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Abstract. We report new results on the ultrasonic characterization of a fluid flow using an acoustic time-
reversal mirror (TRM). The structure of a large vortex generated by a rotating disk in a hollow cylinder is
investigated both inside and below the cylinder. For mean-flow characterization, the TRM is shown to be
a powerful vorticity detector. Experimental time-of-flight data are successfully compared to a numerical
simulation of the flow and the orthoradial velocity is reconstructed using simple geometrical acoustics. Real-
time measurements allow us to extract the precession motion of the vortex, providing direct, non-intrusive,
and dynamical information on the flow.

PACS. 43.30+m Underwater sound – 43.35+d Ultrasonics, quantum acoustics, and physical effects of
sound – 47.32-y Rotational flow and vorticity

1 Introduction

Acoustic waves provide a direct, non-intrusive and non-
localized way of probing hydrodynamic flow fields and sev-
eral approaches have been proposed in the literature e.g.
ultrasound scattering [1–5] or acoustic tomography [6–9].
In a previous work, we used a time-reversal mirror (TRM)
[10] to show that vorticity breaks time-reversal invariance
for acoustic waves [11]. We also studied the interaction of
a plane incident wave with two different flows (a large vor-
tex and a vorticity filament) showing that a double TRM
acts as an artificial vorticity amplifier and allows a global
characterization of a vortex [12]. In this paper, we first de-
scribe the experimental set-up and method. Then we focus
on the quantitative characterization of the mean flow in
a Von Kármán-like geometry [13,14], and present both a
simulation and a reconstruction of the orthoradial fluid
velocity. Eventually we turn to a real-time investigation
of the vortex.

2 Experimental set-up and method

2.1 Experimental set-up

The flow field under investigation is generated by a disk of
diameter d = 60 mm rotating at the top of a hollow, open
Plexiglas cylinder (inner diameter 75 mm, outer diameter
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80 mm) at a frequency Ωd/2π ' 1-10 Hz, which yields
a Reynolds number Re = Ωdd

2/4ν ' 103-104. The disk
is fitted with four blades (10 mm high) to enhance the
rotation in the fluid. The cylinder is 240 mm long and im-
mersed in a large water container (see Fig. 1). The double
TRM consists of two piezoelectric transducer arrays placed
in front of each other, on either side of the flow at a dis-
tance D ' 100 mm. Each array (TRM1 and TRM2) is
made of 64 transducers, with a spacing of 0.42 mm and
works at a central frequency of ω/2π = 3.5 MHz with
a sampling frequency of 20 MHz. Such a set-up enables
us to scan the flow field spatially by moving around the
double TRM.

2.2 Spatial and temporal resolutions

The effects of fluid motion on an acoustic wave are both
spatial and temporal [15]. Indeed, due to velocity gradi-
ents, acoustic rays are refracted and for low Mach numbers
M , dn/dt = (∇×u)×n, where n is the unit vector along
the direction of propagation and u(r) is the fluid velocity
field. For an acoustic ray propagating over a distance D,
this yields a spatial deflection δx ∼ MD. In our experi-
ment, the characteristic fluid velocity is u ' 10 cm/s and
the sound speed c ' 1500 m/s so that M = u/c ' 10−4.
With D ' 100 mm, one gets δx ' 10−2 mm. Since the
spatial resolution is given by the array pitch 0.42 mm, we
may neglect refraction and assume a straight-ray propa-
gation.

Fluid motion also results in a local modification of the
scalar speed of sound according to c(r) = c+ u(r) ·n. For
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Fig. 1. Experimental set-up. (a) Front view. (b) Top view in the plane z = 0.

a vortex of characteristic size L ' 100 mm, this leads to
a time shift δt ∼ ML/c ' 10−8 s of the acoustic signal
(i.e. to a phase shift δφ ∼ ωML/c ' 0.2 rad). Experimen-
tally, time shifts are inferred from Fourier transforms of
the acoustic signals and the temporal resolution is fixed
by the electronic noise level (δt ' 10−9 s), which allows a
good detection of fluid velocities down to about 2 cm/s.
Note that this analysis based on geometrical acoustics as-
sumes that the vortex is “large” i.e. that L is much larger
than the acoustic wavelength λ ' 0.5 mm. When L ' λ,
scattering by the vortex core has to be taken into account
[1–5,12].

