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Abstract – Time crystals are systems whose properties are periodically modulated in time. Among 
these, Floquet time crystals exhibit momentum gaps in their band structures, analogous to energy gaps 
in spatial crystals. Recently, time defects with a π-shift in the time modulation have been introduced 
theoretically as temporal analogues of spatial topological defects associated with localized edge modes. 
Here we perform experiments in a time periodic system using Faraday instability, a parametric 
excitation of a liquid bath by vertical shaking. Although time defects also trigger an exponentially 
decaying wave, we show that the analogy does not hold due to temporal causality and lack of energy 
conservation. However, these time defects provide an original way to explore momentum gaps and 
reveal their overdamped modes. 

 

Introduction. – A new research area was stimulated by 
Frank Wilczek in 2012 who postulated by analogy to the 
spontaneous breaking of spatial invariance in a crystal that 
periodic time structures could emerge spontaneously in 
classical or quantum systems[1,2]. It turned out that this was 
possible for periodically driven systems to spontaneously self-
organize and start evolving with a period different from the 
driving period. This has led to intensive theoretical and 
experimental developments on so-called discrete or Floquet 
time crystal[3–7]. Quantum Floquet time crystals have been 
implemented only recently in various quantum systems[8–14]. 
However, their classical counterparts have been known for 
quite a long time in astronomy[15], optics[16], 
mechanics[17,18] or fluid dynamics[19]. The first recorded 
demonstration of such a periodically driven system appears to 
have been that of Faraday instability in 1831[19]. The surface 
of a liquid bath submitted to a vertical sinusoidal shaking 
becomes unstable above a given acceleration threshold. 
Experiments with Faraday instability offer a great versatility 
and open a unique platform to investigate a large variety of 
condensed matter phenomena in the time domain beyond the 
self-organization and the breaking of time translation 
symmetry[20] like Anderson and many-body 
localization[21,22] or quasi-crystals[23]. Note that in the 
present paper, the term “time crystal” refers to a time symmetry 
breaking of the system whose dynamics responds at a sub-
harmonic of the parametric driving frequency. It does not hold 
all the properties associated to quantum time crystal.   

Very recently, it has been proposed to introduce topological 
concepts in the time domain[24,25]. The theoretical proposals 
in quantum time crystals[24] and in photonic time crystals[25] 
consisted in driving a system resonantly so that the emerging 
crystalline structure in time possess a symmetry protected 
topological phase. For spatial crystals, topologically protected 
edge states can be achieved by cascading two crystals with a 
topological defect which introduce a localized π-shift in the 
crystal periodicity (see Fig. 1a)[26]. The temporal analog could 
thus be obtained by introducing a similar π-shift defect in the 
time modulation, in which case localized exponentially 
decaying oscillations would be a signature of topological edge 
modes. 
Here, we study experimentally this π-shift time defect in a time 
periodic system using Faraday instability. The paper is 
organized as follow: we first introduce Faraday instability with 
the framework of a time crystal. We then present the 
experimental set-up and give evidence of exponentially 
decaying localized mode. We then discuss what the differences 
with their spatial analogs are and how these modes are related 
to Floquet modes rather than localized topological edge modes. 
Finally, we show that these time defects offer an original way 
to investigate the Floquet modes and characterize the concealed 
overdamped modes. 
 
Faraday instability as a time crystal. – The Faraday 
instability is observed when a liquid bath is vertically shaken 
above a given acceleration threshold. The surface then deforms 
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into a standing wave pattern which oscillates at half the 
excitation frequency[27]. When considering the liquid in the 
moving frame, the vertical acceleration of the bath is formally 
equivalent to a periodic modulation of gravity around its 
standard value. As it depends on gravity, the dispersion relation 
and thus the speed of the waves also undergo a periodic 
modulation. 

 

 

 

 

 

 

 

Fig. 1: (Colour on-line) a) Schematics of a time (𝑡)	or spatial 
𝑥  crystal showing a periodic modulation of the wave speed 

with time or in space respectively (top). Time or spatial defect 
in the form of a 𝜋-shift in the modulation (bottom) introduced 
between two time or space crystals respectively. b) Dispersion 
relation of the Faraday instability. Real part Re 𝜔 /𝛺, (top) 
and imaginary part Im 𝜔 /𝛺, (bottom) of the angular 
frequency 𝜔 normalized by the Faraday angular frequency 𝛺, 
as a function of normalized wavenumber	𝑘/𝑘,, 𝑘, being the 
Faraday wavenumber. The vertical gray bands are the vertical 
k-gaps. The small parabolic variation corresponds to the 
viscous damping. Within the k-gap, two solutions appear, 
overdamped or underdamped compared to the viscous 
damping. For sufficiently strong forcing, Im 𝜔  becomes 
negative, resulting in exponential amplification of the signal. 
 
