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The problem of Lamb wave propagation in an axially multi-layered waveguide is
treated by a multi-modal approach. A general formalism is proposed that avoids the
numerical divergence due to evanescent modes and that is based on an impedance
matrix. To describe the fields, we choose a 4-vector composed of the displacements
and the horizontal stresses. Due to symmetry properties of the right- and left-going
modes, this 4-vector can be split into two 2-vectors described by only two sets of
modal components. Moreover, the modal 2-vectors have a biorthogonality relation
that allows us to express the fields continuity at the interface between two media
in a simple manner. Formally, this approach permits us to extend the multi-modal
formalism from fluidic to elastic waveguides. In this context, the impedance matrix
is defined as the linear operator that links the two sets of modal components. As
in the fluidic case, the impedance matrix has the advantage of avoiding numerical
divergence, and can be used to obtain the reflection and transmission matrices, as
well as the wave fields. The technique is validated in the case of two semi-infinite
elastic plates bounded along their lateral faces (succession of two media) and is also
applied to a thick bonding (succession of three media) and to a periodic waveguide
(succession of multiple media).

Keywords: elastic waveguide; impedance matrix; Lamb modes;
multi-modal method; layered structure; scattering

1. Introduction

A modal approach is generally well adapted to treat a problem of guided waves
because transverse modes naturally appear and it permits the reduction of the prob-
lem to an ordinary differential equation that governs the modal components, and that
results from the projection onto the modal basis. For instance, fluidic waveguides can
be easily treated in this manner, and the obtained modes take a very simple form
(Morse & Ingard 1952). For elastic waveguides, in the case of in-plane motion, the
transverse modes are the so-called Lamb modes, which are much more delicate to
use (Auld 1973, p. 198). Consequently, compared with fluidic waveguides, relatively
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2 V. Pagneux and A. Maurel

few studies in elastic waveguides have been performed using a multi-modal approach.
In particular, there is no general multi-modal method to treat axially multi-layered
waveguides (segmented along the length). Concerning two semi-infinite elastic plates
bounded along their lateral faces, Scandrett & Vasudevan (1991) succeeded in cal-
culating transmission coefficients using a multi-modal approach. Predoi & Rousseau
(2000) used the same kind of technique to solve the case of welded plates (soldered
joint). Galanenko (1998) proposed a coupled-mode theory for range-dependent elastic
waveguides. Very recently, Folguera & Harris (1999) solved the problem of an elastic
waveguide with slowly varying thickness, and applied their technique to the study of
coupled surface waves. We can also mention the works of Gregory & Gladwell (1983)
concerning the case of reflection from fixed or free edges.

Certainly, the main difficulty is the lack of a general formalism that would be
applicable to any layered waveguide, and could permit us to avoid the numerical
divergence due to the evanescent modes. One could try to neglect these evanes-
cent modes; however, they are necessary to obtain a consistent multi-modal method.
Moreover, these evanescent modes are physically important because they contribute
to the near field of any inhomogeneity in the waveguide.

This divergence difficulty also exists in fluidic case, but it can be circumvented by
introducing the impedance matrix Z , which is the linear operator linking together
pressure and velocity in the modal representation (Pagneux et al . 1996), and which is
the generalization of the classical scalar impedance to multi-modal propagation. This
impedance operator is the counterpart to the so-called Dirichlet-to-Neumann opera-
tor in applied mathematics, and allows us to settle the boundary condition imposed
by the physical radiation condition. Once a radiation condition is given at the outlet
of the waveguide, this impedance matrix can be calculated everywhere, either by
integrating a matricial Riccati equation in the case of continuously inhomogeneous
guide (Pagneux et al . 1996), or by directly using algebraic relations in the case of
a discontinuously inhomogeneous guide. When dealing with evanescent modes, the
matrix Z has the important advantage of being divergence free. It is then used to
obtain, without numerical divergence, either the fields (e.g. pressure and velocity) or
the reflection and transmission matrices of the waveguide. A heuristic explanation
that helps us to understand the non-divergence of the impedance matrix is to recall
that the impedance represents the ratio of the pressure to the velocity, and that this
ratio does not diverge when pressure and velocity diverge with the same logarithmic
decrement, which is the case for an evanescent mode.

In this paper, we introduce an equivalent of the impedance matrix for elastic
propagation in waveguides. First, assuming the completeness of Lamb modes, the four
fields, composed of the two components (u and v) of the displacements and the two
components (s and t) of the axial stress, are projected on these modes. In this context,
we assemble the four fields into two pairs of vectors X = (u, t)T and Y = (−s, v)T Author:

leading t

changed to
trailing T

(matrix
transpose) –
OK?

related to vectors a and b as X =
∑

n anXn and Y =
∑

n bnYn. This formalism
has two advantages. First, our vectorial problem now mimics the scalar problem of
fluidic waveguides, since the two unknown vectors X and Y are expressed in terms of
two component vectors a and b in the same manner as for the two scalars (pressure
and longitudinal velocity) in fluidic waveguide. The second advantage is that the
biorthogonal relation due to Fraser (1976) makes the set of vectors Xn and Yn to
form a biorthogonal basis; thus continuity relations involving the two components
of vector X (respectively, Y ) are easily projected on this basis and yield continuity
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Figure 1. Geometry of the Lamb wave problem for a succession of media.

relations for the components an (respectively, bn). The impedance matrix Z is defined
as the linear operator that links b to a by b = Za. By construction, Z is equal to
the identity matrix I when there are only right-going waves and equal to −I when
there are only left-going waves. This impedance matrix can be calculated everywhere
from the radiation condition at the outlet of the elastic waveguide, and it induces
no numerical divergence. Thereafter, the reflection and transmission coefficients, as
well as the entire field, can be determined.

