
Scattering of an elastic wave by a single dislocation
Agnès Maurela)

Laboratoire Ondes et Acoustique, UMR CNRS 7587, Ecole Supe´rieure de Physique et de Chimie
Industrielles, 10 rue Vauquelin, 75005 Paris, France

Jean-François Mercier
Laboratoire de Simulation et de Mode´lisation des Phe´nomènes de Propagation, URA 853, Ecole Nationale
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The scattering amplitude for the scattering of anti-plane shear waves by screw dislocations, and of
in-plane shear and acoustic waves by edge dislocations are computed within the framework of
elasticity theory. The former case reproduces well-known results obtained on the basis of an
electromagnetic analogy. The latter case involves four scattering amplitudes in order to fully take
into account mode conversion, and an adequately generalized optical theorem for vector waves is
provided. In contrast to what happens for scattering by obstacles, the scattering amplitude increases
with wavelength, and, in general, mode conversion in the forward direction does not vanish.
© 2004 Acoustical Society of America.@DOI: 10.1121/1.1687735#
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I. INTRODUCTION

The interaction of an elastic wave with inclusion-lik
defects has received quite a bit of attention, starting w
work in the 1950s concerning the scattering of acoust
waves by spherical obstacles that may be empty, fluid fil
or elastic, embedded in an elastic medium.1–3 Further works
consider the case of transverse incident wave both for t
dimensional cylindrical cavities4,5 and for three-dimensiona
spherical cavities6–8 as well as for more complicated inclu
sion shapes.9–12

In addition to inclusions and flaws, which are static o
stacles to elastic wave propagation in a solid, and wh
interaction provide the underpinning for nondestruct
testing,13–17 dislocations are also defects that interact w
acoustic waves. Edge dislocations were introduced as de
in a crystal by Orowan, Polanyi, and Taylor,18–20 and screw
dislocations were introduced by Burgers.21 Although they
play a central role in the understanding of plasticity, it is ve
difficult to quantitatively measure their properties, a stand
tool being electron microscopy. Would it be possible to d
velop acoustical diagnostic techniques to make quantita
dislocation measurements? A first step in that direct
would involve a full understanding of the interaction b
tween elastic waves and dislocations, about which surp
ingly little can be found in the literature.

Again in the 1950s, the interaction of elastic waves w
dislocations was studied by Nabarro,22 who noted that waves
would be scattered by a dislocation because the motion
duced by the incoming wave would generate the emissio
a scattered wave. Thus, a description of this mechanism

a!Electronic mail: agnes.maurel@espci.fr
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volves two steps: the motion of a dislocation in the prese
of an incident wave has to be known as well as a repres
tation for the elastic field generated by a moving dislocati
Eshelby23,24 and Nabarro22 used an electromagnetic analog
to tackle the case of a two-dimensional screw dislocati
which reduces to a scalar problem when the interaction
with an anti-plane shear wave. However, this analogy is
longer valid for edge dislocations when both in-plane sh
and compressional waves are involved, each one with
own propagation velocity. In 1963, Mura25 derived from the
Navier equations an integral representation for the ela
field generated by a dislocation loop in three dimensions
arbitrary motion, of which two-dimensional cases can be
tained as special cases. Kiusalaas26 considered the specia
case of an edge dislocation oscillating with an arbitrary
locity. Also, the expression of the total scattering cross s
tion of an elastic shear wave incident at right angles with
Burgers vector of the dislocation can be found in the conc
sion of this paper, suggesting that the authors have u
some equation of motion for the edge dislocation. Unfor
nately, no calculations are given, the authors indicating t
they are too lengthy to be reproduced.

