Scattering of an elastic wave by a single dislocation
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The scattering amplitude for the scattering of anti-plane shear waves by screw dislocations, and of
in-plane shear and acoustic waves by edge dislocations are computed within the framework of
elasticity theory. The former case reproduces well-known results obtained on the basis of an
electromagnetic analogy. The latter case involves four scattering amplitudes in order to fully take
into account mode conversion, and an adequately generalized optical theorem for vector waves is
provided. In contrast to what happens for scattering by obstacles, the scattering amplitude increases
with wavelength, and, in general, mode conversion in the forward direction does not vanish.
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I. INTRODUCTION volves two steps: the motion of a dislocation in the presence
of an incident wave has to be known as well as a represen-
The interaction of an elastic wave with inclusion-like tation for the elastic field generated by a moving dislocation.
defects has received quite a bit of attention, starting Wiﬂ‘Esher>?3’24 and Nabarré? used an electromagnetic analogy
work in the 1950s concerning the scattering of acousticalo tackle the case of a two-dimensional screw dislocation,
waves by spherical obstacles that may be empty, fluid filledwhich reduces to a scalar problem when the interaction is
or elastic, embedded in an elastic meditimFurther works with an anti-plane shear wave. However, this analogy is no
consider the case of transverse incident wave both for twoonger valid for edge dislocations when both in-plane shear
dimensional cylindrical cavitiés and for three-dimensional and compressional waves are involved, each one with its
spherical caviti€s® as well as for more complicated inclu- own propagation velocity. In 1963, Miffaderived from the
sion shape§:*? Navier equations an integral representation for the elastic
In addition to inclusions and flaws, which are static ob-field generated by a dislocation loop in three dimensions in
stacles to elastic wave propagation in a solid, and whosgrbitrary motion, of which two-dimensional cases can be ob-
interaction provide the underpinning for nondestructivetained as special cases. Kiusaffasonsidered the special
testing,*~*" dislocations are also defects that interact withcase of an edge dislocation oscillating with an arbitrary ve-
acoustic waves. Edge dislocations were introduced as defediscity. Also, the expression of the total scattering cross sec-
in a crystal by Orowan, Polanyi, and Tayf5r*°and screw  tjon of an elastic shear wave incident at right angles with the
dislocations were introduced by BurgéfsAlthough they  Burgers vector of the dislocation can be found in the conclu-
play a central role in the understanding of plasticity, it is verysion of this paper, suggesting that the authors have used
difficult to quantitatively measure their properties, a standardome equation of motion for the edge dislocation. Unfortu-
tool being electron microscopy. Would it be possible to de-ately, no calculations are given, the authors indicating that
velop acoustical diagnostic techniques to make quantitativghey are too lengthy to be reproduced.
dislocation measurements? A first step in that direction The derivation from the Navier equation of the equation
would involve a full understanding of the interaction be- of motion for a dislocation in the presence of an external,
tween elastic waves and dislocations, about which surprisjme-dependent, stress field has been obtained by Elnd.
ingly little can be found in the literature. _ _This work, together with the integral representation of
~Again in the 1950s, the interaction of elastic waves withyyra 25 allows for a full description of the scattering of elas-
dislocations was studied by Nabaf?ouho noted that waves e waves by dislocations. This paper carries out this program
would be scattered by a dislocation because the motion ing, poth screw and edge dislocations in two dimensions. In
duced by the incoming wave would generate the emission Ghe former case, the problem reduces to a scalar problem for
a scattered wave. Thus, a description of this mechanism in,qo anti-plane(sheay wave. The results obtained are in
agreement with those obtained in Ref. 22 using the electro-
dElectronic mail: agnes.maurel@espci.fr magnetic analogy. The latter case leads to a vector problem
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for the two in-plang(shear and compressionavaves. Thus,
accounting for mode conversions, four scattering functions
are determined.