The paper’s outline is as follow. In § 2, the Lamb mode problem is presented and
the modal decomposition is performed; this leads to the definition of vectors X,
Y ‘associated’ by the biorthogonality relation. The impedance matrix is introduced
in § 3 as the linear operator that links a and b; the evolution of Z in a single medium
and at a junction is presented (discussion of the divergence-free property of Z is
given in the appendix). The expressions of the transmission and reflection matrices
are derived in § 4 for a succession of media, i.e. for a axially layered waveguide. In § 5,
calculations are presented that allow us to obtain the displacement and stress fields
in the presence of a source. Then § 6 presents the derivation of the energy-flux ratio
of the reflected and transmitted waves. Finally, results are presented in § 7. First, the
method is briefly validated in the case (already studied by Scandrett & Vasudevan
(1991)) of two semi-infinite elastic plates bounded along their lateral faces. The cases
of a thick bonding and of a periodic medium are then studied.

2. Position of the problem

(a) Equations

The Lamb wave problem consists of looking for a solution of the elasticity equa-
tion in the waveguide defined by −h � y � h with free boundaries, and for which
displacements are in the (x, y)-plane (see figure 1). The monochromatic time depen-
dence, with pulsation ω, is e−iωτ and will be omitted in the following. The equation
of motion is

−ρω2w = div σ, (2.1)

where ρ is the density, w =t (u, v) is the vector of displacements and σ is the stress
tensor defined by

σ =
(

s t
t r

)
, (2.2)
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4 V. Pagneux and A. Maurel

with

s = λ∂yv + (λ + 2µ)∂xu, (2.3 a)
t = µ(∂yu + ∂xv), (2.3 b)
r = (λ + 2µ)∂yv + λ∂xu. (2.3 c)

where λ, µ are Lamé’s constants.
The faces y = ±h are free of traction, corresponding to boundary conditions

t(x,±h) = r(x,±h) = 0. (2.4)

We are interested in the propagation of a Lamb wave through a succession of media
(figure 1). The boundary condition at the junction x = x1 between two media cor-
responds to the stress and displacement continuities, i.e. u, v, s, t continuous at
x = x1.

(b) Modal decomposition

For a given homogeneous waveguide (independent of x), the Lamb mode can be
found by separating variables x and y in the form


u(x, y)
v(x, y)
s(x, y)
t(x, y)


 =




û(y)
v̂(y)
ŝ(y)
t̂(y)


 eikx. (2.5)

This leads to an eigenvalue problem for k whose solutions form a discrete spectrum
(Achenbach 1987; Auld 1973; Miklowitz 1978). The spectrum can be split in two
parts. The right-going waves correspond to eigenvalues with strictly positive imagi-
nary parts or positive group velocity for real eigenvalues. The left-going waves corre-
spond to eigenvalues with strictly negative imaginary parts or negative group velocity
for real eigenvalues. We choose to index by integer n the eigenvalues corresponding
to right-going waves, and we call them kn (Im(kn) > 0 or vg = (dkn/dω)−1 > 0
when kn is real). The eigenvalues kn are sorted in ascending order of their imagi-
nary part and descending order of their real part. As a consequence of the central
symmetry of the spectrum k → −k (see equation (A 1)), if kn is a right-going wave,
−kn is an eigenvalue and it corresponds to left-going waves (Im(kn) < 0 or negative
group velocity vg = (dkn/dω)−1 < 0 when kn is real). A method of obtaining the
kn values can be found in Pagneux & Maurel (2001). The so-called Lamb modes
are the associated eigenfunctions (Un(y), Vn(y), Sn(y), Tn(y))T, corresponding to kn

for a right-going wave, and (Ũn(y), Ṽn(y), S̃n(y), T̃n(y))T, corresponding to −kn for
a left-going wave. Note that eigenvalues and eigenfunctions implicitly depend on the
parameters of the medium λ, µ and ρ.

For an inhomogeneous waveguide whose parameters λ, µ and ρ depend on x, if
we assume the completeness of the eigenfunctions (Kirrmann 1995), the fields u, v,
s and t can be decomposed on the Lamb modes at each x,


u(x, y)
v(x, y)
s(x, y)
t(x, y)


 =

∑
n∈N

An(x)




Un(y)
Vn(y)
Sn(y)
Tn(y)


 +

∑
n∈N

Bn(x)




Ũn(y)
Ṽn(y)
S̃n(y)
T̃n(y)


 , (2.6)
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Lamb wave propagation in inhomogeneous waveguides 5

and for a locally homogeneous portion of the waveguide, the amplitude An(x) (respec-
tively, Bn(x)) behaves as exp(iknx) (respectively, exp(−iknx)).