Even though there is no equivalent of the speed of light for wa-
ter waves, this is akin to having a medium where the refractive 
index varies periodically in time. The Faraday instability has 
mostly been studied as a hydrodynamic instability in the sta-
tionary regime. We propose to revisit this parametric instability 
within the framework of Floquet time crystals. 
For an inviscid fluid in a bath submitted to vertical acceleration 
𝑎1cos	(2𝛺,𝑡), the modes are given by a Mathieu equation[28]. 
The free surface elevation 𝜉(𝐫, 𝑡) at position 𝐫 and time 𝑡 can 
be decomposed in Fourier modes 𝜉(𝐤, 𝑡) of wavevector 𝐤 fol-
lowing 

:;< 𝐤,=
:=;

+ 𝜔1? 𝒌 𝜉 𝐤, 𝑡 = −𝑎1𝑘	cos	(2𝛺,𝑡)𝜉(𝐤, 𝑡)    (1) 

with 𝜔1(k) being the angular frequency given by the dispersion 
relation for gravity-capillary waves and k, the wavenumber. 
This equation describes the modes in a medium with a gravity 
modulation which induces a speed modulation[29,30].  
The solutions of the Mathieu equation are given by the Bloch-
Floquet theorem 𝜉 𝐤, 𝑡 = 𝑒EF= 𝑐H 𝑘 𝑒EH?IJ=H∈ℤ . In a fluid 
with a small viscosity 𝜈, a damping term −2𝛾𝜕𝜉/𝜕𝑡 should be 
added to the Mathieu equation, 𝛾 being the damping satisfying 
𝛾 = 2𝜈𝑘?. By a change of variables this new equation can also 
be rewritten as a damped-free Mathieu equation[31]. Figure 1b 

shows a typical dispersion curve obtained with a small 
viscosity. The upper panel shows the real part Re(ω) of the 
angular frequency as a function of the normalized wavenumber 
𝑘/𝑘,. We first note that in a similar fashion to spatial crystals, 
the periodicity of the medium (here in time), leads to a folding 
of the dispersion relation. For sufficiently strong potentials, a 
gap forms in the structure, which we highlighted in grey. These 
k-gaps are the equivalent of the energy bandgaps which appear 
in the band structure of spatial crystals. Whereas conservation 
of energy in spatial crystals implies that waves injected within 
the bandgap are bound to decay exponentially, no such 
restriction exists for temporal crystals in which energy is 
injected periodically. The lower panel of Figure 1b shows the 
imaginary part, Im(𝜔) of the angular frequency as a function 
of the normalized wavenumber 𝑘/𝑘,. Outside of the bandgap 
the curve is given by viscous damping in the liquid. Within the 
k-gap, however, two solutions exist, respectively over and 
under damped with respect to the bath at rest (viscous 
damping). For sufficient forcing, a region appears with 
Im 𝜔 < 0, that is a region where an exponentially growing 
solution exists. Above this threshold, the Faraday instability is 
observed and a standing wave at half the excitation frequency 
appears. The transient growth of the standing wave pattern 
directly results from the exponential amplification of waves 
initially present in the noise. The corresponding mode with 
Im 𝜔 > 0 is overdamped and remains hidden. The two 
standing wave solutions have their phase locked on the 
parametric excitation and are in quadrature. Each standing 
wave can be described as the result of the interference of two 
counter-propagating Floquet modes with a relative phase which 
depends on their position in the k-gap.  
The Faraday instability can therefore be interpreted as a 
medium in which the speed of the waves is modulated in time. 
When a propagating wave penetrates such a medium it 
generates a counter-propagating wave which can be considered 
as a time reversed (or phase-conjugated) wave together with a 
wave co-propagating with the initial wave[29,30]. In terms of 
time crystal, the two waves produced can be interpreted 
respectively as a time reflected wave and a time transmitted 
wave. Their characteristics are given by the time analog of 
Fresnel relations in optics[32]. 
 
Experimental Setup. – We now focus on an implementation 
of a 1D time crystal based on Faraday instability. Figure 2a 
shows the experimental setup. It consists in a 1D wave cavity. 
A glass tank of 40 mm depth, 200 mm length and 10 mm wide 
is placed on a vibrating shaker to perform sinusoidal vertical 
oscillations with a peak acceleration 𝑎1 and an angular 
frequency	2𝛺,. Two horizontal T-shaped plastic strips (ii) pin 
the fluid contact line. One of the strip is mounted on a 
translation stage to tune the cavity length	𝐿. Note that the 
translation stage is mounted on the shaker to synchronize its 
vertical motion to that of the cavity. The tank is filled up with 
deionized water approximately 1 mm above the tank edges (iii). 
The Faraday waves are excited at half the forcing 
frequency	𝛺,/2𝜋. Their associated wavelength 𝜆, is given by 



 

 

the capillary-gravity dispersion of water waves. To ensure the 
excitation of the transverse mode, we choose 𝜆, equal to twice 
the width of the cavity, which gives 𝛺,/2𝜋 = 11.6 Hz. Side-
view movies of the water surface are recorded using a camera  
 