In three dimensions, the interaction of sound waves with
dislocation segments has been described by the vibrating
string modet® 3 based on the formulation of Koehférin
which the dislocation is modeled as a scalar string driven by
a scalar time dependent stress. This model is very simple, a
fact that allows for many applications, and it certainly cap-
tures the essence of the physics of the elastic wave—
dislocation interaction. It has been quite successful in ex- FIG. 1. Definition of the Burgers vector.
plaining a wealth of data in acoustics and thermal
conductivity experiment®® However, it does not consider (2.5). Equation(2.4) comes from Ref. 25 written in two di-
the many complexities of this interaction. For example, itmensions and under the hypothesis of small amplitude mo-
does not differentiate between edge and screw dislocationgion. Equation(2.5) comes from Ref. 27 under the same hy-
or among the various polarizations available to an elastigothesis.
wave. The present work presents a full vector treatment of In Secs. lll and IV, these equations will be used when
the elastic wave—dislocation interaction in two dimensions. the dislocation motion is induced by an incident wave.

The paper is organized as follows. Section Il presents
briefly the integral representation of the scattered wave dug. Scattered wave by a moving dislocation
to the motion of the dislocation and the equation of motion . . . .
for a dislocation in the presence of an incident wave. Sim- We consider a dlslocat_lon Ioo)ﬁ(o,t),_ wherfeo Is the
plified expressions for the bidimensional problem and in thecqordmate along the !oop in the three-d|m_en3|onal space
case of small amplitude and small velocityell below the with the current coordinates=(x; ,xz,Xs). b is the Burgers
speed of soundmotion of the dislocation are given. Sections vgtor,_defmed by a d|sgont|nU|ty of the d|sp!acement field
Il and IV treat, respectively, the anti-plane and in-planeu'Sﬁ du=—b, formally written [u]=b, whereC is a closed
cases and the derivation of the scattering functions are prec:_urve around the dislocation with a direct orientation with

sented, as well as the resulting cross sections. It is found iF}espect tor=dXldo (F'g.' D. : . - .
A homogeneous, linearly elastic solid containing a dis-

both cases that the scattering strength of a dislocation in- . . . ;
creases when increasing the wavelength of the incideqpCatlon loopL is described by displacemerix,t) away

wave. The explanation for this unusual behavior comes fror:trom. an equilibrium position, and the equations of elastody-
the particular mechanism of the scattering which differs from 'amIcs are
the mechanism responsible for the scattering by static inho- 92 92

mogeneity such as inclusions and voids, where a vanishing  p—— Ui(X,) = Cjja -~ —~U(x,t)=0 (2.9

scattering cross section is expected at long wavelengths. As 177k

previously noted, the scattering by a dislocation is a consewith boundary conditions

guence of a dynamic interaction with the incident wave and Y

there is no reason to expect similar results here. Rather, the [y,]=p, Civ—n =0 (2.2
K i . . R i i ijkl X, '

scattering cross section is linked to the equation of motion of k

the dislocation in the presence of an incoming wave, a MOacross a surfacs bounded by the dislocation loop. We con-
tion whose amplitude does increase with the wavelength igider an isotropic solid, where the elastic constantscgge
the dynamical models of Refs. 24 and 27. A complete de-:)\5i15k|+lu(5ik5“+5”5].k) with (\,x) the Lame coeffi-

scription of the interaction of an elastic wave with a disloca-cients andp is the density. Using the Green function in the
tion would also consider the interaction with the core of thethree-dimensional free spa@®©®®), defined by

dislocation. This would need an atomistic description of the
dislocation core. However, this effect can be neglected for 7
elastic wavelengths that are long compared to core size, as |SE
the case for externally generated waves even at the highest
ultrasonic frequencies available. =06(x=x")o(t=t") Oim,

the displacement,, generated by a dislocation loof{o,t)

undergoing arbitrary motion can be written as an integral
The mechanism for the scattering of an elastic incidenfepresentation,

wave by a dislocation is quite simple: The incident wave hits P

the dislocation, causing it to oscillate in response. The ensujm(x,t)=cijk|J' f dt’ dS hn,—GX3P (x—x' ,t—t"),

ing oscillatory motion will generate outgoin@om the dis- S(t") 9Xj

location position elastic waves. wheren denotes the normal vector §(t), the surface of
The goal of this section is to briefly derive the integral discontinuity for the displacemefis(t) is time dependent

representation of the scattered wave due to the motion of since the dislocation line that defin¥$o,t) moved. Since

dislocation(2.4) and the equation of motion of a dislocation this surface does not have a special physical significance, it

2

G0 (x—x' t— GY3D) (x—x' t—t")

t'")—Cipy————
) Ilklanaxk

II. BASIC EQUATIONS
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FIG. 2. Configuration of the two-dimension@D) problem.