The symmetry properties of the Lamb modes impose Ũn = −Un, Ṽn = Vn, S̃n = Sn

and T̃n = −Tn (see Appendix A for the example of symmetric modes). Defining the
coefficients an(x), bn(x) as

an(x) = An(x) − Bn(x), bn(x) = An(x) + Bn(x), (2.7)

we obtain 


u(x, y)
v(x, y)
s(x, y)
t(x, y)


 =

∑
n∈N




an(x)Un(y)
bn(x)Vn(y)
bn(x)Sn(y)
an(x)Tn(y)


 . (2.8)

Then the biorthogonality relation (cf. Fraser (1976); see also Murphy & Li (1994)
for a generalization)∫ h

−h

(−Un(y)Sm(y) + Tn(y)Vm(y)) dy = Jnδnm

allows us to write the fields as

X =
∑
n∈N

an(x)Xn(y), Y =
∑
n∈N

bn(x)Yn(y) and (Xm | Yn) = Jnδmn, (2.9)

with

X =
(

u(x, y)
t(x, y)

)
, Y =

(
−s(x, y)
v(x, y)

)
, Xn(y) =

(
Un(y)
Tn(y)

)
, Yn(y) =

(
−Sn(y)
Vn(y)

)
,

and the scalar product defined by

(X | Y ) =
∫ h

−h

(−us + tv) dy.

The analytical expression of Jn is given in Appendix B for symmetric modes. Equa-
tion (2.9) is important in our formalism, because the two series of components an

and bn can be isolated simply by taking the scalar product of X (respectively, Y )
with Yn (respectively, Xn), since (X | Yn) = Jnan and (Y | Xn) = Jnbn.

3. Impedance matrix

Owing to the formalism developed in the preceding section (equation (2.9)), the prob-
lem of the propagation of Lamb waves resembles the problem of scalar wave propa-
gation. This means that a transfer matrix can be obtained easily for a succession of
N media by multiplying successive transfer matrices of junction and single media.
Note that the way of expressing the fields in (2.9) associated with the biorthogonality
relation is crucial to easily treat the transfer matrix of a junction, which is obtained
by using the continuity of X and Y . Nevertheless, the transfer matrix method is
numerically unstable due to exponentially diverging terms associated with evanes-
cent modes. Therefore, one is led to the introduction of the impedance matrix that
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6 V. Pagneux and A. Maurel

circumvents this numerical instability (note that it could also be possible to use a
reflection matrix).

The impedance matrix Z (x) is defined as the linear operator that links together
vectors a(x) and b(x) at a given x position,

b(x) = Z (x)a(x). (3.1)

In this section, we show that Z (x) can be calculated in the domain formed by the
succession of the two media separated by a x = x1 junction and, by extension, to a
succession of N media.

(a) Propagation relation for the impedance matrix in a single medium

In a given medium (ρ, λ and µ constant), the impedance matrix Z (x′) can be
calculated by linking together Z (x′) and Z (x) (which is known). As A refers to a
right-going wave and B to a left-going wave, we have

An(x′) = An(x) exp[ikn(x′ − x)], Bn(x′) = Bn(x) exp[−ikn(x′ − x)], (3.2)

as was already noted in § 2 b. It follows that a(x′) and b(x′) can be deduced from
a(x) and b(x) using (2.7) and (3.2),(

a(x′)
b(x′)

)
=

(
C (x′ − x) iS(x′ − x)
iS(x′ − x) C (x′ − x)

) (
a(x)
b(x)

)
, (3.3)

where C (x′ −x) is the diagonal matrix with cos[kn(x′ −x)] elements and S(x′ −x) is
the diagonal matrix with sin[kn(x′−x)] elements. The transfer matrix that appears in Word added –

OK?equation (3.3) has the disadvantage of having exponentially diverging terms, since the
wavenumbers kn are complex for evanescent modes, and Im(kn) → ∞ when n → ∞.
Thus the transfer matrix is numerically unstable, in contrast to the impedance matrix
expression given below. The relation between Z (x′) and Z (x) is deduced from (3.3),

Z (x′) = −iH−1(x′ − x) + S−1(x′ − x)(Z (x) − iH−1(x′ − x))−1S−1(x′ − x), (3.4)

where S−1(x′−x) is the diagonal matrix with 1/ sin kn(x′−x) elements and H−1(x′−
x) is the diagonal matrix with 1/ tan[kn(x′ − x)] elements.

By construction, Z (x) does not diverge for evanescent modes. However, care has
to be taken such that Z (x′) is calculated starting from Z (x) with x′ < x. This point
and the derivation of (3.4) are discussed in Appendix C.

(b) Transfer relation for the impedance matrix at a junction

In the previous section, we have shown that Z (x) can be propagated in a given
medium. In order to propagate Z (x) in a succession of media, we now want to
propagate Z (x) from one medium to another through the x = x1 junction or, in
other words, link together the impedance matrix Z (x+

1 ) and Z (x−
1 ) (see figure 1).

The stress and displacement continuities at the junction x = x1 are written as∑
n∈N

an(x−
1 )X−

n (y) =
∑
n∈N

an(x+
1 )X+

n (y), (3.5 a)

∑
n∈N

bn(x−
1 )Y −

n (y) =
∑
n∈N

bn(x+
1 )Y +

n (y), (3.5 b)
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Lamb wave propagation in inhomogeneous waveguides 7

where superscript − (respectively, +) on the transverse modes Xn and Yn signifies
that these modes correspond to the medium at x = x−

1 (respectively, x = x+
1 ).