2.3 Experimental method

The experimental measurements are performed as follows.
First, two plane waves are simultaneously emitted by the
two TRMs and received after one crossing of the flow.
This yields the direct (e.g. from TRM1 to TRM2) and in-
verse (from TRM2 to TRM1) times-of-flight t1→2 and t2→1

across the vorticity field as a function of the transducer
position x. The acoustic signals are then time-reversed
and simultaneously reemitted by the two TRMs, so that
the time-reversal procedure can be further iterated.

In the absence of fluid motion, the acoustic wave is
supposed to remain plane after several trips between the
TRMs. However, due to the finite aperture of the trans-
ducer arrays, the wavefronts are distorted by diffraction
effects [16]. We were thus led to perform a first “blank” ex-

periment in order to measure the times-of-flight t
(0)
1→2 and

t
(0)
2→1 in the absence of fluid flow. Those references t

(0)
1→2

and t
(0)
2→1 are then subtracted to t1→2 and t2→1 measured

in the presence of a vortex, yielding the direct and inverse
time shifts δt1→2 and δt2→1.

Such time shifts not only account for fluid motion ef-
fects but also for possible effects of temperature or density

inhomogeneities on the local sound speed. To focus on the
fluid motion effects only, we compute the phase distortion
∆φ(x) = (φ1→2(x) − φ2→1(x))/2, where φ1→2 = ωδt1→2

and φ2→1 = ωδt2→1 [8,9]. After one crossing of the veloc-
ity field u(r), a straightforward calculation to first order
in M yields

∆φ(x) = −
ω

c2

∫
R(x)

u · n ds, (1)

where s is the position along the acoustic ray R(x) (see
Fig. 1). After N crossings of the flow i.e. after N − 1
time-reversal processes, the phase distortion is given by
∆φN (x) = N∆φ(x) [12,16], so that the double TRM
can be seen as a (linear) vorticity amplifier which al-
lows the detection of small flow velocities (down to about
3 mm/s for N = 7). Note, however, that refraction as
well as diffraction effects are also amplified by iterative
time-reversal processes (e.g. for the spatial deflection of
an acoustic ray, δxN = Nδx after N crossings of the
flow [11]). In the present configuration, such effects were
experimentally estimated to remain negligible as long as
N < 13.

3 Study of the mean flow below the cylinder
(z ≤ 0)

3.1 The double TRM as a vorticity amplifier

Figure 2a shows the mean phase distortions ∆φ1(x),
∆φ4(x), and ∆φ10(x) in the plane z = 0 and averaged
over 200 measurements on the same vortex. The error
bars correspond to the standard deviation of the phase
signals measured in the absence of fluid motion: typi-
cally, (∆φN (x))r.m.s. ' 0.005

√
N rad. As expected, the

effect of vorticity on acoustic propagation is amplified
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Fig. 2. (a) Phase distortions ∆φN(x) measured in the plane z = 0 for Ωd/2π = 3.2 Hz and N = 1 (◦), N = 4 (2), and N = 10
(•). (b) Slope sN = d(∆φN)/dx for x = 0 as a function of the number of crossings N in the plane z = 0 (◦). Such phase
distortions were obtained with five displacements of the TRMs. The errorbars account for the standard deviation of sN when
varying the range for linear interpolation of ∆φN around x = 0. The straight line is sN = −2NΩωR/c2 with R = 43 mm and
Ω/2π = 0.25 Hz.

