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ABSTRACT:
Mechanical waves propagating in soft materials play an important role in physiology. They can be natural, such as

the cochlear wave in the inner ear of mammalians, or controlled, such as in elastography in the context of medical

imaging. In a recent study, Lanoy, Lemoult, Eddi, and Prada [Proc. Natl. Acad. Sci. U.S.A. 117(48), 30186–30190

(2020)] implemented an experimental tabletop platform that allows direct observation of in-plane guided waves in a

soft strip. Here, a detailed description of the setup and signal processing steps is presented as well as the theoretical

framework supporting them. One motivation is to propose a tutorial experiment for visualizing the propagation of

guided elastic waves. Last, the versatility of the experimental platform is exploited to illustrate experimentally origi-

nal features of wave physics, such as backward modes, stationary modes, and Dirac cones.
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I. INTRODUCTION

The mechanical behavior of soft materials plays a cru-

cial role in various physiological processes.1 For example,

the impact of the local stiffness of tissues during their devel-

opment,2 the stiffening of a tumor cell,3 and the non-linear

softening of arteries4 are customary mechanisms still under

investigation. Most biological tissues are soft and nearly

incompressible. Mimicking them requires fulfillment of

these two mechanical properties. In that regard, elastomers

are interesting candidates. Indeed, they cover a wide range

of mechanical properties, and they can be moulded into an

infinite variety of shapes. In plastic surgery, silicone rubber

has been adopted to reproduce the shapes and mechanical

properties of breasts, lips, or noses. In the cinema industry,

they have become a standard to form skin-masks.

Nowadays, silicone elastomers seem to be promising materi-

als to build artificial organs (such as vocal folds5 or hearts6),

soft robots,7,8 or even baromorph materials.9,10

Due to their nearly incompressible nature, these soft

materials present interesting dynamical properties involved

in the propagation of elastic waves: the longitudinal

waves are several orders of magnitude faster than their

transverse counterpart (VL � VT). This specificity has

enabled the development of transient elastography,11

which is now clinically used for liver cirrhosis12 or tumor

detection.13 However, elastography is not quantitative

when it deals with narrow targets, such as artery walls,14–16

the myocardium,17,18 the Achilles’ tendon,19 or even bio-

films.20 In these geometries, the edges induce guiding phe-

nomena, thus resulting in different apparent wave

velocities. Guided elastic waves are also naturally involved

in physiological processes. At the cellular scale, pressure

pulses are observed in lipid monolayers,21 and at the mac-

roscopic scale, the vocal cords are the support of stationary

waves.22 Another compelling example is the sound trans-

duction operated by the inner ear of mammalians: the

cochlear wave is a guided mechanical wave that travels

along the basilar membrane.23,24

Although guiding is a universal wave phenomenon, the

case of elastic waves is particularly fascinating: up to three

different polarizations can couple at each reflection,25 and at

least two distinct wave velocities are involved. Even in a

geometry as simple as a plate, elastic guided waves present

original properties. These waves have been extensively stud-

ied, especially for non-destructive testing applications.26,27

Under certain conditions, they display unique features, such

as negative phase velocities28,29 or zero-group velocity

(ZGV).30–33

This article presents a detailed experimental and theo-

retical framework for the investigation of the in-plane

motion in soft waveguides. First, an experimental platform

designed to track the in-plane displacement of a thin plate is

proposed. The corresponding theoretical background

(Rayleigh–Lamb equation) is exposed. Then an equivalence

between Lamb modes and the in-plane motion of a thin strip

is made. The strip configuration is investigated experimen-

tally as well. Unique wave features, such as a backward

mode, a ZGV point, and a Dirac cone in the k! 0 limit, are
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reported.34 As such, the soft strip appears as an appropriate

tutorial configuration to expose the richness of linear elasto-

dynamics. Finally, it is demonstrated how the mode chirality

can be exploited to perform selective excitation.

II. LOW FREQUENCY IN-PLANE GUIDED WAVES
IN A SOFT PLATE

This section examines the vibration of a thin plate made

of a nearly incompressible material. The experimental pro-

cedure is detailed, and the measured in-plane fields are pre-

sented. Then the theory supporting these measurements is

provided, recalling how the reflections of bulk elastic waves

at a free interface lead to the emergence of shear horizontal

guided waves and Lamb waves.

A. Experiments

The soft plate preparation and the experimental plat-

form are described. Then the stroboscopic image acquisition

and post-processing operations are explained, and the result-

ing in-plane wave-fields are discussed.

1. Sample preparation

Throughout this article, the selected soft elastomer is

the silicone rubber Smooth-On Ecoflex
VR

00-30, a material

that has been widely used in academics in the last few years.

As illustrated in Fig. 1, the rubber is obtained by mixing a

monomer (A) and its cross-linking agent (B). The liquid can

be vacuumed for air bubble removal (not performed here).

Next, the mix is poured onto a mould, here consisting of a

flat surface with rigid walls forming a 60-cm-side square.

For a 3-mm-thick EcoflexVR plate, one roughly needs 500 ml

of each liquid. The mixture is then left for curing at room

temperature for several hours until a translucent soft mate-

rial is obtained. Here, the monomer and its cross-linking

agent are mixed in equal quantities. Finally, the shear modu-

lus l of the obtained elastomer is approximately 25 kPa,

according to the datasheet, and checked with a tensile test.

Anticipating ulterior image processing operations, dark

pigments are seeded on the polymer during the curing stage.

A good contrast is obtained by using small black carbon

powder from a local art shop. The seeding operation can be

performed after pouring half of the total volume (t ¼ 10

min) and before pouring the other half (Fig. 1). In the end,

one gets a single layer of pigment located halfway through

the plate. In this study, the grain density is approximately

1 grain/mm2.

2. Experimental setup

The experiment consists in shaking the plate and imag-

ing its in-plane motion. To this end, the soft plate is clamped

at its top and bottom extremities into a metallic structure

(Fig. 2) whose dimensions can be adjusted to avoid static

tension, except from gravity.

The excitation is performed by a shaker (TIRAvib

51120, TIRA, Schalkau, Germany), driven by an external

arbitrary wave generator (AWG 33 220, Keysight, Santa

Rosa, CA), which is itself connected to a power amplifier

(analog amplifier BAA 500, TIRA). Typical excitation fre-

quencies span from 1 to 300 Hz. The shaker is connected to

a plastic clamp holding a pair of aluminum rods placed on

both sides of the soft plate. The two bars pinch the plate

over a 30 cm length, ensuring the generation of plane-like

waves. The shaker and the pinching rods can be rotated to

promote specific polarizations. The setup essentially cap-

tures displacements parallel to the (x1, x2) plane. As a conse-

quence, it is crucial to carefully align the vibration axis of

the shaker with the plate to avoid spurious out-of-plane

contributions. The motion is captured by a charge coupled

device (CCD) camera (acA4112-20um, Basler, Ahrensburg,

Germany) with a 4112� 3008-pixel sensor (Fig. 2).

