Determination of Lamb mode eigenvalues
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An original method is presented to determine the complex Lamb wave spectrum by using a
numerical spectral method applied to the elasticity equations. This method presents the advantage to
directly determine complex wave numbers for a given frequency via a classical matricial eigenvalue
problem, and allows the wave numbers to be determined at relatively high frequéneies
corresponding to many propagating modds does not need initial guess values for the wave
numbers, contrary to the usual method of root finding of the Rayleigh—Lamb frequency equations
(dispersion relationin the complex plane. Results are presented and the method is discussed.
© 2001 Acoustical Society of AmericdDOI: 10.1121/1.1391248

PACS numbers: 43.20.Jr, 43.20.Mv, 43.40.Dx, 02.70 /& C]

I. INTRODUCTION for systematic computation since the locations of the wave
numbers are not knowi, priori, in the complex plane. Con-

gsequently, initial guess values are not available for classical
oot finding routines. One technique to overcome this1&ck

Lamb waves are involved in the nondestructive testin
of plate structures because of their guided nature. The ch

acterization of flaws through the scattering of elastic Waves, | dists in calculating the spectrum at zero frequency, where

g\osuch glztetsl_hasbrecelved consuzlerat_)le att_err\]uon in the Pale dispersion relation is more tractable, and then to gradu-
years, but Lamb wave propagation in an in omogeneousa”y increase the frequency to the desired value by using

medium has not been widely investigated. dk=-(9,D/9D)dw and/ork(w) as an initial guess for

A possible. mgthod for. solviqg the proplem of Lamp k(w+dw). Apart from the difficulties arising from the van-
wave propagation in a medium with geometrical or ma’[erlaliShing of the denominator, this “step by step” technique is

discontinuities is based on an eigenfunction expansion of thﬁme consuming because a series of spectra has to be com-

?_'Splacen;ﬁ ntF:de therz]st[esst,)whedre the Cons;detredleltgegl;qgﬁjted for frequencies from zero to the desired frequency.
lons are the Rayleigh—Lamb modes in an infinité piate. 1his 06 e present an original method that directly

pr??ﬁ'og. IS c?mb_|t|jed _\I’_Vr']th a r?r?dde-mlatchlng tt)?Chn'qulett%rojects the ordinary differential equation governing the
reattne discontinuities. 1his method solves problems retatefl, ,n modes on a spectral basis of orthogonal functions.

to a semi-infinite plate® or to two dissimilar semi-infinite Instead of solving the transcendental equatidtk, ) =0,

plates yvelded along th_elr lateral bqu_ndaﬁes. one calculates the solutions of a classical eigenvalue problem
This method requires determining the complex wave

; . . . in the form (M —kl)X=0, whereM is a matrix resulting
number spectrurk, associated with the eigenfunctions usedfrom the projection of the differential equation. We obtain
in the expansion. In the context of Lamb waves, it is difficult

to determi iqenfuncti d iated b approximate eigenvalues that can be used as starting values
0 determine eigentunclions and associated wave NUmbelgy, o iy 5pe precise solution. This technique is classically used

t)heﬁﬂseLof t;]e spectrun: comple>f<|ty. I ||_sd\fvell establlshefﬂ the theory of fluid dynamics instabilify:'* In this case,
at tne Lamb wave Spectrum In a frée Solid 1ayer, COmposef, » ., afficients of the differential equation governing the

of (lalastlc materlzl, consists of c;.mplix wave nu:pbe{i transverse modes are nonconstant; the method of finding the
real wave numbers corresponding fo propagating amli’oots of the dispersion relation is then not natural since it is

waves, and c%mplex wave nurnbers_ related .to evanescef}ﬁpossible to get amnalytical dispersion relation.
Lamb waves” Usually,lthe dispersion relat|0|ﬁ)(w.,k.) The Lamb problem is posed in Sec. Il. Then, spectral
=0 (the so-called Rayleigh—Lamb frequency equatjdss decomposition is performe@Sec. Ill), and a second-order