The derivation from the Navier equation of the equati
of motion for a dislocation in the presence of an extern
time-dependent, stress field has been obtained by Lun27

This work, together with the integral representation
Mura,25 allows for a full description of the scattering of ela
tic waves by dislocations. This paper carries out this progr
for both screw and edge dislocations in two dimensions
the former case, the problem reduces to a scalar problem
the anti-plane~shear! wave. The results obtained are
agreement with those obtained in Ref. 22 using the elec
magnetic analogy. The latter case leads to a vector prob
2773773/8/$20.00 © 2004 Acoustical Society of America



n

it
ti

b
le
p
ve
ex
a
r
, i
on
st
t
s
n
du
ion
im
th

s
ne
pr
d
i
e
o
om
h
in
.
s
n

, t
o
o

de
a
he
th
fo

as
h

en
it
s

a
of
n

mo-
y-

en

e

ld

ith

is-

y-

-

e

ral

e, it
for the two in-plane~shear and compressional! waves. Thus,
accounting for mode conversions, four scattering functio
are determined.

In three dimensions, the interaction of sound waves w
dislocation segments has been described by the vibra
string model28–31 based on the formulation of Koehler32 in
which the dislocation is modeled as a scalar string driven
a scalar time dependent stress. This model is very simp
fact that allows for many applications, and it certainly ca
tures the essence of the physics of the elastic wa
dislocation interaction. It has been quite successful in
plaining a wealth of data in acoustics and therm
conductivity experiments.33 However, it does not conside
the many complexities of this interaction. For example
does not differentiate between edge and screw dislocati
or among the various polarizations available to an ela
wave. The present work presents a full vector treatmen
the elastic wave–dislocation interaction in two dimension

The paper is organized as follows. Section II prese
briefly the integral representation of the scattered wave
to the motion of the dislocation and the equation of mot
for a dislocation in the presence of an incident wave. S
plified expressions for the bidimensional problem and in
case of small amplitude and small velocity~well below the
speed of sound! motion of the dislocation are given. Section
III and IV treat, respectively, the anti-plane and in-pla
cases and the derivation of the scattering functions are
sented, as well as the resulting cross sections. It is foun
both cases that the scattering strength of a dislocation
creases when increasing the wavelength of the incid
wave. The explanation for this unusual behavior comes fr
the particular mechanism of the scattering which differs fr
the mechanism responsible for the scattering by static in
mogeneity such as inclusions and voids, where a vanish
scattering cross section is expected at long wavelengths
previously noted, the scattering by a dislocation is a con
quence of a dynamic interaction with the incident wave a
there is no reason to expect similar results here. Rather
scattering cross section is linked to the equation of motion
the dislocation in the presence of an incoming wave, a m
tion whose amplitude does increase with the wavelength
the dynamical models of Refs. 24 and 27. A complete
scription of the interaction of an elastic wave with a disloc
tion would also consider the interaction with the core of t
dislocation. This would need an atomistic description of
dislocation core. However, this effect can be neglected
elastic wavelengths that are long compared to core size,
the case for externally generated waves even at the hig
ultrasonic frequencies available.

II. BASIC EQUATIONS

The mechanism for the scattering of an elastic incid
wave by a dislocation is quite simple: The incident wave h
the dislocation, causing it to oscillate in response. The en
ing oscillatory motion will generate outgoing~from the dis-
location position! elastic waves.

The goal of this section is to briefly derive the integr
representation of the scattered wave due to the motion
dislocation~2.4! and the equation of motion of a dislocatio
2774 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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~2.5!. Equation~2.4! comes from Ref. 25 written in two di-
mensions and under the hypothesis of small amplitude
tion. Equation~2.5! comes from Ref. 27 under the same h
pothesis.

In Secs. III and IV, these equations will be used wh
the dislocation motion is induced by an incident wave.

A. Scattered wave by a moving dislocation

We consider a dislocation loopX(s,t), wheres is the
coordinate along the loopL in the three-dimensional spac
with the current coordinatesx5(x1 ,x2 ,x3). b is the Burgers
vector, defined by a discontinuity of the displacement fie
u:rCdu[2b, formally written @u#5b, whereC is a closed
curve around the dislocation with a direct orientation w
respect tot5]X/]s ~Fig. 1!.