Taking the scalar product of (3.5 a) by Y +
m and of (3.5 b) by X−

m, and using the
biorthogonality relation, we obtain

b(x−
1 ) = Fb(x+

1 ), (3.6 a)

a(x+
1 ) = Ga(x−

1 ), (3.6 b)

with the matrices F and G defined by

Fmn = (J−
n )−1(X−

m | Y +
n ),

Gmn = (J+
n )−1(X−

n | Y +
m ).

}
(3.7)

The analytical expressions of F and G are given in Appendix D for symmetric modes.
Using (3.1) in (3.6), the relation between Z (x−

1 ) and Z (x+
1 ) is found,

Z (x−
1 ) = FZ (x+

1 )G . (3.8)

In this section, we have established the relations (3.4) and (3.8) that allow us to
calculate Z (x) in the whole space (formed of multiple media) independently of the
nature of the source. Consequently, the calculation for Z (x) can be performed by
starting from the radiation condition at the end of the waveguide, and by calculating
Z (x) towards the waveguide inlet. Note that, more generally, the impedance matrix
could be used in a finite-element method to ensure an exact radiation condition at
the extremities of the waveguide (Givoli 1992).

4. Reflection and transmission matrices

In order to solve scattering problems in the type of considered waveguides (figure 1),
we are led to introduce the reflection and transmission matrices in this section. We
define the reflection matrix R(x) as the linear operator that links the right- and the
left-going waves at a given x position,

B(x) = R(x)A(x). (4.1)

On the other hand, it is also possible to define the transmission matrix that relates
the right-going wave between x and x′,

A(x′) = T (x′, x)A(x). (4.2)

The issue of expressing R is quite straightforward when the impedance matrix is
already known, since the following relation is obtained from equations (2.7), (3.1)
and (4.1),

R(x) = [Z (x) − I ][Z (x) + I ]−1, (4.3)
where I is the identity matrix. The calculation of T is not always as straightforward,
and is given for the considered case in the next sections.

(a) Transmission matrix for a given medium

An expression for T (x′, x) between two positions x and x′ in the same medium
(ρ, λ and µ constant) is easily obtained from (3.3),

T (x′, x) = E (x′ − x), (4.4)

where E (x′ − x) is the diagonal matrix with exp[ikn(x′ − x)] on its diagonal. Note
that T (x′, x) does not diverge numerically for evanescent modes if x′ � x.
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8 V. Pagneux and A. Maurel

(b) Transmission matrices for two media and generalization

We still consider a junction at x = x1. Using (2.7) and (3.6 b), T (x+
1 , x−

1 ) is
obtained,

T (x+
1 , x−

1 ) = [I − R(x+
1 )]−1G [I − R(x−

1 )], (4.5)

where R is the reflection matrix and G is defined in equation (3.7). For a succession
of N media defined by N − 1 junctions x = xn (figure 1), an explicit expression
of (4.2) can be obtained using (4.4) and (4.5),

T (xN , x0) = E (xN − xN−1)T (x+
N−1, x

−
N−1) · · ·T (x+

1 , x−
1 )E (x1 − x0). (4.6)

xN is in the last medium at a distance LN from the last junction at x = xN−1.
x0 is in the first medium at a distance L0 from the first junction x = x1 (x0 refers
typically to the source location).

5. Determination of the solution in the presence of a source

Once Z , as well as R and T , have been calculated in the whole waveguide, it is possible
to take into account the presence of a source. In our formalism, there are two ways
to impose a source condition. The first source condition consists of sending a right-
going wave from infinity, and this is equivalent to knowing A(x+

0 ). The second source
condition corresponds to imposing a field value at a given x0; in order to benefit from
the orthogonality condition, this field value has to correspond to a mixed condition,
i.e. the knowledge of X or Y . In this case, X(x0) (respectively, Y (x0)) is known,
and thus we know A(x0).

We show here a typical procedure to calculate A(x), B(x) in medium (1) (for Where is
medium (1)
defined?
Likewise,
medium (2)

x0 < x < x1) and A(x+
1 ) in medium (2). Then this procedure is iterated to calculate

the field in a succession of media. It is critical here to take care to propagate evanes-
cent modes towards the direction where they decrease and not back-propagate in a
direction where, numerically, a small error would exponentially grow.

For x0 < x < x1, A(x) and B(x) can be expressed as a function of A(x+
0 ) and

B(x−
1 ), (

A(x)
B(x)

)
=

(
E (x − x0) 0

0 E (x1 − x)

) (
A(x+

0 )
B(x−

1 )

)
. (5.1)

Then, using (4.1) and (4.4), A(x) and B(x) can be expressed as a function of A(x+
0 )

only, (
A(x)
B(x)

)
=

(
E (x − x0) 0

0 E (x1 − x)R(x−
1 )E (x1 − x0)

) (
A(x+

0 )
A(x+

0 )

)
, (5.2)

with x0 < x < x1. The displacement and stress fields in medium (1) are then simply
calculated using their expressions in (2.6). A(x+

1 ) is obtained from A(x+
0 ) using (4.2)

and (4.5),
A(x+

1 ) = T (x+
1 , x−

1 )E (x1 − x0)A(x+
0 ). (5.3)

At this point, the stress and displacement fields are known (from A(x) and B(x)
and equation (2.6)) for x0 � x � x+

1 . The procedure has to be iterated in the same
manner until the waveguide outlet is reached.