numgrlcally solvet(_JI 0 detgrmmti the Wslve spectrum. | olynomial system ork is derived(Sec. IV A). This system
or propagating modes, the problem reémains Simpi&,, he rewritten as a reduced eigenvalue problemkﬁor

since the wave number Is '“?OW” to b.e fe"’?'- On the OthegSec. IV B. Results are presented and discussed in Sec. V.
hand, when the mode-matching technique is used, evanes-

cent modes have to be taken into account and a significant
part of the entire complex spectrum has to be determineqI LAMB MODE PROBLEM
The direct strategy of finding the roots of the dispersion re-

lation D (k,w)=0, at a given frequency, is not well suited The Lamb mode problertsee Fig. 1 consists of search-
ing for a solution of the elasticity equation in the waveguide
3E|ectronic mail: vincent.pagneux@univ-lemans.fr defined by—h=<y=<h with free boundaries, and for which
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y . €,=1, e,=2, for n=2,
bn= \fﬁncos(any), with _(n=D)m

an )
X h
(3.2
2 . (n—1/2)7
Un= \[ﬁsm(,Bny)v with Bn:T;

FIG. 1. Geometry of the Lamb wave problem.

¢, and ¢, are such that ‘(’n|¢m):§nm and (l»//n|‘//m)

displacements are in thg, y) plane. The time dependence is :5ﬂm' where the scalar product is defined by|g)
e '°t and will be omitted in the sequel. The equation of =Jof (¥)9(y)dy.

motion is Functions ¢, (resp, ¢,) form a complete basis to de-
scribe any eveffresp, odd function because they are eigen-
—pw?w=pu AW+ (A + u)V(divw), (2.1)  functions of a classical Sturm—Liouville problefhThus,

. , . symmetric and antisymmetric solutions can be decomposed
wherep is the density(\, w) are the Lams constants, and in these bases as

w=(0,0) is the vector of displacements, whose components
are of the “modal” form:
U(Y)= 2 Undn(y), and US=(Up),

a(x, u )
A( y)):( ) exp(ikx). (2.2
v(x,y)) \v(y) s s s_(\S
vi(y)= 2 Vag(y), and VE=(V}),
The facesy=*h are free of traction, corresponding to n=1
boundary conditions: (3.3
Ty (X 20 = w(,0+ ,5) =0, ua(y)=n§luﬁwn(y), and U=(U3),
(2.3

Tyy(X,£h) =N\ 3,0+ (N +2u)dy0 =0.

Defining ki=+vp/pw, k=+p/(N\+2u)w, and y=(\
+2u)/ 1, the system(2.1) can be written for @,v):

va<y>=n§1 Vaga(y), and Va=(V3).

The next step is then to obtain the projection of EQs.
(2.4) on the basis functions. This is presented in the follow-
=0, (2.49  ing paragraphs.

-1 "
’ kfu+ —
Y

k2u—ik v'—

A. Symmetric modes

The scalar product of2.48 by ¢, and (2.4b by i, is

and the boundary conditiorn&.3) become performed. Then, the projection of the derivatives @sng
the same procedure as in Ref)13

k2w —ik(y—1)u’—(K?v+y")=0, (2.4b

u’(xh)=—ikv(xh) (2.59
, (vS)'| ) =LV ¢nlb— (v°| 1)
LY
v'(£h)=—ik——u(=xh), (2.5b
Y =mzl (a(N) (D) = (Al )V,
wzhere2 the prime and double prime stand fadfdy and B (3.4)
d*/dy". (U] P =[(U®) = uSp/ 15+ (US| ¢})

= —ik X $a(h)¢m()Ve—a2U3,
I1l. SPECTRAL DECOMPOSITION m=1

The eigenproblent2.4)—(2.5) is known to be separable and
into symmetric and antisymmetric solutions, where symmet-
ric (resp, antisymmetri¢ modes correspond to evéresp,
odd) u and odd(resp.,even v.° In the following, super-

(<u5>'|</fn)=m§l (Wn(h) (M) = (| )V,

scriptss anda, respectively, refer to symmetric and antisym- (3.5
metric modes. Basis functions, for u®, v?, and, for v°, y—2

. s\n _ S 2\ /S
ud, with n=1, are chosen such that (0" )= —lk—y mzl n(h) (UL — BV, .