FIG. 1. (Color online) Ecoflex
VR

sample preparation. At time t¼ 0, the monomer and its cross-linking agent are mixed in equal proportions, and a first layer

is poured in the sample mould. At t¼ 10 min, the sample is sprinkled with black carbon grains dedicated to the displacement tracking. At t¼ 2 h, a second

layer is poured and cures for 6 h until complete cross-linking.

FIG. 2. (Color online) Experimental setup using a line source. A thin plate

of Ecoflex
VR

with dimensions 60 cm � 60 cm� 3 mm is clamped to an

adjustable frame on its top and bottom edges and held in a vertical position.

Vibrations are generated by a shaker driven monochromatically. Both the

vibration direction and the source orientation can be adjusted to excite dif-

ferent polarizations. The experiment is recorded using a CCD camera

located 3 m away from the plate.
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Note that it is necessary to use a global shutter: all pixels are

exposed simultaneously and capture a full snapshot of the

scene. An 85-mm zoom lens mounted on the camera and

placed 3 m away from the object provides a clean field of

view of a roughly 30-cm-wide square. Narrow angle lenses

drastically reduce optical distortions. For an optimal con-

trast, the system is backlighted with a wide LED panel

placed behind the plate.

3. Monochromatic excitation and stroboscopy

Given the chosen region of interest, the maximum

acquisition frame rate of the camera is of roughly 130 Hz.

This means that Shannon’s criterion is not fulfilled for fre-

quencies higher than 65 Hz. However, in the linear regime,

there is no need for a higher speed camera since strobo-

scopic effect can be exploited. To that end, the acquisition

period of the camera Tcam is set slightly greater than the

excitation period Texcitation, i.e., Tcam ¼ Texcitation þ dt.
Between two successive snapshots, the field undergoes more

than a full oscillation period, yet the accumulated phase shift

2pdt=Texcitation remains small. The final movie provides the

illusion than the successive snapshots belong to a single

wave period (sketch in Fig. 3). We refer to this quantity as

the pseudo-period.

For the following post-processing steps, it is preferable

to work with a given number of images per movie. The mea-

surements are performed setting this quantity to N¼ 60

frames over one pseudo-period. This means that the acquisi-

tion frame rate has to be determined for each different exci-

tation frequency. If the maximum frame rate of the camera

is too low, one can always reduce the sampling frequency

by waiting for several excitation periods between successive

camera triggers. For example, at 100 Hz, an acquisition sam-

pling rate of precisely 24.8963 Hz would yield 60 frames

regularly spaced within one pseudo-period (the 61st should

be the same as the first image), and successive shots occur

roughly every four periods. Note that the exposure time of

the camera should always remain much smaller than the

excitation period. The image would be blurred otherwise.

Our measurements are performed with a typical exposure

time of 150 ls. The image quality is seriously hampered

above approximately 300 Hz.

In addition to these N frames, a reference image should

be captured as the sample is at rest for image processing

purposes.

4. Extraction of the complex displacement maps

Next, each of the N frames is compared to the reference

by use of an open source digital image correlation (DIC)

algorithm,35,36 which provides the instantaneous displace-

ment (Fig. 4). The correlation is computed on small image

regions, called macropixels. Each macropixel yields one dis-

placement vector (u1, u2). By repeating the operation for all

the macropixels of a single frame, two displacement maps

are obtained [Figs. 4(e) and 4(f)]. The macropixel size is set

manually. It should be large enough to contain several seeds

while remaining smaller than the wavelength. Here, macro-

pixels extending over 25 pixels� 25 pixels of the original

image are chosen, i.e., a size of 2.5 mm. Sometimes, the

algorithm fails to find a realistic solution for a given macro-

pixel. In that case, one can always spatially interpolate the

missing information or apply a spatial convolution filter to

smooth the displacement maps. Note that the DIC algorithm

enables sub-pixel resolution. For example, displacements

down to 5 lm are measured when a single image pixel cor-

responds to 100 lm on the plate.

The knowledge of the displacement maps gives the

opportunity to build a magnified version of the deformed

image as in Fig. 4(c). This can be very useful for visualizing

the propagation of waves or for teaching. For communica-

tion through writing as in this article, a separate representa-

tion of the two components of the displacement as a color

code [Figs. 4(d) and 4(e)] is preferred.

At this stage, for a given excitation pulsation x, a series

of N displacement matrices uðnÞðrÞ are obtained, where

n 2 ½0;N � 1� refers to the frame index. From this series, the

complex monochromatic displacement is computed as follows:

uðr;xÞ ¼ 1

N

XN�1

n¼0

uðnÞðrÞe2inp=N: (1)

The data contained in 60 memory-consuming frames of

thousands of pixels have been reduced to the knowledge of

a single complex matrix of a few hundred points.

5. Measured in-plane modes

With the setup of Fig. 2, field maps are acquired in an

area of 17 cm� 2.4 cm below the clamp (dashed area in the

same figure). Figure 5 gathers the real parts of the extracted

displacements for an excitation frequency of 120 Hz. Three

different vibration orientations (vertical, horizontal, and

45�) are investigated, while the 30-cm-wide clamp is main-

tained horizontal.

FIG. 3. (Color online) Principle of the stroboscopic imaging. As the record-

ing frame rate is lower than the excitation frequency, one full cycle is

reconstructed from the measurements, depicted by the red crosses, taken

over several cycles of excitation. The sampling rate has to be precisely

defined with respect to the driving frequency.
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In the left part of the Fig. 5, for which the vibration is

vertical, u2 cancels everywhere in the measured area: the

motion is purely vertical (along the x1 axis). Also, u1 exhib-

its a periodic pattern along the x1 direction and a flat profile

along the x2 direction, and the phase travels toward the bot-

tom (not shown here). This measurement corresponds to a

plane wave-like pattern (with a wavelength k of roughly

10 cm) with both the displacement and the wavevector being

parallel to x1. The plate thus supports an in-plane guided

elastic wave that we can qualify as longitudinal. Similarly,

the horizontal excitation along the x2 axis of the clamp

(middle column in Fig. 5) generates a plane wave-like

propagation with a polarization parallel to x2, that can be

qualified as a transverse wave. Interestingly, its wavelength

is exactly half the wavelength of its longitudinal counter-

part. The versatility of this experimental platform is

highlighted in the right panel of Fig. 5. Indeed, instead of

selectively exciting each type of plane wave, a motion of the

clamp along a 45� tilted direction excites simultaneously the

two waves: with one measurement, several modes can be

retrieved.

Finally, a systematic extraction of the two aforemen-

tioned plane waves for frequencies ranging from 50 to

roughly 300 Hz is performed. For each frequency, the

FIG. 4. (Color online) Principle of displacement extraction through a DIC algorithm. (a) Example of a reference image. The black seeds provide a texture
enabling the DIC analysis. The displacement is computed for each position (crosses) by applying the DIC algorithm over the shaded area. (b) As the shaker

is turned on, the image is deformed. The displacements are barely noticeable by eye (typically 10 lm). The DIC algorithm computes the correlation between

the deformed and the reference images. (c) Output of the DIC algorithm. A displacement vector is computed for each macropixel. (d) This displacement is

used to build a magnified distorted image where displacements appear clearly. The motion is magnified by a factor of 50. [(e) and (f)] Vertical (respectively,

horizontal) displacement maps.