Proc. R. Soc. Lond. A (2002)



Lamb wave propagation in inhomogeneous waveguides 9

6. Energy flux of reflected and transmitted waves

We start from the expression of the energy flux given in Appendix E (equation (E 7)),

Π = −1
4 iω(ATJmĀ − BTJmB̄ − BTJpĀ + ATJpB̄), (6.1)

where Jp and Jm are matrices defined in (E 8).
At the waveguide inlet, if the incident wave A(x+

0 ) does not contain evanescent
modes (for instance, by sending a right-going wave from infinity), the energy flux is
reduced to

Π(x+
0 ) = −1

4 iωAT(x+
0 )Jm(x+

0 )Ā(x+
0 ) − BT(x+

0 )Jm(x+
0 )B̄(x+

0 )

(see Appendix E).
At the waveguide outlet, there is no leftward wave (B(x−

N ) = 0) and the energy
flux Π(x−

N ) is reduced to

Π(x−
N ) = −1

4 iω(AT(x−
N )Jm(x−

N )Ā(x−
N )).

The energy flux conservation between the waveguide inlet and outlet leads to the
equality Π(x+

0 ) = Π(x−
N ), and thus∑

n

Jn(x+
0 )|An(x+

0 )|2 =
∑

n

Jn(x+
0 )|Bn(x+

0 )|2 +
∑

n

Jn(x−
N )|An(x−

N )|2, (6.2)

where the sum is performed on the propagating modes. Consequently, the fraction of
energy flux of each propagating mode numbered by n, for an incident wave containing
mode 0 only, is given by

F r
n =

Jn(x+
0 )|Bn(x+

0 )|2

J0(x+
0 )|A0(x+

0 )|2
in reflection,

F t
n =

Jn(x−
N )|An(x−

N )|2

J0(x+
0 )|A0(x+

0 )|2
in transmission.




(6.3)

Note that only propagating modes contribute to the energy flux at the extremities of
the scattering region because evanescent modes cannot transport energy to infinity.

7. Results

In this section, we apply the method developed in the paper in three situations. For
the sake of simplicity, only symmetric Lamb modes are considered, but a similar
procedure can be performed for antisymmetric modes.

(a) Validation

The method presented is validated in the case of a bimaterial plate studied in
Scandrett & Vasudevan (1991) for an aluminium/copper succession. The properties
of the materials are given by the density ρ, the velocity of the free longitudinal wave
cl = ((λ+2µ)/ρ)1/2 and the velocity of the free transverse wave ct = (µ/ρ)1/2. In the
following, these properties have been taken to be the same as in the paper by Scan-
drett & Vasudevan (1991): ρ = 2500 kg m−3, ct = 3100 m s−1 and cl = 6150 m s−1

Proc. R. Soc. Lond. A (2002)



10 V. Pagneux and A. Maurel
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Figure 2. Fractions of energy flux reflected (a) and transmitted (b) as a function of frequency,
for the three propagating modes, in the case of mode 0 incident from the left. The geometry
is a bimaterial plate of semi-thickness h = 1 cm, aluminium to copper (properties of copper
and aluminium are taken from Scandrett & Vasudevan (1991)): dotted line, mode 0; solid line,
mode 1; dashed line, mode 2.

for aluminium; and ρ = 3100 kg m−3, ct = 2150 m s−1 and cl = 4170 m s−1 for cop-
per. Figure 2 shows in this case the fractions of energy flux reflected and transmitted
for the three propagating modes (equation (6.3) with n = 0, 1, 2), with mode 0 inci-
dent from the left. The number of modes used to perform the calculations was 19.
The results are quantitively in agreement with the results of Scandrett & Vasudevan
(1991), except for a factor of ca. 2 on the frequency definition.

(b) Results for a thick bonding

We consider here a bimaterial plate corresponding to a thick bonding; it is a
succession medium (1)–medium (2)–medium (1). Medium (1) is made of aluminium
and medium (2) is made of copper. The source (mode 0 incident from the left) is
placed at x = x0 in medium (1). Between x1 > x0 and x2, the plate is made of
another medium (2); for x � x2, the plate is again made of material (1), and the
radiation condition at the right of the guide corresponds to no left-going waves only
(Z = I ). We have used equations (5.2) and (5.3) to calculate the whole displacement
fields between x0 and x3 in a joint of copper in an aluminium plate of h = 1 cm
semi-thickness; along the plate, x0 = 0, x1 = 2, x2 = 3 and x3 = 5 cm. Results are
shown in figure 3 for different values of N1 and N2, numbers of considered modes,
respectively, in aluminium (1) and in copper (2) at frequency f = 1 MHz. At this
frequency, there is one propagating mode in aluminium and three in copper. For
parts (a) and (b) of figure 3, the calculation has been performed while considering
only the propagating modes in both media (N1 = 1 and N2 = 3). For parts (c)
and (d), evanescent modes are included in the calculation (N1 = N2 = 5), and for
parts (e) and (f), N1 = N2 = 19 has been used. It can be noticed that the fields
obtained with a modest number of evanescent modes (N1 = N2 = 5) is already
satisfying. Thus the multi-modal technique may be used by taking into account a
reasonable number of evanescent modes.