"+ ale,=0, and ¢)(0)=¢,(h)=0, , y
ot andn and  ¢n(0)=n(h) (3.1 It can be noticed that both boundary conditions have been

"4+ 82y =0, and 0)=¢'(h)=0, taken into account in the course of projecti@y. (2.59 for
Yo Batn ¥nl0)=¥n(h) (3.4) and Eq.(2.5b for (3.5)]. Eventually, a system of equa-
that yields tions onUS, V% is obtained:
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FIG. 2. (a) Tridimensional representation of the dimen-
sionless complex wave numbeksh for symmetric

modes(S, to S;9) when the dimensionless frequency
k:h varies, (b) real and imaginary parts of the dimen-

sionless complex wave numbeksh for symmetric
modes(S, to S;) as a function of the dimensionless
frequencyk;h.

k2US+ kASVS+ BSUS=0,

k?VS+kCUS+DV*=0, 3.9
with matricesA®, B®, C®, andD*® expressed by
(y—1 L 2=y
Asm,n:I 7(wm|¢n)+7¢m(h)¢n(h)
Y Y
V2i(2=y)(—=D"
’ n:11
hy
T 2i(-1)™ a2+ (y-2)82)
2 1
hy(Bh—ab) ’
2
Bsm,n: (;ﬂ_ k|2) Smn» (37)
Csm,n:_VA?\,m! Dsm,n:(yﬂfn_ I(t2)5mn
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4.5

B. Antisymmetric modes

Similar calculations are performed for antisymmetric

modes. In this case, the scalar product$2fg by ¢,, and
(2.4b by ¢, are performed and a system of equations on
U% V2 is obtained:

k2U2+ kA2Va+ BaUa=0,

(3.8
k?V3+ kC2U2+ D3Vv2=0,
with matricesA?, B?, C2, andD? expressed by
V. Pagneux and A. Maurel: Lamb mode eigenvalues 1309
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Chipry R AR FIG. 3. Dimensionless phase velocities of symmetric
I : : : : Lamb wavesk, /k,, (for real k,) as a function of the
: : dimensionless frequendsh.

y— A. Eigenvalue problem

1 2—vy
A2 =il — N+ — h h
mn=! Y (&mli) Y () ¢n(h) System(4.1) can be rewritten as

V2i(—1)" k?X;+kF{X;+G;X;=0, (4.2)
—— m=1 _
B hy with
(=D (y=Dantpp) u 0 A B 0
hy(at— B =y, Fl:(c o) 2 Glz(o D)

2 4.3

Bam,n:<7m_ k|2) Smn» (3.9 Then, following Ref. 11, withy;=kX, and
X1 0 lon
Comn==7A0m:  Dmn=(van=k) mn. zl=(Yl), M1=( I (4.4
IV. RESOLUTION wherel 5 is the 2N X 2N identity matrix; the systen¥.2) is
rewritten as

The system(2.4) with boundary conditiong2.5) is an M.Z-—KZ.=0 45
eigenvalue problem with differential operators. Owing to the 11 1= :
spectral decomposition presented in Sec. Ill, it has become l& corresponds to a classical eigenvalue problem for tNe 4
discretized eigenvalue problem with matricial operators. X 4N matrix M, in which the eigenvaluk appears linearly.