A homogeneous, linearly elastic solid containing a d
location loopL is described by displacementsu(x,t) away
from an equilibrium position, and the equations of elastod
namics are

r
]2

]t2
ui~x,t !2ci jkl

]2

]xj]xk
ul~x,t !50 ~2.1!

with boundary conditions

@ui #5bi , Fci jkl

]ul

]xk
nj G50 ~2.2!

across a surfaceS bounded by the dislocation loop. We con
sider an isotropic solid, where the elastic constants areci jkl

5ld i j dkl1m(d ikd j l 1d i l d jk) with ~l,m! the Lamécoeffi-
cients andr is the density. Using the Green function in th
three-dimensional free spaceG0(3D), defined by

r
]2

]t2
Gim

0~3D!~x2x8,t2t8!2ci jkl

]2

]xj]xk
Glm

0~3D!~x2x8,t2t8!

5d~x2x8!d~ t2t8!d im ,

the displacementum generated by a dislocation loopX(s,t)
undergoing arbitrary motion can be written as an integ
representation,

um~x,t !5ci jkl E E
S~ t8!

dt8 dS blnk

]

]xj
Gim

0~3D!~x2x8,t2t8!,

wheren denotes the normal vector toS(t), the surface of
discontinuity for the displacement@S(t) is time dependent
since the dislocation line that definesX(s,t) moves#. Since
this surface does not have a special physical significanc

FIG. 1. Definition of the Burgers vector.
Maurel et al.: Scattering by a dislocation
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should be possible to express physically meaningful qua
ties in terms of a source that is localized along the loopL.
This was done by Mura25 taking the time derivative of the
preceding expression. Using*DSdS nk5eknhrLds ẊnthDt,
where DS is an increment ofS(t) with respect to a time
incrementDt, eknh is the usual completely antisymmetr
tensor and an overdot means time derivative. Thus, the
locity vm[u̇m is found to satisfy the integral representatio

vm~x,t !5eknhci jkl E R
L
dt8 ds blẊn~s,t8!th~s!

]

]xj

3Gim
0~3D!~x2X~s,t8!,t2t8!. ~2.3!

In addition to the interest of deriving an integral represen
tion over a curve that has a physical meaning, note that
displacementu ~for which no such integral can be found! is
not particularly relevant contrary to its time and space
rivatives which appear in expressions of energy and mom
tum.

We consider now the bidimensional case of a dislocat
line along thex3 axis moving in the plane (x1 ,x2) ~Fig. 2!.
Equation~2.3! takes the form

vm~x,t !5eknci jkl E dt8 blẊn~ t8!
]

]xj
Gim

0 ~x2X~ t8!,t2t8!,

wheree i j [e i j 3 andG0[* dx3 G0(3D) is the Green function
in two dimensions. For small amplitude motion of a disloc
tion near the origin, we have at dominant orderG0(x
2X(t8),t2t8).G0(x,t2t8). Sincevm appears as a convo
lution product, we obtain in the frequency domain

vm~x,v!5eknci jkl bl Ẋn~v!
]

]xj
Gim

0 ~x,v!. ~2.4!

In order to complete the description of the problem, t
motion of the dislocation,Ẋ(t), needs to be known.

B. Equation of motion of a dislocation in two
dimensions

A method of finding an equation of motion for a dislo
cation loop can be found in Ref. 27. It is based on the
servation that the equations of dynamic elasticity follo
from a variational principle, and assumes low accelerati
so that the backreaction of the radiation on the disloca
dynamics can be neglected. In two dimensions and unde
hypothesis of subsonic bidimensional motionẊ!a, b,
where a5A(l12m)/r and b5Am/r are the shear and
compressional velocities, it takes the form:

FIG. 2. Configuration of the two-dimensional~2D! problem.
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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]t S ]L
]Ẋa

D 5eabbiS ib , ~2.5!

whereS ib5cibkl(]/]xl)uk is the stress tensor@in Eq. ~2.5!,
S ib is evaluated at the dislocation position# and L is the
Lagrangian density,

L52
m

4p
lnS d

e D H bi
2S 12

Ẋ2

2b2D
1b'

2 F2~12g22!2
Ẋ2

2b2
~11g24!G

1
~b'∧Ẋ!2

b2
~12g24!J ,

with g5a/b andd, e are the long- and short-distance cut-o
lengths, respectively.bi and b' are the components of th
Burgers vector parallel and perpendicular to the dislocat
line. Equation~2.5! represents typically an equation for
string endowed with mass forced by the usual Peac
Koehler force.34 In a more general case, say for oblique wa
incidence, there would be additional terms arising from
line tension associated with the dislocation line curvature
more realistic case would also consider the dislocation’s
cosity. Here we neglect this effect for simplicity. Note, how
ever, that even in the absence of an intrinsic dissipation b
single dislocation, the multiple scattering by many disloc
tions will damp an acoustic wave.35

In Secs. III and IV, the responseẊ(t) of screw (b'

50), and edge (bi50), dislocations to an external elast
wave is derived from Eq.~2.5!.