Proc. R. Soc. Lond. A (2002)
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Figure 3. Displacement fields in a thick bonding of copper in a 1 cm semi-thickness plate of alu-
minium at frequency f = 0.1 MHz, with mode 0 incident from the left. The fields are calculated
between 0 and 5 cm and the joint takes place between 2 and 3 cm. N1 for aluminium and N2

for copper are the numbers of modes considered in the calculation. (a) u and (b) v correspond
to N1 = 1 and N2 = 3 (i.e. only propagating modes are considered). (c) u and (d) v correspond
to N1 = N2 = 5. (e) u and (f) v correspond to N1 = N2 = 19.

Figure 4 shows the transmission F t
n and reflection F r

n coefficients (from equa-
tion (6.3) with n = 0, 1, 2) varying as functions of the frequency in a range such
that mode 0 (n = 0), and then modes 1 and 2 (n = 1 and n = 2), become propa-
gating. The source is again mode 0 incident from the left. For very low frequencies,
the transmission coefficient tends to 1, which means that medium (2) is a small has?
flaw that cannot be detected by a Lamb wave with a too-large wavelength. It can
also be noticed that, for a frequency of ca. 0.1 MHz, the transmission coefficient of
mode 0 reaches the value of 1, indicating a resonance in medium (2). Finally, when
the frequency increases, multiple scattering effects produce more and more compli-
cated behaviour of the reflection and transmission coefficients, when compared with
the results of figure 2.

(c) Results for a periodic medium

We consider here a plate of 1 cm semi-thickness made of a succession of Np cells, Author: what
does
subscript p
denote?

each cell being composed of a slice of aluminium of length L and a slice of copper
of length L. Calculations have been performed with N1 modes in the aluminium
medium and N2 modes in the copper medium (N1 = N2 = 19). In all cases, mode 0
is incident from the left. Figure 5 shows the transmission coefficient of mode 0 as a

Proc. R. Soc. Lond. A (2002)



12 V. Pagneux and A. Maurel

0

1
(a)

0.1 0.20

1

f (MHz)

F 
t

(b)

F 
r

0.3

Figure 4. Fractions of energy flux reflected (a) and transmitted (b) for the three propagating
modes, in the case of mode 0 incident from the left. The geometry is a thick bonding alu-
minium/copper/aluminium, as in figure 3: dotted line, mode 0; solid line, mode 1; dashed line,
mode 2. Calculations are performed with N1 = N2 = 19, defined in figure 3.
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Figure 5. Transmitted energy flux ratio of the first propagating mode, in the case of mode 0 inci-
dent from the left, for a succession of Np = 20 aluminium/copper cells in a 1 cm semi-thickness
plate. The length of each medium is equal to L = 2 cm. Calculations are performed with
N1 = N2 = 19, defined in figure 3.

function of the frequency in a range where only mode 0 is propagating. The length of
each medium is equal to L = 2 cm, and the number of cells is Np = 20. Figure 6 shows
the transmission coefficient for L = 5 cm; in this latter case, part (a) corresponds to
Np = 20 and part (b) to Np = 50. As expected in a periodic medium, stop-bands of
zero transmission appear at frequencies whose values are roughly selected by a Bragg
diffraction law type keL = nπ, with ke = 1

2(ka + kc), where ka (respectively, kc) is

Proc. R. Soc. Lond. A (2002)
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Figure 6. Transmitted energy flux ratio of the first propagating mode, in the case of mode 0
incident from the left, for a succession of (a) Np = 20 and (b) Np = 50 aluminium/copper cells
in a 1 cm semi-thickness plate. Calculations are performed with the length of each medium equal
to L = 5 cm and N1 = N2 = 19, defined in figure 3.

the wavenumber of mode 0 in aluminium (respectively, copper). Besides, oscillations
in the pass-band are typical of the finite nature of the periodic medium. The oscil-
lation number is related to the poles of the transmission coefficient in the complex
plane. This number seems to be equal to Np − 1, as it should be for one-dimensional
propagation. As shown by Leng & Lent (1994), this property would be certainly lost
for more than one propagating mode.

8. Closing remarks

A simple formalism has been developed to tackle the problem of Lamb wave propa-
gation in axially layered plates. Owing to the introduction of the impedance matrix,
this formalism permits the treatment of any multi-layered waveguide, with no limit
on the number of modes that are taken into account. In the case where one is inter-
ested in the scattering properties of some part of waveguide, the computation of
the impedance matrix, and thereafter of the reflection and transmission matrices, is
sufficient and there is no need to compute the fields everywhere in the geometry.

The presented method can be easily extended to the study of other inhomogeneous
plate involving the continuity of both displacements and horizontal stress forces. This
is the case, for instance, of continuously axially layered waveguides, where the method
could be applied, either by using the same equation as in this paper, with more and
more thin slices of homogeneous waveguide, or by directly using a ordinary differential
equation obtained by projecting the elasticity equation owing to equation (2.9). Work
is under progress to apply this formalism to varying cross-section waveguides.