The discretized system(8.6) and (3.8) are in the form
of a nonlinear eigenvalue problem: _ o :

B. Reduction of the matrix dimension
2 —
k*U+kAV+BU=0, (4.13 By inspection, it can be noticed that systéml) pos-
K2V +kCU+DV=0, (4.1b sesses(fortunately) the usual symmetries of the Lamb
modesk— —k andk—k*. In order to reduce the dimension
where matricesA, B, C, D result from projections of the of the involved matrices, and, consequently, to increase nu-
original differential equations and also take into account themerical efficiency, it is possible to take advantage of the
boundary conditions. Syste.1) can be easily expressed as symmetryk— — k. This can be done by castirg.1) in the
a classical eigenvalue problenvi(—kl)X=0, as presented form of a nonlinear eigenvalue problem, where only the even
in the following section, Sec. IV A. In this case, for a given powers of the eigenvalue appear.
truncation corresponding to the firdt basis functions, a ExpressingVv as a function olJ in (4.1b), (4.18 can be
AN X 4N system has to be solved to obtaiN £€igenvalues. written as
In Sec. IVB, it is shown that an alternative system can be _
derived, benefiting from the symmetry properties of the (K*In—k*A(k*+D) " 'C+B)U=0. 4.6
spectrum; in this latter case, the system is orlN>2N, to  In (4.6), Ue Ker(k?ly—k?A(k?+ D) 'C+B) and a solution
also obtain N eigenvalues. U corresponds tdk such that dek®ly—k2A(k?+D)1C

1310 J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001 V. Pagneux and A. Maurel: Lamb mode eigenvalues



FIG. 4. Dimensionless complex Lamb wave spectrum
at (@) kih=1: (*): N=6, (O): N=14, (-): exact values
k€ and (—) asymptotic value&?, (b) k;h=14: (*): N
=16, (O): N=32, (-): exact valuesk® and (—)
asymptotic values?®, and (c) kih=28: (*): N=24,

: : : (O): N=44, (-): exact valuek® and (—) asymptotic
100 : : DR RS A valuesk®.
o o
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+B)=0. If this equation is multiplied by détk*+D)A™1) 0 In
on the left-hand side and dé)(on the right-hand side, we M,= G, —-F./
obtain detk2+ (D—CA+A BA)K+DA BA)=0, with z 2

K=Kk2. The reduced eigenvalue problem ksr=k? is . ) ] ) )
wherely is the N X N identity matrix. An eigenproblem for

(K?+F2K+G2)X,=0, (4.7)  K=k? with the 2N X 2N matrix M, is obtained:
with F,=(D—CA+A !BA), G,=DA !BA.
In the course of the derivation of the reduced system, it M,Z,—KZ,=0. 4.9

has been assumed that d9t0 and det’+D)+0. The
former assumption has been numerically verified. The latter
assumption is verified as long &8+ k>— y32. V. RESULTS

As previously, we now introduce In order to check the validity and the efficiency of our

X5 technique, results obtained using the spectral method are pre-

Y2> ' sented. Without loss of generality, we will focus on the sym-
metric Lamb modes, but similar results can be obtained for

and 4.9 antisymmetric modes. The material properties are those of

Y2: KX2, 22: (
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copper: ve= Julp=2150ms?t and v;=\V(N+2u)/p but we underline the fact that the brankk:0 of the S,
=4170ms*! (y=(v,/vs)?) and the plate thickness is taken mode corresponds to a rightgoing mode with negative phase
to be 2h=0.02 m. velocity but positive group velocity. Incidently, it can be no-

Foru andv projected orN spectral basis functionsN¢ ~ ticed that, in some papers, this negative phase velocity
eigenvalues are calculated from th&l2 2N system(4.9..  branch is erroneously identified as a part ofSammode or is
For clarity, only the 2 rightgoing modes will be presented: Not representetf. The S, mode turns purely imaginary in a
the other N modes, which are leftgoing, are simply ob- frequency band corresponding keh between around 3.06
tained by the symmetrik— —k. On the other hand, as pre- and 3.13, in agreement with previous studiese, for in-
sented in the forthcoming section Sec. V.C, a part of thestance, Rokhliret al*®).
calculated spectrum corresponds to spurious eigenvalues. For
this reason, a qualitative criterium is used and only a subsgt Representation of the spectrum for a given
of the determined spectrum is selected.