III. THE ANTI-PLANE CASE: SCATTERING BY A
SCREW DISLOCATION

Here we consider the two-dimensional problem of t
scattering of an elastic wave by a screw dislocation,
which b'50, interacting with an incident anti-plane she
wave ~no interaction with in-plane waves occurs!. This is a
scalar problem, which is easy to deal with.

A. Derivation of the scattering function

A screw dislocation corresponds to a Burgers vector p
allel to the dislocation linebi5bd i3 ~Fig. 3!. In the presence
of an incident wavevinc of frequencyV, Eq. ~2.4! concerns
the wave scattered by the dislocationvs5v2vinc and simpli-
fies in

FIG. 3. Shear wave propagating alongx1 ~velocity v inc) interacting with a
2D screw dislocation.
2775Maurel et al.: Scattering by a dislocation
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vs~x,v!5mbeabẊb~v!
]

]xa
G0~x,v!, ~3.1!

wherev denotesv3 and G0[G33
0 is the scalar Green func

tion for the shear wave. SinceG31
0 5G32

0 50, the anti-plane
case corresponds to the scalar case of the interaction o
anti-plane shear wave with a screw dislocation. As pre
ously said, the integral representation has to be compl
with the law for the dislocation motionẊ~v! to be self-
consistent. In the case of a screw dislocation, the Lagran
density reduces toL5(mb2/4pb2)ln(d/e)(Ẋ2/22b2). Equa-
tion of motion ~2.5! takes the form

MẌb~ t !52mbebc

]u

]xc
~X~ t !,t !,

with M5(mb2/4pb2)ln(d/e) the usual effective mass pe
unit length of dislocation.36,37For a weak scattering strength
we use the Born approximation (u5uinc in the term on the
right-hand side! and we use the hypothesis of small amp
tude motion@X(t) is taken equal to zero at dominant ord
for VX/b!1]. The previous expression takes the followin
form in the frequency domain:

Ẋb~v!52
mb

Mv2
ebc

]v inc

]xc
~0,v!. ~3.2!

The Born approximation is valid for weak interactio
i.e., when the scattered wave is a small correction to
incident wave. That this is a realistic assumption is dem
strated by recent experiments of acoustic waves interac
with dislocations38–40 where it can be seen that the incide
plane wave is only slightly distorted when crossing a dis
cation.

Finally, Eqs.~3.1! and ~3.2! lead to

vs~x,v!5
m2b2

Mv2

]v inc

]xa
~0,v!

]

]xa
G0~x,v!. ~3.3!

At the distancex far from the dislocation, the scatterin
function f (u) is defined as the angular dependence of
scattered wavevs(x,t)5 f (u)(eiVx/b/Ax)v inc(0,t) for an in-
cident plane wavev inc(x,t) of frequencyV, propagating, say
along the x1 axis, and of unit amplitudev inc(x,t)
5eiV(x1 /b2t), with u5(Ox1 ,x̂). Using the asymptotic be
havior of the Green functionG0(x,v)5( i /4m)Ḣ0

(1)(vx/b)
.( i /4m)A(2b/pv)e2 ip/4(eivx/b/Ax), we obtain from Eq.
~3.3!

vs~x,t !5E dv e2 ivt
m2b2

Mv2 S iV

b
d~v2V! D

3S 2
1

4m
A2b

pv
e2 ip/4

vx1

bx

eivx/b

Ax
D ,

from which it is easy to obtain

f ~u!52
mb2

2M

eip/4

A2pVb3
cosu. ~3.4!
2776 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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B. Total cross section