FIG. 5. (Color online) Measurement

of in-plane waves in a soft plate.

Displacement fields in both vertical (u1)

and horizontal (u2) directions were

measured for three excitation directions

with a forcing frequency f ¼ 120 Hz.

The source oscillates vertically (left),

horizontally (middle), or at 45� (right)

as indicated by the white arrows. The

color bar indicates the magnitude of

the in-plane displacements in the elastic

plate.
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maps are averaged along the x2 axis, meaning projected

onto a plane wave. Then the maximum of the spatial

Fourier transform of the profile along x1 provides the

wavenumber k ¼ 2p=k (with k the wavelength) of a mode.

This way, a dispersion diagram (i.e., frequency as a func-

tion of wavenumber) is constructed for the two polariza-

tions in Fig. 6. Both the dispersion curves appear to be

straight lines passing through the origin. They correspond

to a non-dispersive propagation, i.e., a propagation at a

constant phase velocity. The factor of 2 between the wave-

lengths here appears as a factor of 2 between the two

slopes: the longitudinal mode travels twice as fast (12 m/s)

as the transverse one (6 m/s).

In the higher part of the measured frequency range, the

experimental points slightly move off the linear behavior.

The rheology of the polymer is the origin of this deviation, as

explained in Sec. III C, but it remains anecdotal at this stage.

B. Theoretical background

These observations can be explained with a simple the-

oretical description. The propagation of elastic waves in iso-

tropic solids is a well-documented topic. Comprehensive

developments can be found in textbooks.25,37

1. Bulk waves

The elastodynamics of a homogeneous isotropic solid

requires the knowledge of at least two elastic moduli. For

historical reasons, people usually refer to the Lam�e con-

stants k and l.38 However, these two constants can be

substituted by any other couple of elastic coefficients, such

as the Young modulus E, the bulk modulus K, or the

Poisson’s ratio �. The case of nearly incompressible media

corresponds to the limit when � ! 1
2
. Knowing that

� ¼ k=ð2ðkþ lÞÞ, this amounts to k� l in terms of the

Lam�e constants.

By combining Newton’s law of motion and Hooke’s

law applied to an infinitesimal volume, one finds that the

local displacement field uðr; tÞ obeys the following vector

wave equation:

q
@2u

@t2
¼ ðkþ lÞrðr � uÞ þ lDu; (2)

where q stands for the mass density of the solid, and r is

the gradient operator. In this equation, the three components

of the displacement field are coupled. To decouple the equa-

tions, it is common to introduce the scalar potential / and

the vector potential W as

u ¼ r/þr�W: (3)

The component r/ corresponds to an irrotational vector

field, while the component r�W is associated with a

divergence free field, i.e., a deformation without any volume

change. These two potentials are independent and satisfy the

following decoupled wave equations:

@2/
@t2
� kþ 2l

q
D/ ¼ 0; (4)

@2W
@t2
� l

q
DW ¼ 0: (5)

These d’Alembert equations confirm the propagation of

two different types of waves with distinct polarizations and

velocities. On the one hand, Eq. (4) corresponds to a longi-

tudinal wave propagating at velocity VL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
and with a displacement parallel to the propagation direc-

tion. On the other hand, Eq. (5) stands for transverse (or

shear) waves propagating at the velocity VT ¼
ffiffiffiffiffiffiffiffi
l=q

p
with

displacements perpendicular to the propagation direction.

Ecoflex
VR

00–30 has a measured39 longitudinal velocity of

approximately 1000 m/s, while the shear wave velocity is

about 5 m=s. This high contrast between the two velocities

(VL � VT) confirms its incompressible nature as

� ¼ VL
2 � 2VT

2

2 VL
2 � VT

2ð Þ �
1

2
: (6)

2. Reflection at a free interface

The problem of reflection at an interface reveals the

richness of the elastodynamics. Consider an incident plane

wave propagating in the plane (x1, x3) impinging on a

medium interface at x3 ¼ 0 [Fig. 7(a)]. As elastic waves have

three polarizations, the reflection at the interface gives rise to

three different plane waves. However, the so-called SH wave

with displacement along the x2 direction (u1 ¼ u3 ¼ 0) can

only be generated as a reflection of a SH wave as sketched in

Fig. 7(a). On the contrary, longitudinal and SV waves (by

FIG. 6. (Color online) Experimental dispersion curves of in-plane modes in

a 3-mm-thick soft plate. A vertically polarized (blue) and a horizontally

polarized (green) non-dispersive mode are retrieved. The vertically polar-

ized mode propagates twice as fast as the horizontally polarized one.
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opposition to the SH ones) with displacements in the plane

(x1, x3) are coupled through reflections at the interface.

Reflection at one interface is the entrance door to

more complicated wave phenomena, and notably wave-

guiding that occurs as a second interface, parallel to the

first one, is added. As sketched in Fig. 7(b), the separation

between the SH waves and the two others remains valid in

this configuration. Sections II B 3 and II B 4 describe the

two families of modes that can propagate in a soft plate of

thickness 2h.

3. SH guided waves

The case of SH guided waves is relatively simple

because their dispersion curves map those of the well-

known acoustic waveguides. Indeed, as all displacements

occur along the x2 axis, the problem becomes a scalar wave

problem. Applying the translational invariance along the x1

axis, one seeks monochromatic solutions of the form

uðr;xÞ ¼
0

u2ðx3;xÞ
0

0
@

1
Aeikx1 : (7)

Assuming that the interfaces at x3 ¼ 6h are free to move,

the stress component T23 at these interfaces vanishes,

T23ðx3 ¼ 6hÞ ¼ l
@u2

@x3

����
x3¼6h

¼ 0: (8)

Solving the wave equation [Eq. (2)] for shear waves together

with these boundary conditions provides the solutions for

the guided SH waves inside the plate,

u2ðx3;xÞ ¼ C cos
np
2h
ðx3 � hÞ

� �
; (9)

where C is a scalar constant. And the dispersion relation

simply writes

k2 ¼ x
VT

� �2

� np
2h

� �2

: (10)

Such a dispersion relation (Fig. 8) exhibits a non-dispersive

mode, denoted SH0, propagating at all frequencies at the

shear velocity VT, as well as dispersive propagating modes

above their respective cutoff frequencies of fcn
¼ nVT=4h.

For a thickness of 3 mm and a shear velocity of roughly 5 m/s,

the first cutoff frequency is at 833 Hz, far above the measured

frequencies in the experimental part. Thus, the displacement

field displayed in Fig. 5 polarized along the x2 direction corre-

sponds to this SH0 mode. This transverse mode has already

experimentally demonstrated its non-dispersive nature in

Fig. 6 (green line).

4. Lamb waves

Due to the coupling at each reflection, the case of longi-

tudinal waves and SV ones is more complicated. However,

the calculation steps to establish the dispersion relation and

the solutions remain similar. Here, it is preferable to start

back from the scalar and vector potentials / and W.

Applying some geometrical arguments, their expressions

can be simplified. First, the invariance by translation along

x1 implies the dependence on x1 to be on the form eikx1 .