Fig. 3. (a) Phase distortion after 7 crossings of the flow measured in the plane z = 0 (2), theoretical prediction of the solid
body rotation with R = 43 mm and Ω/2π = 0.25 Hz (dotted line), and simulated phase distortion computed from the FLUENT
velocity field (thick dashed line). (b) Phase distortion after 7 crossings of the flow measured in the plane z = −40 mm (2) and
simulated phase distortion computed from the FLUENT velocity field (thick dashed line). Both experimental phase distortions
were obtained for Ωd/2π = 3.2 Hz. The orthoradial velocities from the FLUENT simulation are shown in Figure 4.

by the time-reversal process. To check the linearity of the
amplification, we plotted the slope sN of ∆φN (x) at the
center of the vortex (i.e. at the position where ∆φ = 0,
which is taken to be x = 0 by convention) versus N
(fig. 2(b)). Linearity remains very good up to more than
10 time-reversal processes.

As mentioned in reference [12], a solid body rota-
tion of radius R and frequency Ω/2π yields ∆φN (x) =

−2NΩωx
√
R2 − x2/c2. This analytical shape provides

rather good estimates of R = 43 mm ±5% and Ω/2π =
0.25 Hz ±5% for a driving frequency Ωd/2π = 3.2 Hz (see
Fig. 3a). These estimates are also in quantitative agree-
ment with the linear predicted behaviour of sN vs. N :

sN = −2NΩωR/c2. Using the amplification property, this
method allowed us to detect rotations as slow as 0.05 Hz.

3.2 Simulation and reconstruction of the orthoradial
component of the velocity

As seen in Figure 3a, deviations from the solid rotation
prediction show up for large values of |x| i.e. on the edges
of the vortex. Indeed, below the cylinder, the flow is un-
bounded so that a discontinuity of the fluid orthoradial
velocity from uθ(r = R, z) = RΩ to zero for r > R is
not physical. To get a qualitative picture of the structure
of the mean flow, we used the FLUENT code, based on a
finite volume method, to simulate an incompressible and
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Fig. 4. Orthoradial component of the velocity: reconstructed from ∆φ7(x) using the algorithm described in the text (◦) and
simulated by the FLUENT code in a configuration close to the experimental one (thick dashed line). (a) z = 0. (b) z = −40 mm.

axisymmetric flow in a geometry as close to the experimen-
tal one as possible (blades, for instance, were not taken
into account but one may assume that far from the rotat-
ing disk, the mean velocity fields show the same features).
In such an axisymmetric geometry, the contribution of
the radial velocity ur(r, z) to the integral in equation (1)
is easily proven to be always zero, so that for a given
value of z, ∆φ(x) depends only on the orthoradial veloc-
ity uθ(r, z). The orthoradial velocity given by the simula-
tion was rescaled both in space and amplitude and used
for computing the phase distortion through equation (1).
As reported in Figure 3a, for z = 0, the phase distortion
computed from the simulated velocity field yields a bet-
ter approximation of the experimental data than the solid
rotation assumption around the edges of the vortex. This
gets more obvious as one goes deeper below the cylinder:
for z = −40 mm, the flow can no longer be compared to a
solid rotation, whereas the corresponding simulated phase
distortion gives a good fit of the experimental one, except
for small values of r. These differences may be attributed
to the fact that in the numerical simulation, we could not
achieve such high driving frequencies Ωd as in the experi-
ment nor take into account the presence of blades. More-
over, the simulation was run in an axisymmetric, laminar
regime, whereas the experimental flow displays a preces-
sion motion, as shown in the next section.