The total cross section is classically defined start
from the time averaged total energy flux across a cylin
around the dislocationsa5 1

2R(* dSSv* ) and decomposing
S and v into a sum of the incident part and scattered pa
Then, the scattered and total cross sections are defined,
ss52 1

2R(* dSSsvs* ) ands t5sa1ss. In the scalar case
Sv* reduces tom(]u/]x)v* . Normalizing the fluxes with
the energy fluxs05mV2/2b of the incident plane wave
across a unit surface leads to

ds̃s

du
5u f ~u!u2, ~3.5!

s̃ t52ISA2pb

V
f ~0!e2 ip/4D , ~3.6!

wheres̃5s/s0 . The first relation gives the scattering cros
sections̃s and we obtain

s̃s5
m2b4

8M2Vb3
, ~3.7!

in agreement with Ref. 26. Note that the behavior of t
scattering cross section versus frequencyV, first observed in
Refs. 22–24, is unusual since it indicates that the strengt
the scatterer increases with wavelength, as opposed to
happens with fixed inclusions. This is discussed further
Sec. V. The second relation is known as the optical theor

IV. THE IN-PLANE CASE: SCATTERING OF AN
ELASTIC WAVE BY AN EDGE DISLOCATION

We consider in the following the two-dimensional pro
lem of the scattering of an elastic wave by an edge dislo
tion interacting with incident in-plane compressional a
shear waves~Fig. 4!. In this case, no interaction with ant
plane wave occurs. The mechanism for such scattering is
same as in the anti-plane case: The dislocation oscillates
der the action of the incident wave, producing the emiss
of scattered waves. The differences come from the vecto
nature of the considered waves: Due to mode conversions
incident compressional wave produces both compressi
and shear scattered waves and the same occurs for an
dent shear wave. Thus, in a general case, four scatte
functions have to be calculated.

FIG. 4. Acoustic wave~velocity potentialw inc) and in-plane shear-wave
~velocity potentialc inc) interacting with a 2D gliding edge dislocation.
Maurel et al.: Scattering by a dislocation
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A. Derivation of the scattering functions

The in-plane case corresponds to the interaction of
edge dislocation, for whichbi50, with the in-plane waves
propagating at velocitiesa andb. We restricted ourselves t
the case of gliding edge dislocations, for which the line d
location moves only along its Burgers vector. Dislocati
climb is not considered in this paper as it involves diffusi
mass transport and cannot be treated within a purely ela
framework.

The velocity of the wave scattered by a gliding ed
along thex1 axis can be expressed using Eq.~2.4!, with bi

5bd i1 and Ẋi5Ẋd i1 ,

vm
s ~x,v!52bmẊ~v!S ]

]x2
G1m

0 ~x,v!1
]

]x1
G2m

0 ~x,v! D ,

~4.1!

The motion Ẋ(t)5(Ẋ(t),0,0) of a gliding edge along
the x1 axis submitted to the wave displacement fieldu is
given by Ref. 27, using Eq.~2.5! with bi50 and b'∧Ẋ
50. In this case, the Lagrangian density reduces
L5(mb2/4pb2)(11g24)ln (d/e)(Ẋ2/222b2(12g22)/(1
1g24)) and we get

MẌ~ t !5S12b, ~4.2!

where M5(mb2/4pb2)(11g24)ln(d/e) is the effective
mass per unit length of edge dislocation. As for the case
the screw dislocation, we use the Born approximation to
pressẊ(v) as a function of the incident potentials~for weak
scattering!. At dominant order, the small parameter bei
VX/a,b, we get

Ẋ~v!52
bm

Mv2 S ]v1
inc

]x2
~0,v!1

]v2
inc

]x1
~0,v! D , ~4.3!

so we have

vm
s ~x,v!5Km~x,v!

b2m2

Mv2 S ]v1
inc

]x2
~0,v!1

]v2
inc

]x1
~0,v! D ,

~4.4!

with

Km~x,v!5
]

]x2
G1m

0 ~x,v!1
]

]x1
G2m

0 ~x,v!. ~4.5!

