9 -1
Yoy =\ h”lcos((” h)wy), Xaly)=iKnYp.

The relation(for right-going modes(X | Y ) = Jn0mn iS
used to calculate X,|Y,). Indeed, withY =Y (k,), the
latter product is nonzero only whén,= =k, . Thus, for real

(cy Wwave numbelpropagating modesit is nonzero fom=m.
For complexk,, with nonzero real partk,.;=—k,), it is
Thus, we calculate fon=1 nonzero form=n+ 1. Symmetrically, considerink, , ,, itis
nonzero form=n-—1. Finally, for purely imaginary wave
(Xn|Ym):(xn|?m):ikn5nmv (%) number, it is nonzero again fer=m. The structure of the
matrix (X,|Y ) is thus the following:
f_rom which it is easy to deduce thd=I, whereM is de- v 0 0 o
fined in (3.8).
0 0 J, O
- : (CH
2. Solid case 0 0 0 I

For the sake of clarity, only symmetric Lamb modes arewhere we have considered a propagating mode with wave
presentedfor antisymmetric modes, see for instance Ref.numberk,; (7, is purely imaginary, and three evanescent

16). Then,Xn=(LTJ”) andYn=(j/§ ), where
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modes: two are associated with and k3= —k, with non-
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zero real part and one is associated with a purely imaginaryR. G. Newton,Scattering Theory of Waves and ParticiédcGraw-Hill,
wave numbek, (7, is rea). New York, 19686.
. . . 7 “ . .
We can now define thM in (3.8). It contains blocks of P. A. Mello, P. Pereyra, and N. Kumar, “Macroscopic approach to multi-
. . . . . channel disordered conductors,” Ann. Ph$81(2), 290-317(1988.
identity matrices for real or purely imaginary wavenumbers g

o1 . C. Vassalo,Theorie des guides d'ondes Electromagiqees (Eyrolles,
and blocks of the form(;) for two complex conjugate wave  pguris, 1985 Vol. 2.

numbers. In the previous example, we would have °R. Carminati, J. J. Sz, J.-J. Greffet, and M. Nieto-Vesperinas, “Reci-
procity, unitarity, and time-reversal symmetry of the S-matrix of fields
1000 containing evanescent components,” Phys. Re82A0127121-0127127
0010 (2000.
M= . (Co) 10A. Folguera and G. H. Harris, “Coupled Rayleigh surface in a slowly
0 1 00 varying elastic waveguide,” Proc. R. Soc. London, Sed3% 917-931
0001 1999, ) o
_ V. Pagneux and A. Maurel, “Lamb wave propagation in inhomogeneous
An important property oM is thatM?=1 with M=M. (elastizc waveguides,” Proc. R. Soc. London, Ser.488 1913-1930
2002.

. . e . 2P, Morse and U. IngardTheoretical AcousticéMcGraw Hill, New York,
E. Gerjuoy and D. S. Saxon, “Variational principles for the acoustic 1959

zf'eld’ Phys. Rey.94, 1445_145&.1954)' ) . 13J. D. AchenbachWave Propagation in Elastic SolidéNorth-Holland,
T. W. Dawson, “Scattering matrix and boundary integral equation meth-
Amsterdam, 198j7

ods for long range propagation in an acoustic waveguide with repeated, ~Orth i lation for th leigh b mod ¢
boundary deformations,” J. Acoust. Soc. AB(3), 1560—-15741991). W B'_ Fraser, “Orthogonality relation for the Rayleigh—Lamb modes o
vibration of a plate,” J. Acoust. Soc. Anb9, 215-216(1976.

3H. Hudde and U. Letens, “Scattering matrix of a discontinuity with a s et >
nonrigid wall in a lossless circular duct,” J. Acoust. Soc. Af8(5), C. P. A. Wapenaar, “Reciprocity theorems for two-way and one-way wave

1826-1837(1985. vectors: A comparison,” J. Acoust. Soc. Arh00, 3508—-35181996.
4\, Varatharajulu and Y.-H. Pao, “Scattering matrix for elastic waves. 1. ‘°l. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applica-
Theory,” J. Acoust. Soc. Am60(3), 556—-566(1976. tions (Plenum, New York, 1967 Chap. 2.
5L. D. Landau and E. M. LifshitzQuantum Mechanics (Non-relativistic *’P. Roux, B. Roman, and M. Fink, “Time reversal in an ultrasonic wave-
Theory)(Pergamon, Oxford, 1965 guide,” Appl. Phys. Lett.70, 1811-18131997.
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