. . . FIG. 3. Shear wave propagating alorg (velocity v") interacting with a
should be possible to express physically meaningful quantizp screw dislocation.

ties in terms of a source that is localized along the Ibop
This was done by Mufa taking the time derivative of the J ( Ir

preceding expression. UsinfysdS n= exnd do X, mmAt, o

X ) = €apbiZip (2.9
where AS is an increment ofS(t) with respect to a time 9Xa

incrementAt, €., is the usual_comple_tely_ antisymmetric where s, = Cipi (91 9x) Uy is the stress tensgm Eq. (2.5),
tensor and an overdot means time derivative. Thus, the vex; is evaluated at the dislocation positioand £ is the
locity v ,=Up, is found to satisfy the integral representation: | agrangian density,

j 47 \€ 23°
X GI3D (x— X (o,t"),t—t"). 2.3

) . ) 9 ) )'<2
Um(xat):EknhCijklf ﬁ_dt do b Xp(o,t )Th(U)% L‘,=—i|n(—>[b|2< 1- —

2

X
+b2[2(1—y ) ——(1+y*
12(1=y"%) 2,82( YY)

In addition to the interest of deriving an integral representa-
tion over a curve that has a physical meaning, note that the

displacementi (for which no such integral can be founis (b, OX)? 4

not particularly relevant contrary to its time and space de- + T(l_ Y [

rivatives which appear in expressions of energy and momen-

tum. with y=a/B and 6, e are the long- and short-distance cut-off

We consider now the bidimensional case of a dislocatiodengths, respectivelyp; andb, are the components of the
line along thex, axis moving in the planex(,x,) (Fig. 2. Burgers vector parallel and perpendicular to the dislocation
Equation(2.3) takes the form line. Equation(2.5) represents typically an equation for a
string endowed with mass forced by the usual Peach—
Koehler force* In a more general case, say for oblique wave
incidence, there would be additional terms arising from the
line tension associated with the dislocation line curvature. A
more realistic case would also consider the dislocation’s vis-
cosity. Here we neglect this effect for simplicity. Note, how-
ever, that even in the absence of an intrinsic dissipation by a
single dislocation, the multiple scattering by many disloca-
tions will damp an acoustic wava. _

0 In Secs. Il and IV, the responsk(t) of screw @,
r7_)(J.Gim(x"")' (2.4 =0), and edge lf;=0), dislocations to an external elastic

o wave is derived from Eq2.5).
In order to complete the description of the problem, the

motion of the dislocationX(t), needs to be known.

. d
Um(X,t)= ekncijk.J dt’ byX(t') —-Gim(x—=X(t') t=t"),
]

wheree;; = €;;3 andG°=[ dx3 G°3P) is the Green function
in two dimensions. For small amplitude motion of a disloca-
tion near the origin, we have at dominant ord&f(x
—X(t"),t—t")=G%x,t—t’). Sincev,, appears as a convo-
lution product, we obtain in the frequency domain

Um(X, @) = €nCijki byXn(@)

Ill. THE ANTI-PLANE CASE: SCATTERING BY A
SCREW DISLOCATION

Here we consider the two-dimensional problem of the
scattering of an elastic wave by a screw dislocation, for
which b, =0, interacting with an incident anti-plane shear

A method of finding an equation of motion for a dislo- \ave (no interaction with in-plane waves occurdhis is a
cation loop can be found in Ref. 27. It is based on the obscalar problem, which is easy to deal with.

servation that the equations of dynamic elasticity follow o i )

from a variational principle, and assumes low accelerationé" Derivation of the scattering function

so that the backreaction of the radiation on the dislocation A screw dislocation corresponds to a Burgers vector par-
dynamics can be neglected. In two dimensions and under thgllel to the dislocation lind; =b ;5 (Fig. 3. In the presence
hypothesis of subsonic bidimensional motiot<a, S, of an incident waves of frequency(), Eq. (2.4) concerns
where a=+/(A\+2u)/p and B=+/ulp are the shear and the wave scattered by the dislocatigiv—v" and simpli-
compressional velocities, it takes the form: fies in

B. Equation of motion of a dislocation in two
dimensions
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uS(x,w)=p,beabxb(w)&%Go(x,w), (3.1

a

wherev denotesv; and G°=G2; is the scalar Green func-
tion for the shear wave. Sindg3,=G3,=0, the anti-plane
case corresponds to the scalar case of the interaction of the
anti-plane shear wave with a screw dislocation. As previ-
ously said, the integral representation has to be completed
with the law for the dislocation motioX(w) to be self-
consistent. In the case of a screw dislocation, the Lagrangian

density reduces t& = (ub2/4m %) In(de)(X¥2— 82). Equa-
tion of motion (2.5) takes the form

- au
MXp(t) = = ubepc-— (X(1),1),

FIG. 4. Acoustic wave(velocity potential ™) and in-plane shear-wave
(velocity potentialyy™) interacting with a 2D gliding edge dislocation.

