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Irregular Scattering of Acoustic Rays by Vortices
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The scattering of high-frequency sound wave, under geometrical acoustic approximation, by three
stationary vortices in two dimensions is investigated. For a sufficiently high Mach number of the vortex
flow, the scattering of sound rays becomes irregular, displaying a new example of chaotic scattering for
a time-reversal breaking system. The fractal dimension, as well as the unstable and stable manifolds of
the scattering dynamics, is presented.
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Classical scattering, as opposed to wave scattering, is ca-
pable of displaying irregular (chaotic) characteristics [1,2].
Such phenomena have already been described for different
physical situations (for a review, see [3]). For instance, in
classical Hamiltonian mechanics, trajectories of a particle
after scattering by three potential hills are very sensitive
to initial conditions (i.e., the trajectories before scattering);
this is due to the existence of periodic orbits in the region of
the three hills. Though the very meaning of the word chaos
is not the same for the classical and the quantum case, there
are striking consequences of chaos in a classical scattering
problem for the corresponding quantum problem [2].

We consider the case of acoustic rays scattered by three
vortices. In addition to the interest that this subject has in
itself, motivation for this study comes from the develop-
ment of acoustical techniques, based on the analysis of
waves scattered by the medium, to characterize turbulent
flows modeled as a set of vortices [4–6]. The aim of this
paper is to describe how sound rays are scattered by three
vortices; in particular, we show that there exists a critical
value of the Mach number Ma � U�c (where U is the
characteristic flow velocity and c is the sound speed) for
the appearance of irregular scattering whose dynamical
characteristics are analyzed. First, the model equations
of sound rays propagating in rotational flow are presented
and they are applied in the case of scattering by one vortex.
Then, the three-vortex case is investigated and the irregu-
lar scattering is studied.

Equations for sound rays propagating in a moving
medium can be derived from the wave equation in the
limit where the frequency of the sound wave is large
compared to the maximum of the two typical frequencies
f1 and f2 of the problem. Frequency f1 � U�L, where
L is the vortex size, is the characteristic flow frequency
and f2 � c�L is related to the time of flight through the
vortex. Under this high frequency approximation, the
following system of equations is obtained [7,8]:
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where �r and �k are, respectively, the coordinate and the
wave vector of the sound wave, and where �U is the station-
ary mean flow velocity. In two dimensions, the phase space
for the dynamical system (1a) and (1b) has four coordinates
x, y, kx , ky . The dynamics takes place in a three dimen-
sional subspace since there exists an integral of the motion:
Eqs. (1a) and (1b) can be written as an autonomous Ham-
iltonian system d �r�dt � ≠v�≠ �k and d �k�dt � 2≠v�≠�r ,
and the pulsation v � ck 1 �U ? �k is an integral of the
system. We choose the three remaining coordinates to be

x, y, f, where f � � �ex , �kd � is the angular deflection for �k
in the outgoing region (see Fig. 1).

The mean flow is a viscous core vortex with only an
orthoradial velocity component:

�U �
G

2pr
�1 2 exp�2a2r2���eu .

This vortex is characterized by its typical size r0 �
1.12�a corresponding to the maximum velocity Um �
0.716G��2pr0�.

The system [Eqs. (1a) and (1b)] is first numerically in-
tegrated for a one vortex case. We use a fourth-order
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FIG. 1. The scattering process, occurring in the region with �U
flow field, transforms the incoming trajectory into an outgoing
one; f is defined as the angular deflection between the two
trajectories.
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FIG. 2. Ray trajectories in a scattering region with one vortex (the incoming trajectory is defined by [ �r0 � �212r0, H�, �k0 � �1, 0�]
for Ma � 0.2, 0.4, and 0.5 and scattering function f as a function of H.

Runge-Kutta scheme with adaptative step size. Initial con-
ditions for �r and �k are �r � �x0 � 212r0, y0 � H� and
�k � �1, 0�. Figure 2 shows the ray trajectories for three
different Mach numbers and the scattering function, de-
fined as the angular deflection f�H� � arctan�ky�kx��t�`�.
It has been verified that our results are identical to those al-
ready shown in the same case in [9]. When the Mach num-
ber varies, the scattering function f�H� shows a structural
stability in contrast to the case of a particle in a potential
hill of height V0, where there exists a critical value of the
kinetic energy Ec � V0; below V0, f�H � 0� � p and
above V0, f�H � 0� � 0. On the other hand, the scat-
tering function is not symmetric with respect to the y � 0
line, also in contrast with the case of the potential hill.
This is related to the time-reversal violation, observed for
the scattering of sound wave by a vortex [10].

What happens now if there are three vortices instead of
one? The numerical setup is the following: each vortex is
on the apex of an equilateral triangle of side length 5r0, as
shown in Fig. 3. As before, the initial conditions are �r �
�x0 � 212r0, y0 � H� and �k � �1, 0�. The scattering
functions for three vortices are shown in Fig. 4. For low
Mach numbers, the scattering function f�H� is a smoothly
varying curve with three bell shape peaks (BSP) centered
on the y value of each vortex. As the Mach number is
increased, the scattering function behaves wildly in certain
regions on the first BSP and this wild behavior persists on
an arbitrarily small scale, as illustrated in Fig. 5 at
Ma � 0.6. This corresponds to chaotic scattering when the
impact parameter leads to trajectories near periodic orbits.
Indeed, for Ma � 0.6, reflection from vortex 2 to vortex 3

at angles up to 2p�3 is possible, as can be seen in Fig. 2.
Since most of the usual symmetries are lost, only the
first BSP presents this behavior; an impact on the second
and third vortex may lead to periodic orbits (and thus to
irregular scattering), but for a higher Mach number.