Second, the component of the displacement u2 is zero, and

the other components should not depend on x2. Third, the

plane x3 ¼ 0 is a symmetry plane, so the solutions should be

either symmetric or anti-symmetric. Considering all of these

simplifications and solving the wave equations [Eqs. (4)

and (5)], their analytical formulations write

/ðr;xÞ ¼ /0 cos ðpx3 þ aÞeikx1 ;

Wðr;xÞ ¼ w2 sin ðqx3 þ aÞeikx1 x2;

(
(11)

FIG. 7. (Color online) Reflection at a free interface and mode coupling. (a)

Reflection of a shear horizontal (SH) wave at an interface does not generate

out-of-plane displacements, while longitudinal (L) and shear vertical (SV)

waves couple. (b) When multiple reflections occur, SH waves remain inde-

pendent, while L and SV waves couple, leading to a new family of modes,

namely, Lamb waves.

FIG. 8. (Color online) Theoretical dispersion curves of SH waves. The SH0

mode is non-dispersive with a velocity VT, while higher modes appear at

cutoff frequencies corresponding to every multiple of VT=4h.
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with p2¼ðx=VLÞ2�k2 and q2¼ðx=VTÞ2�k2. Symmetrical

solutions correspond to a¼0, and anti-symmetrical ones

correspond to a¼p=2. From these potentials, the displace-

ments are now

uðr;xÞ ¼
u1ðx3;xÞ

0

u3ðx3;xÞ

0
@

1
Aeikx1 ; (12)

with the two non-zero components being

u1ðx3;xÞ ¼ ik/0 cos ðpx3þ aÞ� qw2 cos ðqx3þ aÞ;
u3ðx3;xÞ ¼�p/0 sin ðpx3þ aÞþ ikw2 sin ðqx3þ aÞ:

(
(13)

The dispersion relation of these modes is deduced from

the boundary conditions. Assuming free boundaries at both

interfaces x3 ¼ 6h, the stresses T13 and T33 must each can-

cel, which implies

ðk2 � q2Þ/0 cos ðphþ aÞ ¼ 2ikqw2 cos ðqhþ aÞ;
ðk2 � q2Þw2 sin ðqhþ aÞ ¼ 2ikp/0 sin ðphþ aÞ:

(
(14)

Non-trivial solutions for /0 and w2 are found when the

determinant of this system vanishes. Under these circum-

stances, u1 and u3 are described with a single scalar coeffi-

cient C as

u1ðx3;xÞ ¼ Cq
2ik

k2 � q2
cos ðqhþ aÞ cos ðpx3 þ aÞ

�

þ cos ðphþ aÞ cos ðqx3 þ aÞ
�
;

u3ðx3;xÞ ¼ iCk
2ip

k2 � q2
cos ðqhþ aÞ sin ðpx3 þ aÞ

�

þ cos ðphþ aÞ sin ðqx3 þ aÞ
�
;

8>>>>>>>>>>><
>>>>>>>>>>>:

(15)

and the dispersion relation, known as the “Rayleigh–Lamb

equation,” is

ðk2 � q2Þ2 sin ðqhþ aÞ cos ðphþ aÞ

¼ 4k2pq sin ðphþ aÞ cos ðqhþ aÞ: (16)

Unfortunately, the Rayleigh–Lamb equation (Eq. 16) does

not have general analytical solutions, and it must be solved

numerically. A Muller algorithm40 is used to find the roots

of this equation for the nearly incompressible soft plate con-

sidered here. The dispersion curves displayed in Fig. 9 high-

light the families of symmetric and anti-symmetric modes.

Below the first cutoff frequency of VT=4h � 833 Hz, only

two modes exist: the anti-symmetric A0 and the symmetric

S0 modes. While the A0 dispersion curve is parabolic in the

low frequency limit, the S0 mode is non-dispersive.

The displacements of these modes given by Eq. (15)

can also be simplified in the limit kh! 0. For A0, one

finds

u1ðx3;xÞ ¼ iC0kx3 þ oðkÞ;
u3ðx3;xÞ ¼ C0 þ oðkÞ;

(
(17)

where the new constant C0 has been introduced without los-

ing generality. The displacement u3 is homogeneous across

the thickness, and the displacement u1 is relatively negligi-

ble (kx3 ! 0). This mode, generally called flexural mode, is

therefore mostly a transverse vertical mode. It is not mea-

sured in the previous experiment since the shaker is aligned

to avoid out-of-plane displacements.

Taking the limit for the S0 mode gives

u1ðx3;xÞ ¼ C0 þ oðkÞ;
u3ðx3;xÞ ¼ iC0kx3 þ oðkÞ:

(
(18)

This time, the displacement u1 is homogeneous across the

plate and is far greater than the displacement u3. In a sense,

in this low frequency limit and long wavelength approxima-

tion (compared to the thickness), the S0 mode is seen as a

longitudinal mode. Its phase velocity, known as the plate

velocity, is given by

VP ¼ 2VT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� VT

VL

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffi

2

1� �

r
VT : (19)

The surprising feature is that, in the incompressible limit,

the phase velocity of S0 simplifies to VP ¼ 2VT . It is thus

independent of the longitudinal velocity VL despite its

apparent longitudinal polarization. This mode corresponds

to the measured displacement u1 presented in Fig. 5, which

has twice the wavelength of the SH0 mode. This analytical

FIG. 9. (Color online) Theoretical dispersion curves of Lamb waves in a

nearly incompressible material. Shown are dispersion curves of the sym-

metric (blue) and anti-symmetric (red) Lamb modes. In the low frequency

range, the S0 mode is non-dispersive with a velocity VP ¼ 2VT , while the

A0 dispersion curve is parabolic. Higher modes exhibit cutoff frequencies

corresponding to every multiple of VT=4h.
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derivation now explains the ratio of 2 observed in the exper-

imental dispersion curves in Fig. 6.

III. IN-PLANE GUIDED WAVES IN A SOFT STRIP

In this section, a different geometry is considered: a thin

rectangular waveguide made of the same nearly incompress-

ible material. It is obtained by a parallel cutting of the previ-

ous plate. First, an analogy is made between this geometry

and the plate geometry already described. Notably, the dis-

persion of in-plane modes propagating in this strip is shown

to be similar to the one of Lamb waves propagating in an iso-

tropic plate with a longitudinal wave velocity being exactly

twice the shear wave velocity. Then the experimental results

already reported in Lanoy et al.34 are presented. The proce-

dure used to separate the modes to obtain their profiles as

well as their phase velocities is thoroughly described.

A. Theoretical framework

The theory of elastic modes propagating in rectangular

waveguide is not straightforward. As this geometry involves

three coupled polarizations, obtaining the full dispersion

diagram can be challenging.41 Thanks to the

Rayleigh–Lamb approximation,42,43 the problem drastically

simplifies as one deals with the in-plane modes of a strip

with a large aspect ratio. This part addresses this problem in

the specific case of a soft solid.