In the following, in order to assess the obtained values, ~Figures 4 show the evolution of the rightgoing complex
we refer to “exact” value®, obtained from a Newton con- Wave spectrum derived from the spectral method when
vergence method with a tolerance of 28 Here, the wave increases. These\2values are compared with the exact val-
numbers obtained from the spectral method are used as ireS "66 and the asymptotic values® derived by Merkulov
tial guess values and it has been verified that these “exactét al.” for largek:
values correspond to actual zeros of the dispersion relation. ( 1)

27| n+ =

w

1
ap—
keh=>5In .

A. Eigenvalues in the complex plane

Figure 2 shows th& spectrum obtained in the complex i
plane varyingw. In the computationN=16 leads to 32 2
rightgoing eigenvaluegk; as discussed in Sec. VC, only
aboutN values are identified as correct valu@s eigenval- It can be seen from these figures that kspectrum found
ues are shown in the figureThe usual behavior of Lamb With the spectral method coincides with the exact ok (
modes is recovered: for low frequency, oi8y is propagat- for the N or so first values, and this, independently of the
ing and, to increase the frequency leads to more and morgemplexity of the spectral structure when the frequency in-
propagating modes. We recover also the particular behavidi'eéases. A qualitative criterion to select the useful part of the
of S,: it becomes propagating with negative phase velocityc@lculated spectrum can be to restrict the complex wave

and recovers a positive phase velocity at higher frequency.SPectrum to the firsh values.

(5.9

( 1) IN[2m(n+1/2)]
2T T a1

B. Phase velocities of Lamb modes D. Convergence

To recover the usual representation of propagating The evolution of the relative error is shown in Fig. 5 as
modes>'*we have plotted in Fig. 3 the dimensionless phasea function of N at two different frequencies. The relative
velocities of symmetric Lamb wavek,/k,,, for realk,, asa error is defined as$A(k)/k|, where A(k)=k—k®. In both
function of the dimensionless pulsati&h. This is obtained cases, it appears that the method convergeshdgat/large
in Fig. 2 at constant Inkj=0. The expected form is obtained N.

1312 J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001 V. Pagneux and A. Maurel: Lamb mode eigenvalues



100 FIG. 5. Convergence for the first modes as a function of
the orderN of the truncation for a given frequendg)
kih=1 (modesS, to Sg) and (b) kih=14 (modesS,

to S,).

10 L i L
1 2 3 4 5 10 50

For kih=1, only the modeS, is propagating; the sym-

100

finding of the Rayleigh—Lamb dispersion relation. The fol-

metry properties of the spectrum for evanescent modes imewing points make the method attractive.

pliesk,,= —k3,,_, for n=1, implying the same convergence

for the pairs (2,2n—1).

(i) It is easy to implement. For a given frequency, it is
very simple to take the expression of the, matrix from

For kjh=14, 14 modes are propagating; we give the(3.9), (4.10, and(4.1D), to put in it the materialy, k,, and
convergence for the first five modes. It can be noticed tha ) and geometricalh) properties and then, to use any eigen-

the modeS, reaches a type W convergence law only for
N>10, but is given with a reasonable accurd@p%) as
soon asN=1.

VI. CONCLUSION

value solver package to obtain the wave numbers.

(ii) In a step by step method, the series of spectra calcu-
lated from zero to a given frequency can cross a critical
frequency, for which two wave numbers collapse, leading to
D =0. A particular treatment then has to be applied to go
through this critical frequency sincék/dw=9,D/9,D di-

A new method for the determination of the Lamb wave verges. With our method, these critical frequency cases have
spectrum has been presented. This method is based onbgaring on the determination of the spectrum because its cal-
spectral projection of the equation of the elasticity, leading tcculation does not depend on the history of the spectrum.

a classical eigenvalue problem.

(iii ) If the goal is to obtain the wave numbers with a

This method is an alternative to the usual method of rooprescribed precision, the results of the spectral method can

J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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