It is then possible to determine the structure of the re-
gion where the singularities occur. A singularity is defined
by an H value where the scattering function f is not con-
tinuous. For the numerical determination of singular
points we use the following criterion (inspired by [3]):
�f�H 1 e� 2 f�H�� �f�H 2 e� 2 f�H�� . 0, where
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FIG. 3. Scattering region defined by the velocity field �U in-
duced by three vortices. Vortex 1 corresponds to y , 0, vortex
2 to centerline, and vortex 3 to y . 0.
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FIG. 4. Scattering function f�H� for the three-vortex case at Ma � 0.3, 0.4, 0.5, and 0.6.

the values of H are chosen randomly in an interval con-
taining the region where the irregular scattering occurs.
When the criterion is verified, point H is said to be e
uncertain. Figure 6(a) shows the evolution of the e un-
certain H values for decreasing e; of course, as e goes to
zero, fewer and fewer values of H remain e uncertain:
these H values correspond to the very sensitive regions
where the scattering is irregular (these regions constitute
a Cantor set). The fractal dimension of the Cantor set
is then determined classically [3]. We call Nt the number
of H values tested and N the number of H values found
as e uncertain (N depends on e). With f�e� the limit of
N�Nt as Nt goes to infinity [see Fig. 6(b)], f�e� is ex-
pected to scale as ea , where a is related to the dimension
D of the set by the relation D � 1 2 a. Figure 6 shows
the evolution of the fractal dimension as a function of
the Mach number. We have determined the shape of the
y � 0 cross section of the stable and unstable manifolds
of the chaotic set (Fig. 7). This has been done by taking a

grid of initial conditions �x, u�, with u � ��ex , �kd �, and in-
tegrating them forward (respectively, backwards) in time.
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FIG. 5. Scattering function behavior for two successive zooms
in Fig. 4 for Ma � 0.6.

We have plotted the time delay (long delays correspond
to black regions). Again, the breaking of time-reversal
symmetry can be observed. Consider the scatterer posi-
tions studied by Jung and Richter [11] for classical poten-
tial scattering system V �x, y� � exp�2y2 2 �x 1

p
2�2� 1

exp�2� y 2
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3�2�2 2 �x 2
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p
2�2�. The Hamiltonian equation d �r�dt � ≠H�≠ �p

and d �p�dt � 2≠H�≠�r [with H��r , �p� � V ��r� 1 p2�2m]
possesses two symmetries: (i) s defined by s: �x, y, px ,
py� ! �x, 2y, px , 2py� with t ! t and (ii) time-reversal
symmetry T : ��r, �p� ! ��r , 2 �p� with t ! 2t. The former
symmetry implies that the stable (respectively, unstable)

FIG. 6. Fractal dimension as a function of Ma for the three-
vortex case. (a) shows the evolution of the e-uncertain values as
a function of e and (b) shows the fraction of e-uncertain values
as a function of Nt , number of H values tested.
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FIG. 7. y � 0 cross section of the stable (a) and unstable (b)
manifold of the chaotic set.

manifold has the same symmetry as the potential, i.e.,
in phase space u ! 2u. The latter symmetry implies
that the unstable manifold can be deduced from the stable
manifold by T , i.e., in the phase space u ! p 1 u. In
our case, the Hamiltonian system, defined by v��r, �k� �
ck 1 �U��r� ? �k, has lost the symmetries s and T . To
recover the time-reversal invariance, we have to account
for the flow velocity field by the transformation �U��r� !
2 �U��r� [10]. In our configuration, this transformation is
obtained through Tos. As a consequence, the unstable
manifold is deduced from the stable manifold by Tos, i.e.,
in phase space u ! p 2 u. In order to gain insight into
the structure of the intersection of the chaotic invariant set
with the plane y � 0, Fig. 8 shows the product of the de-
lay times shown in Fig. 7 and corresponding to stable and
unstable manifolds. Apparently, the intersections between
stable and unstable manifolds occur with angles quite
different from zero. No tangencies between the stable
and unstable manifolds being noticeable, it is reasonable
to infer that the dynamics of the scattering is hyperbolic
[12,13].

In conclusion, we stress the interest of this new example
of chaotic scattering in time-reversal breaking system in
classical physics. One may think about experiments in-
tending to complete the present work. One possibility
could be to use high Mach number compressible vortices
induced by shock-wave diffraction over obstacle or around
corners (see, for instance, Mandella’s experiments [14],

FIG. 8. Intersection of the chaotic invariant set with the plane
y � 0.

and the confrontation with numerical work [15]). Another
possibility could be to use an assembly of vortices: in
this case, the critical Mach number for the appearance of
chaotic scattering for rays could be significantly decreased
and more easily adaptable to classical hydrodynamic setup.
Finally, maybe the most promising experimental possibil-
ity could be to use the analogy between acoustic and sur-
face water waves. In this latter case, high Mach numbers
are easily reachable since the wave celerity is quite low
(some dozens of m�s). Note that this analogy has been
already extensively used to study the sound wave interac-
tion, both for theory [16–18] and experiments [19].

Two other points seem worthwhile to study in the future,
both incidently related to the actual experiment that may
be carried out. First, nonstationarity of the vortices could
be taken into account and yield nonconstant frequency v
and thus might lead to frequency gap in analogy with the
energy gap found for the scattering by two oscillating disks
[20]. Second, the very interesting questions raised by the
corresponding finite wavelength problem could be partially
answered by direct numerical simulation of sound flow
equations.
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