B. Total cross section

The total cross section is classically defined starting
m the time averaged total energy flux across a cylinder
* around the dislocation®= 3%(f dS2v*) and decomposing
3 andv into a sum of the incident part and scattered part.

with M= (ub?/47B?)In(dl€) the usual effective mass per o
unit length of dislocatior®®” For a weak scattering strength
we use the Born approximationi€ u™® in the term on the
right-hand sidg and we use the hypothesis of small ampli-

tude motion[ X(t) is taken equal to zero at dominant order
for O X/B<1]. The previous expression takes the following Sy

form in the frequency domain:

X B ,LLb ﬁvinc
p(w)= M o2 €bc IXe

(0,w). (3.2

The Born approximation is valid for weak interaction,
i.e., when the scattered wave is a small correction to the
incident wave. That this is a realistic assumption is demon-
strated by recent experiments of acoustic waves interacti
where it can be seen that the inciden

with dislocationg®—4°

Then, the scattered and total cross sections are defined, with
o= —3R([ dS25v*) and o'=c?+ ¢°. In the scalar case,
reduces tou(du/dx)v*. Normalizing the fluxes with
the energy fluxeo= 0?28 of the incident plane wave
across a unit surface leads to

~S

ag
_ 2

‘5_’[:23( A lzfllﬁf(o)eiﬂ'm),

(3.9

(3.6

"Aheres= olog. The first relation gives the scattering cross-

sectiono® and we obtain

plane wave is only slightly distorted when crossing a dislo-

cation.
Finally, Egs.(3.1) and (3.2 lead to

212 inc
ube dv a
o (00) 5 C(x).

v3(X,w)= (3.3

w

M2b4
8M20 B3
in agreement with Ref. 26. Note that the behavior of the

scattering cross section versus frequef)yirst observed in
Refs. 22—-24, is unusual since it indicates that the strength of

S:

(3.7

o

At the distancex far from the dislocation, the scattering the scatterer increases with wavelength, as opposed to what
function f(6) is defined as the angular dependence of thdappens with fixed inclusions. This is discussed further in

scattered wave S(x,t) = f(8) (€' A/ \x)v™™(0,t) for an in-

cident plane wave "(x,t) of frequency(}, propagating, say

along the x; axis, and of unit amplitudev™™(x,t)

Sec. V. The second relation is known as the optical theorem.

=g ®ta/B=D with g=(Oxq,X). Using the asymptotic be- IV. THE IN-PLANE CASE: SCATTERING OF AN

havior of the Green functios®(x, ) = (i/4u)HD (wx/ B)

=(il4p) (2Bl mw)e” ™4 (e XA \/X), we obtain from Eq.
(3.3

)

1 /2B . wx,eP
_ —e imld__""+ ~
du N T Bx x|’

from which it is easy to obtain

- u? (i
vs(x,t)=f dwe'“’tﬂ(I )

f(a)——'u—bzicos& (3.9
2M 27083 . '
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ELASTIC WAVE BY AN EDGE DISLOCATION

We consider in the following the two-dimensional prob-
lem of the scattering of an elastic wave by an edge disloca-
tion interacting with incident in-plane compressional and
shear wavesFig. 4). In this case, no interaction with anti-
plane wave occurs. The mechanism for such scattering is the
same as in the anti-plane case: The dislocation oscillates un-
der the action of the incident wave, producing the emission
of scattered waves. The differences come from the vectorial
nature of the considered waves: Due to mode conversions, an
incident compressional wave produces both compressional
and shear scattered waves and the same occurs for an inci-
dent shear wave. Thus, in a general case, four scattering
functions have to be calculated.