1. Analogy with Lamb waves in a plate

As explained in Sec. II, at low frequencies, only three

modes propagate in a plate: the first SH mode SH0 (Fig. 8)

and the symmetric S0 and anti-symmetric A0 Lamb modes

(Fig. 9). They have uniform profiles across the plate and can

roughly be considered as linearly polarized. In particular, S0

can be seen as a pseudo-longitudinal wave propagating at

the constant “plate” velocity VP. Besides, as shown in Eq.

(13), for nearly incompressible materials, the plate velocity

is VP ¼ 2VT . A0 is essentially polarized along the x3 axis. As

a consequence, it is unaffected by a reflection at the strip

edge [Fig. 10(a)]. On the contrary, SH0 and S0, which are

polarized in the (x1, x2) plane, can couple at the edge.

Adding a second edge to form a ribbon of width 2h0

[Fig. 10(b)], SH0 and S0 give rise to in-plane guided modes.

As shown in Sec. III of Ref. 42, this coupling is similar to

the one of shear and compression bulk waves in a plate.

These observations enable us to build an analogy between

Lamb waves in a plate and in-plane guided waves in a thin

strip. In other words, the dispersion diagram for low fre-

quency in-plane guided waves in a strip is equivalent to the

one for guided waves in a plate. In the following descrip-

tions, the prime symbol will be added to the notations when

dealing with the strip configuration. The plate thickness 2h
is replaced by the strip width 2h0, the longitudinal wave

propagating at VL is replaced by the linearly polarized in-

plane wave S0 propagating at velocity VP (i.e., V0L ¼ VP),

and the SV wave propagating at VT is replaced by the trans-

versely polarized in-plane wave SH0 propagating at VT (i.e.,

V0T ¼ VT), as summarized in Table I.

This amounts to solving the Lamb problem for a mate-

rial of equivalent Poisson’s ratio,

�0 ¼ �

1þ � ; (20)

where � is the Poisson’s ratio of the strip material. For incom-

pressible materials, the equivalent Poisson’s ratio is �0 ¼ 1=3,

and the knowledge of VT is sufficient to obtain the full disper-

sion diagram of the in-plane guided waves in the low fre-

quency range. Like for Lamb waves, solutions are separated

into two families of modes that are either symmetrical (S0) or

anti-symmetrical (A0) with respect to the x2 ¼ 0 plane.

2. Dispersion relation: Key physical features

The dispersion curves of the in-plane modes propagat-

ing in a soft strip are thus obtained by finding the roots of

the Rayleigh–Lamb equations (Eq. 16). The solutions are

displayed in Fig. 11 in normalized units. Several interesting

properties deserve to be highlighted.

a. Bar velocity. The first symmetrical mode, denoted

S00, is approximately non-dispersive for frequencies below

the first cutoff frequency. Similarly to the first symmetric S0

Lamb mode, S00 can be seen as a longitudinally polarized

mode since it corresponds to a pure compression mode of

the ribbon. Its phase velocity can be calculated as a pseudo-

plate velocity V0P. This velocity deduced from Eq. (19) has a

remarkably simple formulation,

V0P ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2

1� �0

r
VT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ �Þ

p
VT : (21)

FIG. 10. (Color online) Mode coupling in a strip. (a) The edge reflection of

the A0 mode only generates A0, while S0 and SH0 waves couple. (b)

Multiple reflections lead to S0 and SH0 in-plane mode coupling in a manner

similar to that of shear and longitudinal waves coupling in an infinite plate.

TABLE I. Analogy between Lamb waves in a plate and in-plane guided

waves in a thin strip.

Guide

dimension

Longitudinal

velocity

Transverse

velocity

Symmetry

plane

Plate Thickness 2h VL VT x3 ¼ 0

Strip Width 2h0 V0L ¼ VP V0T ¼ VT x2 ¼ 0
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In the incompressible limit, it simplifies to V0P ¼
ffiffiffi
3
p

VT .

Interestingly, although polarized longitudinally at low fre-

quencies, the S00 velocity only depends on the transverse

velocity. This is all the more striking as, in the incom-

pressible limit, the transverse velocity happens to be sev-

eral orders of magnitude smaller than the longitudinal

velocity.

Furthermore, V0P also corresponds to the well-known

bar velocity, associated with the propagation of compression

waves along any bar or rod regardless of their cross section.

It can be obtained from intuitive reasoning. As it corre-

sponds to a longitudinal extension of the waveguide, the rel-

evant elastic modulus is the Young’s modulus E, and the

associated velocity is
ffiffiffiffiffiffiffiffiffi
E=q

p
. After injecting the expression

E ¼ 2ð1þ �Þl, one immediately gets Eq. (21). For a soft

material, the Young’s modulus simplifies to E ¼ 3l, and the

bar velocity again appears independent of VL.

b. ZGV and negative phase velocity. Like for Lamb

modes, the second symmetrical mode S01 has a remarkable

behavior. Indeed, the corresponding branch exhibits a local

minimum for a finite wavenumber. At this specific location,

the group velocity Vg ¼ dx=dk vanishes. This is the signa-

ture of a ZGV point. For small wave numbers, the S01 branch

has a negative slope. This indicates that the group velocity

is opposite to the phase velocity. Causality imposes that the

energy travels from the source to the receiver. As a conse-

quence, the group velocity should always remain positive.

In practice, this negative slope section cannot be measured.

The experimentalist rather accesses its symmetric branch

with respect to the k ¼ 0 axis. This is further discussed in

Secs. III A 2 c and III A 2 d.

c. Dirac cones: Finite group velocity at k ! 0. In the

small wavenumber limit (k! 0), the branches of the disper-

sion curve become horizontal (e.g., the Lamb modes in the

plate of Fig. 9). The dispersion relation xðkÞ is quadratic

around the cutoff pulsation xc. As shown by Mindlin,44 this

expansion does not hold for Lamb modes when there is a

coincidence between a shear and a longitudinal cutoff fre-

quency of the same symmetry. In these particular cases, the

dispersion law is linear in the limit k ! 0 and approximates

to the first order in k as

xðkÞ ¼ xc þ Vgk þ oðkÞ: (22)

Such coincidences occur for symmetrical modes S2mþ1 and

S2n, when the bulk velocity ratio VL=VT is equal to

2n=ð2mþ 1Þ, and for anti-symmetrical modes A2mþ1 and

A2n, when VL=VT ¼ ð2mþ 1Þ=2n. For example, recent

experiments conducted in a cooled aluminum plate

(VL=VT ¼ 2) by Stobbe and Murray45 illustrate this linear

dispersion near k ¼ 0. For modes S1 and S2, the linear slopes

of the curve xðkÞ can be derived by developing Eq. (16) to

the first order, and it was found44 to be Vg ¼ 62VT=p.