It now becomes convenient to introduce longitudinal~w!
and shear~c! velocity potentials:

v5“w1“Ãc ~4.6!

with c5~0,0,c!. The incident wave, propagating in a dire
tion u0 with thex1 axis~Fig. 4!, is described by its potential

w inc~x,t !5Aaei ~V/a!~x1 cosu02x2 sin u0!e2 iVt,
~4.7!

c inc~x,t !5Abei ~V/b!~x1 cosu02x2 sin u0!e2 iVt.

Far from the dislocation, the scattered potentials are defi
by
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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S ws~x,t !
cs~x,t ! D5

1

Ax
S f aa~u!ei ~Vx/a! f ab~uei ~Vx/a!

f ba~u!ei ~Vx/b! f bb~u!ei ~Vx/b!D
3S w inc~0,t !

c inc~0,t ! D , ~4.8!

where the scattering functionsf ab , with a,b5a,b denote
the a wave resulting from an incidentb wave and angleu is
the angle betweenx and the direction of propagation of th
incident wave~Fig. 4!.

To derive the scattering functions, the matrix in Eq.~4.8!
has to be found. To do this, we use the following relation

S ws~x,v!

cs~x,v! D5NsS v1
s~x,v!

v2
s~x,v! D , ~4.9!

S v1
s~x,v!

v2
s~x,v! D 5Ns, inc~x,v!S v1

inc~x,v!

v2
inc~x,v! D , ~4.10!

S v1
inc~x,v!

v2
inc~x,v! D 5NincS w inc~x,v!

c inc~x,v! D , ~4.11!

where Eqs.~4.9! and~4.11! are simply the relations betwee
velocity and potentials deduced from Eq.~4.6!, with

Ns5
1

iV S a cos~u2u0! a sin~u2u0!

b sin~u2u0! 2b cos~u2u0!
D ~4.12!

and

Ninc5 iVS cosu0 /a 2sinu0 /b

2sinu0 /a 2cosu0 /b D . ~4.13!

Equation~4.10! is equivalent to Eq.~4.4! with

Ns, inc~x,v!

5
m2b2

Mv2 S K1~x,v!
]

]x2
U

x50

K1~x,v!
]

]x1
U

x50

K2~x,v!
]

]x2
U

x50

K2~x,v!
]

]x1
U

x50

D ,

~4.14!

whereKm is defined in Eq.~4.5!. In the next step, we use
now that the differential operators

]

]xi
U

x50

in the product of matricesNs, inc(x,v)Ninc act on the poten-
tials w inc(x,v) andc inc(x,v). It is sufficient to use

]

]xi
w inc~x,v!ux505

iV

a
~cosu0 ;2sinu0!w inc~0,v!,

~4.15!
]

]xi
c inc~x,v!ux505

iV

b
~cosu0 ;2sinu0!c inc~0,v!

to write the set of Eqs.~4.10! and ~4.11! as

S v1
s~x,v!

v2
s~x,v! D 5Ms, inc~x,v!S w inc~0,v!

c inc~0,v! D ~4.16!

and we find
2777Maurel et al.: Scattering by a dislocation
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Ms, inc~x,v!

5
m2b2V2

Mv2 S K1~x,v!

a2
sin 2u0

K1~x,v!

b2
cos 2u0

K2~x,v!

a2
sin 2u0

K2~x,v!

b2
cos 2u0

D .

~4.17!

Finally, with w inc(0,v), c inc(0,v)}d(v2V), we have

S ws~x,t !
cs~x,t ! D5NsMs, inc~x,V!S w inc~0,t !

c inc~0,t ! D . ~4.18!