Maurel et al.: Scattering by a dislocation



A. Derivation of the scattering functions

The in-plane case corresponds to the interaction of an

edge dislocation, for which,=0, with the in-plane waves,
propagating at velocitiea and 8. We restricted ourselves to

the case of gliding edge dislocations, for which the line dis-

location moves only along its Burgers vector. Dislocation
climb is not considered in this paper as it involves diffusive
mass transport and cannot be treated within a purely elast
framework.

The velocity of the wave scattered by a gliding edge
along thex, axis can be expressed using EB.4), with b
= b5i1 andXi :X5i1!

s . J 0 J 0
Um(X,0)=—buX(w) _&Xz Gin(X,w)+ _07X1 Gom(X,m) |,
(4.1

The motion X(t) =(X(t),0,0) of a gliding edge along
the x, axis submitted to the wave displacement fields
given by Ref. 27, using Eq(2.5 with by=0 and b, [O0X
=0. In this case, the Lagrangian density reduces t
L=(ub?47B?)(1+ vy 4 In (8€)(X32—2B%(1—y ?)I(1
+ v~ %) and we get

MX(t)=315b, (4.2

where M= (ub?/47B%)(1+ vy ¥)In(de) is the effective

1

Vx

x(

faa( a)ei(QX/a) faﬂ( 0ei(QX/a)
fBa( a)ei(QX/B) fﬁﬁ( H)Gi(QX/’B)

¢"™(0,t)
wInC( 0,t)

e3(X,1)
P (X, 1)

4.9

where the scattering functiorfs,,, with a,b=«,8 denote

the a wave resulting from an incideriit wave and anglé is
the angle betweer and the direction of propagation of the
incident wave(Fig. 4).

To derive the scattering functions, the matrix in &8
has to be found. To do this, we use the following relations:

o3(X, ) s vi(x,w)

ws(x,w))_N (v§<x,w>>' “.9
i) | e [UTX )

(Ug(x,w)>_N (X’w)(vg]C(X,w)>’ (4.10
vrAx )| mc(@fm(x,w)

(U?C(X,Q)))_N wlnC(X,w) ) (411)

0
where Eqgs(4.9) and(4.11) are simply the relations between

velocity and potentials deduced from EHg.6), with

mass per unit length of edge dislocation. As for the case of

the screw dislocation, we use the Born approximation to ex
pressX(w) as a function of the incident potentidfer weak
scattering. At dominant order, the small parameter being
OXla,B, we get

: bu (dvihe e
X(w)z—sz(a—xz(O,wHa—xl(O,w)), (4.3
so we have
b2u? [ gv'° pine
S — [
Um(Xaw)_Km(wa) sz (?Xz (va)+ axl (0,(1)) )
(4.4
with
K _ G? + J GY 4
m(Xvw)_ (9X2 1m(Xiw) (7Xl 2m(xaw)' ( 5)

It now becomes convenient to introduce longitudigl
and shear) velocity potentials:

v=V o+ VX (4.9

with =(0,04). The incident wave, propagating in a direc-
tion 6y with thex, axis (Fig. 4), is described by its potentials
(pinc(X t)=A ei(()/a)(xl €0Sfp—Xo sin 0O)efi(2t

(4.7

l,binc(X,t) — Aﬁei(ﬂlﬁ)(xl C0Sfy— Xy Sin 0O)e7iQt_

Far from the dislocation, the scattered potentials are defined

by
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1 [acod0—0p)  asin(0—0p)
stﬁ(ﬁsin(e—eo) —,8C05(9—00)) @12
- : cosby/a  —sinby/
chzm( —sinzola —00592/[;)' 413
Equation(4.10 is equivalent to Eq(4.4) with
NS, )
Kl(x,w)i Kl(x,w)i
Mzbz Xy ‘0 X4 =0
Mo? Kz(x,w)&ixzx_o Kz(x,w)aixlx_o
(4.19

whereK, is defined in Eq(4.5. In the next step, we use
now that the differential operators

P
Ix;

x=0

in the product of matricesl®""(x,w)N™ act on the poten-
tials ¢"(x,w) and y""°(x,w). It is sufficient to use

. iQ _ .
S @6 0) o= (00S00; = 5in 6) " (0,0),

(4.15

J inc _iQ . ; inc
a_xi'/’ (wa)|x=o—F(C0500=_Smeo)w (0,0)

to write the set of Eqs(4.10 and(4.11) as
( <P"‘°(0,w))

l/linc( O,(,U)
and we find
Maurel et al.: Scattering by a dislocation

U?(X,w)
v3(X,®)