The Lamb wave approximation for in-plane modes in a

thin soft strip (i.e., �0 ¼ 1=3) reveals a coincidence fre-

quency for the symmetrical modes S01; S
0
2. As a result, these

two modes cross linearly at the normalized frequency

f 2h0=VT ¼ 1 in Fig. 11. This linear crossing is also referred

to as a Dirac cone.46,47

d. Displacement near the Dirac cone. From Eq. (15),

one can determine the displacements close to the cutoff fre-

quencies. For the strip configuration, index 3 must be

replaced by 2, h by h0, and p by p0, such that

p02 ¼ ðx=VPÞ2 � k2. The Taylor expansion of coefficients p0

and q near the value k ¼ 0 are

p0 ¼ p
2h0
þ Vg

2VT
k þ oðkÞ;

q ¼ p
h0
þ Vg

VT
k þ oðkÞ:

8>><
>>: (23)

Using s as the sign of the group velocity, the Taylor expan-

sion of the displacement components at the coordinate point

x2 becomes

u1ðx2;xÞ ¼ C
p
h0

cos
p
h0

x2

� �
þ OðkÞ;

u2ðx2;xÞ ¼ �isC
p
h0

sin
p

2h0
x2

� �
þ OðkÞ;

8>>>><
>>>>:

with s ¼ signðVgÞ. For ordinary cutoffs, the displacement is

either purely longitudinal or purely transverse. Instead,

when there is a coincidence, both polarizations are involved.

The factor i between the two components denotes an ellipti-

cal polarization. At the specific location x2 ¼ 6h0, the polar-

ization becomes purely circular. The factor s indicates that

modes of opposite group velocities are associated with

opposite rotation directions.

FIG. 11. (Color online) Theoretical dispersion curves of in-plane modes in

a soft strip. Shown are dispersion curves of symmetric (gray, labeled S0)
and anti-symmetric (blue, A0) modes without damping. From these curves,

one can extract the bar velocity (mode S00 at low frequencies) and show a

ZGV point (S01) and a backward branch as well as a Dirac cone with a finite

group velocity at k¼ 0 (at f ¼ VT=2h0).
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B. Measurements in a soft strip

The soft plate is now replaced with a soft strip. The

edges are cut using a laser cutter (Speedy 100 engraver,

Trotec, Marchtrenk, Austria). The final strip dimensions are

60 cm, 2h0 ¼ 4 cm, and 3 mm along x1, x2, and x3 directions,

respectively. The wide source is replaced with a point-like

clamp, obtained by putting two half-spheres in contact. The

clamp is slightly off-center and vibrates along the x1 axis. A

picture of the setup34 is given in Fig. 12.

Here, again, the strip is shaken monochromatically for

frequencies ranging from 1 to 200 Hz. The camera captures

the motion by following the stroboscopic sketch pictured in

Fig. 3. Finally, the displacement field is extracted by apply-

ing the DIC algorithm to the successive snapshots. For

example, the obtained field maps at 110 Hz are represented

in Fig. 13. The wave pattern is rather different from the one

obtained in the plate experiment. This comes from a super-

position between several modes with different propagation

constants and spatial profiles.

Separating and identifying them requires two additional

post-processing steps schematized in Fig. 13. First, the sym-

metrical and anti-symmetrical parts are extracted by, respec-

tively, summing or subtracting the displacement map with its

flipped (along the x2 direction) counterpart. The concatenation

of these field maps yields to the construction of two bigger

matrices U (top of Fig. 13), one for each type of symmetry.

FIG. 12. Experimental setup using a point-like source. A thin strip (L¼ 60 cm,

2h0 ¼ 40 mm, 2h ¼ 3 mm) is held vertically. A shaker excites in-plane dis-

placements propagating in the strip.

FIG. 13. (Color online) Mode separation via singular value decomposition (SVD). The in-plane displacement components u1 and u2 (top left) are projected

onto their symmetrical and anti-symmetrical parts (top right). Data are then concatenated into a single complex matrix Usym (respectively, Uantisym) on which

the SVD is directly applied. After extracting the most significant modes (singular values above a 10% threshold), we obtain (here at 110 Hz) one symmetri-

cal (S00) and two anti-symmetrical (A00 and A01) modes.
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Then a SVD is performed on each matrix. This amounts to

the following matrix decomposition:

U ¼ VRW; (24)

where V and W are unitary matrices providing the displace-

ment profiles along x2 and x1, respectively, and R is a diago-

nal matrix providing the singular values (i.e., the mode

prominence in the overall measurement). The ith column of

V is noted Vi, and the ith line of W is noted Wi. As a selec-

tion criterion, all modes associated with singular values of at

least 10% of the maximum singular value are considered as

meaningful. The other ones are rejected. At 110 Hz (see

Fig. 13), three modes have a relevant contribution: two sym-

metrical modes and one anti-symmetrical. Since W gives

the displacement profile along the propagation direction

(x1), its Fourier transform yields the wavenumbers of the

contributing modes.

These steps are repeated for all frequencies, and the dis-

persion curves represented as symbols in Fig. 14 are con-

structed. As stated earlier, in the experiments, one measures

negative phase velocities rather than negative group veloci-

ties. This is the reason why the horizontal axis covers nega-

tive values.

C. Discussion

Overall experimental dispersion curves in Fig. 14 rela-

tively resemble the theoretical one in Fig. 11, and most of

the discussed key features are visible. Indeed, the bar veloc-

ity of the strip (mode S00 at low frequency) matches the

expected value of
ffiffiffi
3
p

VT (where VT is deduced from the SH0

velocity measured in the plate of Fig. 5). At 150 Hz, S02
crosses the axis k¼ 0 with a linear slope: this is a Dirac

cone. Note that, below the Dirac frequency, the measured

points have negative wavenumbers: this is a signature of a

negative phase velocity. The continuity in the measured

points naturally leads to labeling this backward branch S02b

(“b” for backward). This may appear to be in contradiction

with the dispersion curves for lossless material shown in

Fig. 11, where the backward mode belongs to the S01 branch.

However, when the complex wave numbers are displayed as

done by Mindlin for Lamb modes,48 it clearly appears that

the backward branch is connected to S02 mode even when the

cone does not exist;44 thus, this notation is adopted in sev-

eral papers.29,32,43,49

However, there are two main differences between the

theory in Fig. 11 and the experiment. First, the Dirac cone

should be at exactly 2h0=VT , but it matches neither the value

found from the bar velocity nor the value deduced from the

asymptotic behavior at high frequencies of A00 and S00.

Second, the ZGV point is not visible in the experiment.

These two differences both originate from the complex rhe-

ology of the elastomer.50

This rheology is measured with a conventional rheome-

ter (MCR501, Anton-Paar, Graz, Austria), which operates in

the plate-plate configuration. To this end, a different sample

of Ecoflex
VR

00–30 is cured in the rheometer itself. Both the

real and the imaginary parts of the measured shear modulus

for frequencies ranging from 0.1 to 100 Hz are displayed as

symbols in Fig. 15. In such a logarithmic scale, the imagi-

nary part of the shear modulus appears linear with a slope of

almost 1/3, while the real part seems to increase slowly.

Among all the available models, as the slope is not an inte-

ger, it balances for a fractional derivative model. One of the

simplest models that also satisfies the Kramers–Kronig rela-

tions is the fractional derivative Kelvin–Voigt model,51–53

which takes the form

FIG. 14. (Color online) Dispersion curves of in-plane modes in a free strip

(2h0 ¼ 39 mm). Shown are experimental (symbols) and theoretical (lines)

dispersion curves with damping (the more transparent the curve, the more

attenuated the mode). The Dirac cone (linear crossing of the k ¼ 0 axis)

and the backward modes (negative wavenumbers) are unambiguously evi-

denced, while the ZGV point has disappeared. The dashed line denoted by

an asterisk is drawn by symmetry and corresponds to a mode propagating in

the direction �x1.