Far from the dislocation, the asymptotic values ofKm

are calculated~see the Appendix! and the scattering func
tions are found by identification between Eqs.~4.8! and
~4.18!,

f aa~u!5
mb2

2M

eip/4

A2pVa3 S b

a D 2

sin 2u0 sin~2u22u0!,

f ab~u!5
mb2

2M

eip/4

A2pVa3
cos 2u0 sin~2u22u0!,

~4.19!

f ba~u!52
mb2

2M

eip/4

A2pVb3 S b

a D 2

sin 2u0 cos~2u22u0!,

f bb~u!52
mb2

2M

eip/4

A2pVb3
cos 2u0 cos~2u22u0!,

whose shapes are given in Fig. 5. From Fig. 5 and rela
formulas~4.19!, important features of the elastic wave sc
tering can be seen:~i! no interaction occurs between the i
cident wave and the dislocation in the case of an incid
longitudinal a wave propagating in a direction parallel o
perpendicular to the Burgers vector (u050,p/2); similarly
no interaction occurs in the case of an incident shearb wave
propagating in directions with anglep/4 with the Burgers
vector.~ii ! The scattered longitudinal wave is always zero

FIG. 5. Scattering function vsu for an angle between the Burgers vect
~along the horizontal axis! and the incident wave directionu05p/5 ~the
direction of the incident wave is indicated in plain line!.
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d
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t

the direction of the Burgers vector (u5u0) and in the direc-
tion orthogonal to the Burgers vector while the shear wa
reaches its maximum in these directions. Similarly, the sh
scattered wave vanishes in directions with anglep/4 with the
Burgers vector ~directions where the longitudinal wav
reaches its maximum!.

However, in a general case, there is no particular beh
ior of the cross-coupled scattered waves in the incident
rection, contrary to the case of scattering by an inhomoge
ity studied in Ref. 41, where the cross-coupled scatte
waves remain always apart from the incident direction.
important consequence is that there is no simple argume
neglect mode conversion in a pure forward scattering pr
lem.

B. The optical theorem with polarized waves

The cross sections are defined as in the scalar c
Here, the termSv* dS reduces to

xdurS a2
]ur

]x
v r* 1b2

]uu

]x
vu* D .

It is easy to find thats̃s ands̃ t, normalized with the energy
flux s05rV2/2(Aa

2/a1Ab
2/b) of the incident plane wave

across a unit surface, verify

ds̃s

du
5

1

Aa
2

a
1

Ab
2

b

S u f aa~u!Aa1 f ab~u!Abu2

a

1
u f ba~u!Aa1 f bb~u!Abu2

b D , ~4.20!

s̃ t5
1

Aa
2

a
1

Ab
2

b

H 2ISA2pa

V
f aa~0!

Aa
2

a
e2 ip/4D

12ISA2pb

V
f bb~0!

Ab
2

b
e2 ip/4D

12IFAaAbS f ab~0!

Aa
1

f ba~0!

Ab
DA2p

V
e2 ip/4G J .

~4.21!

The scattering cross-sections̃s is deduced from Eq.
~4.20!,

s̃s5
1

Aa
2

a
1

Ab
2

b

S mb2

2M D 2 1

2V S 11
b4

a4D
3S sin 2u0

Aa

a2
1cos 2u0

Ab

b2 D 2

. ~4.22!

This expression is in agreement with Ref. 26 where the c
culation was performed in the particular caseAa50, u0

5p/2, with a shear wave incident along the Burgers vec
Note that the scattered and total cross sections cannot be
in longitudinal and shear wave portions, because of the m
Maurel et al.: Scattering by a dislocation
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conversion. Such coupling has already been observed in
case of scattering of ultrasound by flaws in elastic materia42

or in the case of the scattering of sound by an ela
inclusion.43 As in the scalar case, it is found that the scatt
ing strength increases with wavelength~see Sec. V!. The
second relation~4.21! corresponds to the optical theorem f
coupled vector waves.

V. CONCLUDING REMARKS

The scattering by a dislocation investigated in this pa
is related to a particular interaction that an elastic wave
periences with a dislocation. In addition to the scattering
the dislocation core, which is negligible at wavelength la
compared with core size, the incident wave forces the di
cation to move. This motion involves not only the mater
close by the dislocation core, but also material at a dista
from it comparable to the range of the dislocation deform
tion field. It is this mechanism that is investigated here.
the dislocation moves with an amplitude proportional to
frequency of the incident wave, it is found that the scatter
strength increases with the wavelength~the scattering cross
section is proportional toV21).