)z MS""C(x,w)( (4.1
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®) £,

180

370

370

FIG. 5. Scattering function v# for an angle between the Burgers vector
(along the horizontal axisand the incident wave directioti,= #/5 (the
direction of the incident wave is indicated in plain ljne

Ms,inC(X,w)
K K
2,202 l(Lz'w)sin 26, l(%'w)cos 20,
_HM a
M w? Kz(xz,w) . ) Kz(ﬁxz,w) 05 2,
(64
(4.17
Finally, with ¢"(0,w), (0, w)x8(w—), we have
‘PS(X't) S\ S,inc (Pinc(o’t)
o | =M o o | (418

Far from the dislocation, the asymptotic valueskaf,
are calculatedsee the Appendjxand the scattering func-
tions are found by identification between Ed4.8 and

(4.18,

sz ei w4

faa( 6): m /—2W0a3

2 el 4

fa(0)= roo =
P 2M \27Qad

iml4

2
(Z) Sin 260, Sin(26—26,),

€0S 204Sin(26—286y),

El

C0S 204c08260—26,),

(4.19

ub? e .
Sin 260y cog26—26,),

m \/271'9,83
fﬁﬁ(a)_ - m /2’7TQB3

fﬁa(a): -

ei w4

whose shapes are given in Fig. 5. From Fig. 5 and related
formulas(4.19, important features of the elastic wave scat-

tering can be seeri) no interaction occurs between the in-

cident wave and the dislocation in the case of an incident

the direction of the Burgers vectof€ 6y) and in the direc-
tion orthogonal to the Burgers vector while the shear wave
reaches its maximum in these directions. Similarly, the shear
scattered wave vanishes in directions with angk with the
Burgers vector(directions where the longitudinal wave
reaches its maximum

However, in a general case, there is no particular behav-
ior of the cross-coupled scattered waves in the incident di-
rection, contrary to the case of scattering by an inhomogene-
ity studied in Ref. 41, where the cross-coupled scattered
waves remain always apart from the incident direction. An
important consequence is that there is no simple argument to
neglect mode conversion in a pure forward scattering prob-
lem.

B. The optical theorem with polarized waves

The cross sections are defined as in the scalar case.
Here, the tern®v* dS reduces to

|

It is easy to find that® ando*, normalized with the energy
flux O'OIpQZ/Z(Ai/a-i-A%/B) of the incident plane wave
across a unit surface, verify

y

—Q U
ax ¢

)
vF+ B2

Ju
2
X
d0p< a—

iﬂ'sz 1 |faa(6)Aa+faB(0)AB|2
do AL A a
_+_
a B
f o)A+ T z5(0)A42
MU U] w20
B
~t_ 1 2~( 2’7Ta/f 0 Ai —iml4
—m I Vg feal0)—7€
PR
278 AZ
+23( =5~ fﬁﬁ(O)FBe 'W/“)
f,50) fg(0)\ [27m .
+23| AAg £ )-l- gl )) —We"”"‘”.
Va g VO
(4.2
The scattering cross-section® is deduced from Eg.
(4.20,
— 1 sz 2 1 L 34
TTA Az \om) 20\t e
B
«| sin 26422 + cos 29,2 2 (4.22
sin 20— +c0s 20— | . .
0a2 0,32

longitudinal « wave propagating in a direction parallel or This expression is in agreement with Ref. 26 where the cal-

perpendicular to the Burgers vectofy& 0,7/2); similarly

culation was performed in the particular cagdg=0, 6,

no interaction occurs in the case of an incident stfealave = /2, with a shear wave incident along the Burgers vector.
propagating in directions with angle/4 with the Burgers Note that the scattered and total cross sections cannot be split
vector.(ii) The scattered longitudinal wave is always zero inin longitudinal and shear wave portions, because of the mode
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conversion. Such coupling has already been observed in tH&# /). Since long means large compared with the core size
case of scattering of ultrasound by flaws in elastic matéfials b, usual situations are always in the rangeb. Neverthe-

or in the case of the scattering of sound by an elastidess, if interest is in that description, care has to be taken
inclusion?® As in the scalar case, it is found that the scatter-when considering the lattice as a continuum and a better
ing strength increases with wavelengttee Sec. ¥ The  description has to be sought with atomistic modeling, as
second relatiori4.21) corresponds to the optical theorem for done for instance numerically in Refs. 46 and 47.