FIG. 15. (Color online) Rheology of Ecoflex
VR

. Shown is measurement of

the complex shear modulus of Ecoflex
VR

in the range 0.1–100 Hz with a con-

ventional plane-plane rheometer (circles). <ðlÞ is the storage modulus of

the rubber, while =ðlÞ is its loss modulus. Lines correspond to the values

extracted from the dispersion curves (see the text).
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lðxÞ ¼ l0 1þ ðixsÞn
� 	

: (25)

This frequency dependent complex shear modulus is

injected into the Rayleigh–Lamb equation [Eq. (16)] using a

complex transverse velocity VTðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðxÞ=q

p
. Again,

solving this transcendental equation is not an easy task, and

its roots are found with the help of an internally developed

numerical Muller’s algorithm. The latter is run with several

sets of parameters of the rheological model until a satisfying

agreement between theory and experiment is reached. The

final set of parameters is l0 ¼ 26 kPa, s ¼ 260 ls, and

n¼ 0.33. It almost corresponds to the measured rheology

(Fig. 15) but slightly overestimates <ðlÞ. This discrepancy

can be attributed to temperature changes54 or to differences

(preparation or ageing) between the two samples.

The theoretical curves in Fig. 14 are calculated with

these parameters. The wavenumber is complex, and its

imaginary part is rendered by the transparency of the theo-

retical lines. The frequency dependence of <ðlÞ induces a

frequency dependence of the velocity VT, which allows one

to fit the entire S00; A00, and A01 branches. Adding the imagi-

nary part of the shear modulus also explains the lowered

Dirac frequency. As for the absence of ZGV points, it is

solely due to the viscous damping. While for a lossless

material, the S01 branch and the S0	2b (symmetrical to S02b with

respect to the k ¼ 0 axis) connect at the ZGV point, here,

the losses separate those two branches.

IV. GOING FURTHER

The fundamental aspects of the system have now been

identified. In this section, the experiment is altered to inves-

tigate the role of the boundary conditions. In the Dirichlet

configuration, the dispersion is found to simplify. After

examining the mode polarization, selective excitation is per-

formed by designing specific chiral sources.

A. Investigating Dirichlet boundary conditions

In Sec. II B 4, the analytical Lamb problem is derived

assuming free boundary conditions (Neumann configuration).

Here, the case of fixed boundaries (Dirichlet configuration) is

investigated. In practice, these conditions can be implemented

by clamping the strip in a rigid frame (Fig. 16).

1. Theory

a. Dispersion relation. From a theoretical point of

view, switching from Neumann to Dirichlet boundaries

amounts to replacing the strain cancellation condition of Eq.

(14) by a displacement cancellation condition as follows:

ik/0 cos ðp0h0 þ aÞ þ qw2 cos ðqh0 þ aÞ ¼ 0;

�p0/0 sin ðp0h0 þ aÞ þ ikw2 sin ðqh0 þ aÞ ¼ 0:

(
(26)

The equivalent of the Rayleigh–Lamb equation for rigid

boundaries is then

k2 sin ðqh0 þ aÞ cos ðp0h0 þ aÞ
þ qp0 sin ðp0h0 þ aÞ cos ðqh0 þ aÞ ¼ 0: (27)

The dispersion curves (Fig. 17) are obtained by searching

for the roots of this equation. Compared to the Neumann

case (Fig. 11), one important feature is the absence of prop-

agation at low frequency (A00 and S00 have disappeared).

Indeed, the rigid walls imply that no static in-plane defor-

mation can be the solution to the problem. However, the

cutoff modes (A01; S01; A02, etc.) still exist. Note that the neg-

ative sloped branch, the Dirac cone, and the ZGV are still

visible but for anti-symmetric modes rather than symmetric

ones.

Finally, the displacements can be obtained by eliminat-

ing the coefficients /0 and w2 in the boundary conditions of

Eq. (26),

u1ðx2;xÞ ¼ Cq cos ðp0h0 þ aÞ cos ðqx2 þ aÞ½
þ cos ðqh0 þ aÞ cos ðp0x2 þ aÞ�;

u3ðx2;xÞ ¼ �iC k cos ðp0h0 þ aÞ sin ðqx2 þ aÞ½
þ p0q cos ðqh0 þ aÞ sin ðp0x2 þ aÞ�:

8>>>><
>>>>:

(28)

Here, again, the p=2 phase shift between the two com-

ponents implies that the motion is elliptically polarized.

b. Dirac cone. The Dirac cone appears here for the

anti-symmetric modes at the same frequency fc ¼ VT=2h as

for the Neumann configuration. At this frequency, the

Taylor expansion of p and q are also given by Eq. (23).

FIG. 16. Boundary conditions. We study the Neumann (free edges) and

Dirichlet (fixed edges) boundary conditions.
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These expressions are substituted into the dispersion relation

[Eq. (27)], leading to the same expression for the group

velocity Vg ¼ 6ð2=pÞVT .

Also, Eq. (28) provides the Taylor expansion of the

displacements,

u1ðx2;xÞ ¼ �
p
h0

C sin
p
h0

x2

� �
;

u2ðx2;xÞ ¼ is
p
h0

C cos
p

2h0
x2

� �
;

8>>><
>>>:

(29)

where s indicates the sign of the group velocity. As

cos ðp=6Þ ¼ sin ðp=3Þ, a circular polarization occurs for

x2 ¼ 6h0=3, while it appears at x2 ¼ 6h0 in the Neumann

configuration.

2. Measurements in a clamped soft strip

a. Dispersion. The experiment is performed under the

same conditions as before. The strip is held along its edges

between two steel plates, and the separation between the

edges is adjusted to avoid buckling or static tension. The

excitation clamp is again slightly off-center and vibrates

along the x1 axis from 40 to 200 Hz. The same image anal-

ysis as in the free edges configuration allows extraction of

the experimental dispersion curves represented as symbols

in Fig. 18. The three modes expected in the measured fre-

quency range are retrieved, and the same observations as in

the free strip configuration can be made. First, the data

points around 129 Hz show a linear crossing of the axis

k ¼ 0, which evidences the existence of a Dirac cone for

the anti-symmetric modes. Second, points measured below

this cutoff frequency correspond to negative wavenumbers,

which is the signature of a backward mode. Here, again,

the continuity of the points across the Dirac cone logically

leads to attribution of the backward modes to the branch

A02, unlike what is indicated for the lossless medium theo-

retical curves (Fig. 17). This part of the curve is thus

referred to as A02b.

Just like for the Neumann configuration, the theory

provides a convincing agreement on the condition that the

complex rheology of the material is taken into account.