Finally, to try and solve the inverse problem for
uθ(r, z), we built a simple reconstruction algorithm assum-
ing that the flow is axisymmetric. The rotational zone is
divided into p small concentric rings r ∈ [rj+1, rj ] where
uθ(r, z) is assumed to take some constant value uj. r1 is
the edge of the vortex, rp+1 the center, and p+2 the num-
ber of experimental data points (see Fig. 1). The phase
distortion ϕi = ∆φ(xi+1) sampled at the transducer po-
sition xi+1 can then be computed through a discretized
version of equation (1). Indeed, equation (1) turns into
a linear system ϕi = Mi,j uj , where Mi,j accounts for
the propagation of the acoustic ray R(xi+1) inside the jth

Fig. 5. Phase distortion measurements inside the cylinder with
Ωd/2π = 2.8 Hz and z = 90 mm at times t1 = 0.71 s (◦) and
t2 = 0.98 s (•).

ring:

Mi,j = −2
ω

c2

∫ yi,j

yi,j+1

cos(u,n) dy

= −2
ω

c2
ri+1 ln

[
yi,j + rj

yi,j+1 + rj+1

]
for i ≥ j, (2)

where yi,j =
√
r2
j − r

2
i+1. Since M is an invertible, tri-

angular matrix, uj is easily reconstructed from the ex-
perimental values of ϕi. To achieve a good reconstruction,
however, the experimental phase data had to be smoothed
by averaging ϕi over its four nearest neighbours. The re-
sults are shown in Figure 4 for z = 0 and z = −40 mm,
together with the simulated orthoradial velocity used in
Figure 3. The agreement between the reconstruction and
the simulation is good. Differences for small values of r,
already noted in the phase distortion, also arise in the
reconstructed velocity profiles for the same reasons.
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Fig. 6. Precession motion of the vortex inside the cylinder. (a) Position of the center of the vortex x0 as a function of time (◦
and solid line) with Ωd/2π = 2.1 Hz and z = 90 mm. (b) Precession frequency Ωp/2π vs. driving frequency Ωd/2π at z = 90 mm
(◦). The straight line is Ωp/2π = 0.5Ωd/2π.

4 Real-time tracking of the vortex inside the
cylinder (z > 0)

Measurements of ∆φ(x) were also performed at a sam-
pling frequency of 15 Hz inside the cylinder where the flow
is strong enough to allow a fast detection without time-
reversal (flow velocities larger than 2 cm/s). Due to refrac-
tion at the water-Plexiglas interface, such measurements
had to be restricted to the range |x| < 8 mm. Figure 5
shows that ∆φ(x) is time-dependent i.e. that the vortex
is not stationary, and we tracked the abscissa x0(t) of the
center of the vortex (for which ∆φ(x0) = 0) as a function
of time. As seen in Figure 6a, the vortex undergoes a pre-
cession motion: x0 oscillates with a frequency Ωp/2π that
was estimated by Fourier transforming x0(t) over a total
recording time of about 35 s. Figure 6b shows that the
precession frequency is very close to half the driving fre-
quency for Ωd/2π ' 1−7 Hz. By moving the double TRM
along the z-axis, for a given driving frequency, the preces-
sion frequency was shown to remain constant whereas the
radius of the precession decreases with z (from 7 mm for
z = 50 mm to 4 mm for z = 90 mm). Such features of the
vortex precession are in qualitative agreement with previ-
ous observations on Von Kármán flows in slightly different
experiments [14,17]. Moreover, in a closed configuration
with two co-rotating disks, Pinton et al. [18] observed a
precession motion at Ωp ' 0.5(Ω1 + Ω2), where Ω1 and
Ω2 are the rotation frequencies of the disks, which is con-
sistent with our results when taking Ω1 = Ωd and Ω2 = 0
i.e. when only one of the two disks is rotating.

5 Conclusions and perspectives

From the above results, the double TRM turns out to be a
powerful tool for the investigation of hydrodynamic flows,
both through its ability to amplify very small vorticity
fields and through its real-time possibilities. This set-up
also enabled us to achieve an accurate reconstruction of
the orthoradial component of the velocity. Time-reversal

experiments on more complex, unstationary flows and ef-
forts to perform faster measurements and 2D tomography
of fluid flows using circular transducer arrays are currently
under progress in our laboratory.

The authors are very grateful to J.-L. Aider, Y. Couder, N.
Mordant, J.-F. Pinton, C. Prada, J.-L. Thomas, and J. de
Rosny for fruitful discussions.
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