The limit V→0, in which the scattering cross sectio
diverges, is outside the framework of the present study. T
is mainly because two-dimensional analysis assumes tha
typical length in the third direction~here the length of the
dislocation line! is large compared to the typical in-plan
lengths, which fall off for infinite wavelength. In our calcu
lations, the wavelength thus has an explicit lower limitb and
an implicit upper limit that three-dimensional analysis wou
make appear.

This mechanism, although unusual, has been previo
observed for an acoustic wave incident on a fluid vortex44

solving Navier–Stokes makes appear a motion of the vo
core due to the incident wave, producing scattering of
acoustic wave.

The vector case of coupled longitudinal and shear wa
has been investigated here and it is, to the best of our kno
edge, the first time that the complete calculation is repor

In the recent years, experimental works38–40have shown
pictures of the wave scattered by an individual dislocation
LiNbO3 thanks to x-ray imaging. Comparison with these e
perimental results would necessitate extracting from the
ages quantitative information which is still not available.

Also, a natural extension of the present study would
to describe the modification of the wave propagation in
presence of multiple dislocations.35 A recent experiment sug
gests that ultrasounds may be used to determine chang
the attenuation and the acoustic velocity due
dislocations.45 Another possible experiment in this ca
would be to measure the modification of the resonant
quencies of a sample of material due to the presence of
scatterers. Work is in progress in that direction.

Finally, one can intend to describe the scattering by
dislocation core, i.e., due to the local microstructure near
dislocation line. As previously said, such scattering ha
vanishing strength at long wavelengths~for instance, a dis-
cussion on this mechanism can be found in Ref. 22 where
author estimates the scattering cross section of o
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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b2V/b). Since long means large compared with the core s
b, usual situations are always in the rangel@b. Neverthe-
less, if interest is in that description, care has to be ta
when considering the lattice as a continuum and a be
description has to be sought with atomistic modeling,
done for instance numerically in Refs. 46 and 47.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF THE GREEN
FUNCTIONS FOR THE TWO-DIMENSIONAL
NAVIER EQUATION

The asymptotic behavior of the Green functio
G0(x,v) for x→` can be calculated starting fromG0(k,v).
With

r
]2

]t2
Gim

0 ~x2x8,t2t8!2ci jkl

]2

]xj]xk
Glm

0 ~x2x8,t2t8!

5d~x2x8!d~ t2t8!d im ,

we obtain

G0~k,v!5
1

ra2

1

g2~k22ka
2 !~k22kb

2 !

3S k22kb
21~g221!k2

2 2~g221!k1k2

2~g221!k1k2 k22kb
21~g221!k1

2D .

~A1!

It is now sufficient to take the asymptotic form for largex
~dominant terms in 1/Ax) of the k-Fourier transform of
G0(k,v). After some calculations, we find

G11
0 ~x,v!.

1

4r
A 2

pv
eip/4

3S cos2 u

a3/2

eivx/a

Ax
1

sin2 u

b3/2

eivx/b

Ax
D , ~A2!

G22
0 ~x,v!.

1

4r
A 2

pv
eip/4

3S sin2 u

a3/2

eivx/a

Ax
1

cos2 u

b3/2

eivx/b

Ax
D , ~A3!

G12
0 ~x,v!.

1

4r
A 2

pv
eip/4 sinu cosu

3S 1

a3/2

eivx/a

Ax
2

1

b3/2

eivx/b

Ax
D . ~A4!

The asymptotic behaviors ofK1 and K2 defined in Eq.
~4.5! are thus deduced
2779Maurel et al.: Scattering by a dislocation
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]

]x2
G11

0 ~x,v!1
]

]x1
G21

0 ~x,v!

.
iv

4r
A 2

pv
eip/4S sin 2u cosu

eivx/a

a5/2Ax

2cos 2u sinu
eivx/b

b5/2Ax
D ,

~A5!

K25
]

]x2
G12

0 ~x,v!1
]

]x1
G22

0 ~x,v!

.
iv

4r
A 2

pv
eip/4S sin 2u sinu

eivx/a

a5/2Ax

1cos 2u cosu
eivx/b

b5/2Ax
D ,

where we have used (]/]xi)(xi /x) for largex.
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