The value of <ðlÞ has an effect on the asymptotic slope of

the branches. The value of =ðlÞ affects the Dirac fre-

quency. In addition, the ZGV point is accurately defined

only when =ðlÞ ¼ 0. In this lossy material, two modes

with almost opposite wavenumbers coexist, which corre-

sponds to a quasi-ZGV point. The absence of an actual

ZGV point is evidenced by the disconnection between

branches A01 and A0	2b. This is a direct consequence of the

increase in losses near this point as rendered by the trans-

parency of the lines.

b. Tracking the displacement at the Dirac point. Shaking

the strip at 129 Hz (Dirac frequency), the in-plane motion

over a complete period was extracted for 25 positions regu-

larly spaced across the strip and located at a distance

x1 ¼ 18 cm from the source (far enough to avoid evanescent

contributions). After removing the symmetric contribution

and specifically selecting the A02 mode by use of the SVD

algorithm, one can reconstruct the full trajectories as shown

in Fig. 19(a). They appear to be essentially elliptical and

nearly circular at the location x2 ¼ 6h0=3 (red dashed lines),

which is in agreement with Eq. (29).

FIG. 17. (Color online) Theoretical dispersion curves of in-plane modes in

a clamped soft strip. Shown are dispersion curves of symmetric (gray,

labeled S0) and anti-symmetric (blue, A0) modes without damping. These

curves evidence a ZGV point (A01) and a backward branch as well as a Dirac

cone with a finite group velocity at k ¼ 0 and f ¼ VT=2h0.

FIG. 18. (Color online) Dispersion curves of in-plane modes in the clamped

strip (2h0 ¼ 50:6 mm). Shown are experimental (symbols) and theoretical

(lines) dispersion with damping (the more transparent the curve, the more

attenuated the mode). The A02 Dirac cone (linear crossing of the k ¼ 0 axis)

and the backward A02b modes (negative wavenumbers) are unambiguously

evidenced. The dashed lines labeled with an asterisk correspond to modes

propagating in the direction �x1 and are not measured.
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B. Selective excitation

1. One way excitation

In Sec. IV A 2 b, the A02 mode can be isolated during the

post-processing stage (by use of the SVD). Here, the selection

is directly performed during the generation stage. Curie’s

principle states that the resulting wavefield should at least

have the same symmetries as the source. As a consequence, a

vertically driven source placed in the middle of the strip only

feeds the symmetrical modes. The displacements over one

cycle for such an excitation at 136 Hz are represented in

Fig. 19(b). The only available symmetrical modes at 136 Hz

are S01 for the bottom part and S0	1 for the top one. The motion

is vertical in the center, while it remains elliptical everywhere

else as a consequence of the p=2 phase shift between the two

components [Eq. (28)]. However, the rotation directions are

different on either side of the source. This is consistent with

the fact that S01 and S0	1 are phase-conjugate partners.

To exploit this specific polarization, the single vertical

source is now replaced by two chiral sources [see Fig. 19(c)],

which are rotated in a symmetric fashion. The rotating sour-

ces are designed by connecting a clamp to two perpendicular

speakers, and the phase quadrature excitation is controlled

with a four-channel soundboard (Audiobox 44VSL, Presonus,

Baton Rouge, LA). The resulting trajectories [Fig. 19(c)]

demonstrate that S01 is fed but not S0	1 : the top part of the strip

remains still. Indeed, the rotation direction of the source cor-

responds to that of S01; it demonstrates how chirality can be

used to perform selective excitation. One can get a clearer

picture of the phenomenon by examining the field maps. The

12 successive snapshots of the strip over a full wave period

are represented next to each other in Fig. 20. The color scale

here only indicates the displacement u1. Just like for

Fig. 19(b), when the excitation is purely vertical, S01 and S0	1
are fed, and the whole strip is excited [Fig. 20(a)]. As the

source becomes chiral, only S01 is selected: waves travel in the

bottom part, while the top part is not excited [Fig. 20(b)].

2. Mode separation

Chiral selection can also be performed with anti-

symmetric modes. The strip is now shaken horizontally by two

clamps driven simultaneously at 102 Hz (near the quasi-ZGV

frequency) following an anti-symmetric scheme. The field

FIG. 19. (Color online) Trajectories. From the instantaneous motion, one can reconstruct the trajectory of a solid element over a full wave period. Here, we

specifically display the trajectories of elements distributed along the width of the strip at a distance x1 ¼ 18 cm (a), 610.5 cm [(b) and (c)] from the source.

The motion is magnified by a factor of 80 (a), 130 (b), and 180 (c). (a) The SVD allows separation of the A2 contribution and retrieval of the displacement at

the Dirac cone (at 129 Hz): a circular motion at positions 6h=3 is observed. (b) For a symmetrical input (at 136 Hz), only the symmetrical mode S1 and its

reciprocal counterpart S	1, which propagates in the opposite direction, are excited. (c) A chiral excitation, i.e., two sources placed at roughly 62h=3 and

driven circularly in a symmetric manner, permits feeding only S1, and no displacement is measured on the top.
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pattern in Fig. 20(c) (which here corresponds to the displace-

ment u2) reveals a stationary state: the zeroes of displacement

remain at the same position over a full excitation period

(dashed lines). This is possible only if two waves propagating

in opposite directions interfere on both sides of the strip.

According to Fig. 18, at this frequency, there are precisely two

coexisting modes on either side of the strip: A01 and A02b on the

bottom part and A0	1 and A0	2b on the top part. Near the quasi-

ZGV point, their wavenumber magnitudes become similar,

meaning that their interferences can give birth to a standing

wave.

As depicted in Fig. 20(d), when the clamps are rotated

in an anti-symmetrical manner, the wavefield returns to

propagative on both parts. And notably, the zeroes travel

toward the bottom on both sides (dashed lines). On the

upper part, the wave-fronts are backward, i.e., they move

toward the source, and therefore correspond to A0	2b. In the

bottom part, only A01 is fed, and the wave-fronts travel away

from the source. The chiral excitation has allowed here the

separation of the two components of a quasi-ZGV point.

V. CONCLUSION

This article introduces a new “playground” to study wave

guiding of elastic waves. It relies on the use of a commercial

silicon elastomer. Soft elastomers enable large displacements

and slow propagation, which drastically facilitate the experi-

mental procedure. With a few different configurations, we

show how this highly visual tool is adequate to explore wave

physics phenomena. Furthermore, their quasi-incompressible

nature enables the observation of original dispersion effects,

such as a Dirac cone.34 Starting with simple experiments of

linearly polarized plane waves propagating in a thin plate, it

ends with complex chiral mode selection near a quasi-ZGV

mode in a strip with clamped edges. This enables a simple

illustration of the theory of a scalar field guided by two

interfaces, namely SH modes, to more complex waveguides

where two waves with different velocities and polarizations

are coupled at each reflection, namely Lamb modes.

The work is not finished, and many other complex guid-

ing geometries can be envisioned. The nearly incompressible

nature of the medium being a property shared with most of

the biological tissues, analogies with elastic waves existing in

the living world can be made. At least three types of wave

guides can be identified in the human body. The cochlear

wave inside the inner ear of mammalians is supported by the

basilar membrane, which resembles the clamped strip studied

here. The vocal cords, whose vibrations are responsible for

sound control, could be the support of complex stationary

fields. Last, arteries or neuronal axons are fluid filled circular

soft waveguides also hosting interesting wave phenomena.
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