Proc. R. Soc. Lond. A (2002)
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Appendix A. Dispersion relation and Lamb modes

The dispersion relation for symmetric modes is of the form (Viktorov 1967)

(α2
n + k2

n)2

αn
sinh(αnh) cosh(βnh) − 4k2

nβn sinh(βnh) cosh(αnh) = 0, (A 1)

with
αn = (k2

n − k2
t )

1/2, βn = (k2
n − k2

l )
1/2

and

kt =
ω

ct
=

(
ρ

µ

)1/2

ω, kl =
ω

cl
=

(
ρ

λ + 2µ

)1/2

ω.

The displacement and the stress vectors of symmetric Lamb modes can be written
as a function of scalar potential φn and potential vector (0, 0, ψn), defined by

φn(x, y) = (k2
n + α2

n) cosh(βny) sinh(αnh),
ψn(x, y) = −2iknβn sinh(αny) sinh(βnh),

}
(A 2)

with

Un = iknφn + ∂yψn

= ikn(k2
n + α2

n) cosh(βny) sinh(αnh) − 2iknβnαn cosh(αny) sinh(βnh), (A 3)
Vn = ∂yφn − iknψn

= βn(k2
n + α2

n) sinh(βny) sinh(αnh) − 2βnk2
n sinh(αny) sinh(βnh), (A 4)

Sn = µ[−(k2
n + 2β2

n − α2
n)φn + 2ikn∂yψn]

= µ[(−2β2
n + α2

n − k2
n)(k2

n + α2
n) cosh(βny) sinh(αnh)

+ 4k2
nβnαn cosh(αny) sinh(βnh)], (A 5)

Tn = µ[2ikn∂yφn + (k2
n + α2

n)ψn]

= µ2iknβn(k2
n + α2

n)[− sinh(αny) sinh(βnh) + sinh(βny) sinh(αnh)]. (A 6)

Appendix B. Biorthogonality relation and expression of Jn

The biorthogonality condition (Fraser 1976) for an in-plane problem can be written

(Xn | Ym) =
∫ h

−h

(−UnSm + VmTn) dy = Jnδnm. (B 1)

Jn can be conveniently expressed using φn and ψn,

(Xn | Yn) = µ

∫ h

−h

[ikn(α2
n − k2

n)(φ2
n − ψ2

n) + 2(α2
n − β2

n)φnψn] dy

− µ[2ikn(φnφ′
n − ψnψ′

n) − (α2
n + 3k2

n)φnψn]h−h. (B 2)
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For symmetric modes, Jn is given by

Jn = µikn(k2
n − α2

n)

×
{

sinh2(αnh) sinh2(βnh)
[
(k2

n + α2
n)(k2

n + α2
n − 8β2

n)
βn tanh(βnh)

+
4β2

n(k2
n + 2α2

n)
αn tanh(αnh)

]

+ h[−4k2
nβ2

n sinh2(βnh) + (k2
n + α2

n)2 sinh2(αnh)]
}

.

(B 3)

Appendix C. Calculation of the impedance matrix
in a single medium

Starting from (3.3), it is straightforward to find

Z (x′) = [iS(x′ − x) + C (x′ − x)Z (x)][C (x′ − x) + iS(x′ − x)Z (x)]−1. (C 1)

Application of this equation to a real case causes a divergence resembling the diver-
gence of a stiff differential equation. This is because the elements of the matrices
C and S contain very large numbers for the evanescent modes, which cause expo-
nential divergence of the computation due to the finite numerical precision. Another
form (3.4) can be found in the following way:

Z (x′) = −i{iS−1(x′ − x) + C (x′ − x)[Z (x) − iH−1(x′ − x)]}
× [Z (x) − iH−1(x′ − x)]−1S−1(x′ − x)

= −iH−1(x′ − x) + S−1(x′ − x)[Z (x) − iH−1(x′ − x)]−1S−1(x′ − x). (C 2)

Some resonance can occur for discrete values of (x′ − x) when the denominators are
going to zero, but, in practice, it did not appear that a special numerical care has to
be taken to avoid it.

Another issue is now the sign of (x′ − x) when using this equation. If we denote
by M the matrix [Z (x) − iH−1(x′ − x)]−1, equation (C 2) implies that Extra ‘(’

removed –
OK?Zmn(x′) = −i[tan kn(x′ − x)]−1δmn + [sin km(x′ − x) sin kn(x′ − x)]−1Mmn.

In the right-hand side, and unless kn and km are real numbers, the first term tends
towards ±1 when (x′ − x) tends towards ∓∞ and the second term tends towards
zero. Thus we have

Z (x′)
(x′−x)→±∞−−−−−−−−→

(
Zp 0
0 ∓I

)
, (C 3)

where Zp refers to the impedance restricted to propagating modes, i.e. the modes
with real wavenumbers.