coupled vector waves.
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the dislocation core, which is negligible at wavelength largeNo. 11980002.
compared with core size, the incident wave forces the dislo-
cation to move. This motion involves not only the material
close by the dislocation core, but also material at a distancAPPENDIX: ASYMPTOTIC BEHAVIOR OF THE GREEN
from it comparable to the range of the dislocation deformaFUNCTIONS FOR THE TWO-DIMENSIONAL
tion field. It is this mechanism that is investigated here. ASNAVIER EQUATION

the dislocation moves with an amplitude proportional to the The asymptotic behavior of the Green functions

frequency of the incident wave, it is found that the scatteringGo(X w) for x— can be calculated starting fro8°(k, w).
strength increases with the wavelengthe scattering cross With, '
section is proportional t6) ~1).

The limit Q)—0, in which the scattering cross section 92 0 52 0
diverges, is outside the framework of the present study. This p—ZGim(x—x’,t—t’)—cijmax_—anGm(x—x’,t—t’)
is mainly because two-dimensional analysis assumes that the .
typical length in the third directiorthere the length of the =8(x—=X")8(t—t") Sim »
dislocation ling is large compared to the typical in-plane
lengths, which fall off for infinite wavelength. In our calcu-
lations, the wavelength thus has an explicit lower liménd 1 1
an implicit upper limit that three-dimensional analysis would GOk, w)= T T2 122 2
make appear. pa” v (k" =kg) (k*=kp)

This mechanism, although unusual, has been previously (kz— Kt ("= 1k — (¥~ Dkik,

we obtain

observed for an acoustic wave incident on a fluid voffex; .
i i i —(y?—1)kik,  K*—K5+(y2—1)k]

solving Navier—Stokes makes appear a motion of the vortex 172 B 1

core due to the incident wave, producing scattering of the (A1)

acoustic wave. It is now sufficient to take the asymptotic form for large

The vector case of coupled longitudinal and shear wave : . .
) : I dominant terms in 4/x) of the k-Fourier transform of
has been investigated here and it is, to the best of our knowl= . .

(k,w). After some calculations, we find

edge, the first time that the complete calculation is reported.
In the recent years, experimental wotkghave shown 0 1 2 .

pictures of the wave scattered by an individual dislocation in ~ GC1a(%.@)= 77\ o

LiNbO5 thanks to x-ray imaging. Comparison with these ex-

perimental results would necessitate extracting from the im- cog g e'Xa  gir? g eleX/p

ages quantitative information which is still not available. X PECIENS + 532 Jx

Also, a natural extension of the present study would be

) . (A2

to describe the modification of the wave propagation in the 1 2
presence of multiple dislocatioi3A recent experiment sug- GoAX, )= a \7a 4
gests that ultrasounds may be used to determine changes in
the attenuation and the acoustic velocity due to sir? 9 ¥« cog g e “XF
dislocations” Another possible experiment in this case ( 7 +— N ) . (A3)
would be to measure the modification of the resonant fre- @ X B X
guencies of a sample of material due to the presence of such 1 2
scatterers. Work is in progress in that direction. GlAX,w)= PR W—e'”MSineCOS@
Finally, one can intend to describe the scattering by the P
dislocation core, i.e., due to the local microstructure near the 1 eoxla 1 gloxig
dislocation line. As previously said, such scattering has a (a_3’2 N ,BT’Z X ) (A4)

vanishing strength at long wavelengttier instance, a dis-
cussion on this mechanism can be found in Ref. 22 where the The asymptotic behaviors ¢f; andK, defined in Eq.
author estimates the scattering cross section of ordg@.5 are thus deduced

J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004 Maurel et al.: Scattering by a dislocation 2779



J 0 J 0
Kl:é’_)(zGll(X,w) + (9_621()(1“’)

X1

i . X eiwx/a
=—1\/—¢ Sin 20 cosf ————
dp NV 7w ®2\x
eiwx/,B
—cos 29siné

35/2\/; !

e MY,
(9X2 12()(,(1)) &Xl 22()(,(1))

(A5)

) i wX/ a
= i714 sin 26 sin @
o~ — —e —_—
dp NV o a®2\x
eiwx/ﬁ
+cos 26 cos6

ﬂ5/2\/; !
where we have usedfdx;)(x; /x) for largex.
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