All this means that equation (C 2) must be used in the direction that has physical
sense. If we impose a radiation condition of anechoic termination towards the right-
hand side of x by imposing a numerical initial condition Z (x) = I , equation (C 2)
can be used towards the left-hand side of x where I is invariant, but equation (C 2)
cannot be used towards the right-hand side of x where I will not be invariant.
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Appendix D. Expression of matrices F and G

F and G are given by

Gmn = (J+
n )−1(X−

n | Y +
m ), (D 1)

Fmn = (J−
n )−1(X−

m | Y +
n ). (D 2)

Calculating (X−
n | Y +

m ) allows us to calculate both F and G . For the sake of clarity,
in the following expression, index m refers to quantities calculated using k+

m and n
to quantities calculated using k−

n . With Lµ = µ+/µ−, we have

1
µ+ (Xn | Ym)

= 2i
sinh(αmh) sinh(βmh)
sinh(αnh) sinh(βnh)

×
{

2αnkn(k2
n + α2

n)(k2
m + α2

m)
(

βm

tanh(βnh)
− βn

tanh(βmh)

)

+
kn(k2

m + 2β2
m − α2

m − 2Lµβ2
m)(k2

n + α2
n)(k2

m + α2
m)

β2
n − β2

m

×
(

βn

tanh(βmh)
− βm

tanh(βnh)

)

− 2
knβnαn[k2

m + 2β2
m − α2

m − Lµ(k2
n + α2

n)](k2
m + α2

m)
α2

n − β2
m

×
(

αn

tanh(βmh)
− βm

tanh(αnh)

)

+ 4(1 − Lµ)
knk2

mβnβm(k2
n + α2

n)
α2

m − β2
n

(
αm

tanh(αmh)
− βn

tanh(βnh)

)

− 4knk2
mβm

(
k2

n + α2
n

tanh(βnh)
− 2βnαn

tanh(αnh)

)

− 4
knk2

mβnβm[2α2
n − Lµ(k2

n + α2
n)]

α2
n − α2

m

(
αn

tanh(αnh)
− αm

tanh(αmh)

)}
.

(D 3)

Appendix E. Derivation of the energy flux

In this section, we denote by Xi the real instantaneous value of X, and by Ẋ and Ẍ,
respectively, the first and second time derivative of X. We start from the elasticity
equation, written in the temporal domain as ρẅi = div σi. Taking the scalar product
of this equation with ẇi and using div(σiẇi) = (div σi)ẇi + (σi : ∇ẇi), we obtain
∂t(1

2ρẇ2
i ) + (σi : ∇ẇi) = div(σiẇi).

We now introduce the tensor of deformation εi, defined by εi = 1
2(∇wi + (∇wi)T);

σi is related to εi by σi = λ tr(εi)I + 2µεi. With the tensorial product of symmetric
Author:
transpose T in
correct
position?

and antisymmetric tensors being equal to zero, we have (σi : ∇ẇi) = (σi : ε̇i).
Consequently, (σi : ∇ẇi) = λ tr(εi)(I : ε̇i)+2µ(εi : ε̇i). With (I : ε̇i) = tr(ε̇i), we have
(σi : ∇ẇi) = ∂t(1

2λ tr(ε2i ) + µ(εi : εi)). Finally, the equation of energy conservation is
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derived as
∂tei + div πi = 0, (E 1)

with ei the total energy,

ei = 1
2ρẇ2

i + 1
2λ tr(ε2i ) + µ(εi : εi), (E 2)

and πi the energy flux vector,
πi = −σiẇi. (E 3)

In a waveguide, the time-averaged total energy flux across a section

Π =
∫

S

〈πi〉 dS

at a given frequency ω can be conveniently expressed as a function of a and b. We
have, in this case, 〈πi〉 = −1

4 iω(σw̄ − σ̄w), leading to

Π = −1
4 iω

∫
S

(sū + tv̄ − s̄u − t̄v). (E 4)

The fact that equation (E 4) resembles a linear combination of the biorthogonality
conditions comes from the kind of similarities shared by the biorthogonality and the
energy conservation. On the one hand, the biorthogonality is, in part, derived owing
to the reciprocity relation (Murphy & Li 1994). On the other hand, the conservation
of energy flux can be viewed as being derived from the reciprocity relation between
the field solution and its conjugate, the latter also being a solution because of the
time reversal symmetry.

With u = aTU , v = bTV , s = bTS and t = aTT , Π takes the form

Π = −1
4 iω(aTJ b̄ − bTJ̄Tā), (E 5)

where Jmn = (Xm | Ȳn). A typical example of the J matrix structure is given here in
a particular (but representative) case. We consider two propagating modes (k0 and
k1 real, leading to J0 and J1 purely imaginary) and three evanescent modes, two of
them associated with k2 and its complex conjugate k3 = k̄2 (leading to J3 = J̄2), and
one associated with a purely imaginary wavenumber k4 (leading to J4 real). J takes
the form

J =




J0 0 0 0 0
0 J1 0 0 0
0 0 0 J2 0
0 0 J̄2 0 0
0 0 0 0 J4


 . (E 6)

Finally, Π can be expressed as a function of the right- and left-going waves using
a = A − B and b = A + B,

Π = −1
4 iω(ATJmĀ − BTJmB̄ − BTJpĀ + ATJpB̄), (E 7)

with Jp = J + J̄T and Jm = J − J̄T. The structures of the Jm and Jp matrices are
given in the previous example,

Jm = 2




J0 0 0 0 0
0 J1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 and Jp = 2




0 0 0 0 0
0 0 0 0 0
0 0 0 J2 0
0 0 J̄2 0 0
0 0 0 0 J4


 . (E 8)
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As a consequence, if the incoming wave A at a given position x does not contain
evanescent modes, the energy flux Π at x takes the simplest form,

Π = −1
4 iω(ATJmĀ − BTJmB̄),

in which case it can be seen that only propagating modes contribute to the energy
flux. For more general cases, if A and B contain evanescent modes, then some energy
can be transported by the evanescent modes (Auld 1973).
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