Fig. 2: (Colour on-line) a) Experimental setup: a water tank is 
placed on a shaker (i). The width of the cavity is set to 𝜆,/2~	1 
cm. (ii) Schematics detailing the boundary conditions at the end 
of the cavity. The meniscus is pinned by the hovering plastic 
strip aligned along the y axis. (iii) Side view showing the 
meniscus pinned along the x axis. b) Typical evolution of the 
wave amplitude upon sufficient shaking of the bath. 
Exponential fit up to the inflection point (red dashed curve). 
Insets: snapshots of the water profile at various times. c) 
Growth rate of the waves Im(𝜔) and d) mode wavelength 𝜆 in 
the cavity as a function of the cavity size	𝐿. c) and d) show 
results from the same experiment with forcing frequency equal 
to 2𝛺,. 
 
at 464 fps under back-illumination condition with a resolution 
of 40	µm/px. The wave profile is retrieved with a subpixel 
precision using fine-tuned edge detection algorithms. The 
amplitude of the Faraday waves 𝐴 𝑡  is measured at the 
position of an anti-node. 
Upon turning on the vibration of the bath above threshold 
at	𝑡 = 0, the instability sets in and the waves begin to grow be-
fore reaching a saturation (Figure 2b). Insets show snapshots of 
the water surface at the different times (stretched in the vertical 
direction by a factor 4 for clarity). The red dashed line shows 
the good agreement of the experimental growth of the wave 
with an exponential fit up to the inflection point before a non-
linear saturation occurs and a plateau is reached. This gives the 
growth rate of the unstable Floquet mode which corresponds to 
the imaginary part of the Floquet exponent Im(𝜔).  
The evolution of Im(𝜔) and the wavelength 𝜆 with the length 
of the cavity 𝐿 are measured from the wave profiles (𝜆 is meas-
ured in the stationary regime, for 𝑡 > 30	s). The growth rates 
(Fig. 2c) exhibit peaks separated by 𝜆,/2 which correspond to 
the matching between k-gap mode and a resonant mode of the 
cavity with 𝜆 = 2𝐿`aa/𝑛, 𝑛 being the mode number and 𝐿`aa the 
effective cavity length taking into account the boundary condi-
tions. Varying the cavity length results in scanning the k-gap 
associated to the Faraday instability (fig. 2d). The curve of the 
growth rate thus corresponds to a periodic scanning of the k-
gap with maxima satisfying 𝐿`aa = 𝑛𝜆,/2. 
 
Time defects. – We introduce a defect in the time crystal by 
suddenly 𝜋-shifting the excitation phase which amounts to con-
catenating two time crystals with opposite phase (Fig. 1b). A 
first time crystal starts at 𝑡 = 0 with acceleration 𝑎1 for 45 s. 
The end of the first crystal is immediately followed by the be-
ginning of a second 𝜋-shifted time crystal. Figure 3a and 3b 

show the theoretical signal sent to the shaker and the experi-
mental response respectively. The phase shift induces small 
perturbations which last approximately two periods. Figure 3c 
shows the evolution of the amplitude of the waves (See supple-
mentary movie). Above the Faraday threshold, standing waves 
grow on the surface and reach a constant value due to a nonlin-
ear hydrodynamic saturation (see Fig. 2b). At the interface be-
tween the two time crystals we observe a sudden decrease of 
the wave amplitude before the waves start to grow again to 
reach a saturation value. The initial standing mode associated 
with the first time crystal is in quadrature with the one associ-
ated with the second crystal. This enables the tracking of the 
decay of the envelope of the first mode (red solid line) together 
with that of the growing second mode (blue solid line). The ef-
fect of the time interface between the two periodic crystals is 
thus to permute the amplified and the overdamped modes of the 
two 𝜋-shifted crystals. Neglecting saturation effects, the waves 
initially present in the time crystals are thus exponentially de-
creasing away from the time interface in a similar way as spatial 
topological edge modes do from a spatial topological interface. 
 

Fig. 3: (Colour on-line) a) Theoretical time signal sent to the 
shaker showing a π-phase shift at approximately t = 45 s. b) 
Measurement of corresponding tank acceleration. c) Positive 
half of the evolution of the surface elevation at the location of 
an anti-node (dotted line). Envelope of the surface elevation at 
the phase of the initially amplified mode (solid red line). Evo-
lution of the envelope of the quadrature mode (solid blue line, 
see supplementary movie). d) Measurement of growth rates 
(bottom circle) from the exponential fit (see Fig. 2b) and the 
decay rates from the decay of the red curve (c). The red curves 
gives the result of the computation based on a damped Mathieu 
equation using experimental values of the viscosity deduced 
from Fig. 4 (inset: zoom on the lower part of the curve). 
 
Probing the overdamped modes. – The two states asso-
ciated to the two Floquet exponents within the k-gap corre-
spond to two standing modes in quadrature, their role being ex-
changed at the interface. This enables the measurement of both 
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Floquet exponents from the measurement of the exponential 
decay and growth at the interface (see Fig. 3c). These expo-
nents can be measured along the entire k-gap by tuning the size 
of the cavity (Black dots Fig. 3d and inset). The red line is the 
theoretical curve of the complex k-gap obtained from the 
damped Mathieu equation with no fitting parameter and an ef-
fective viscosity measured experimentally from Fig. 4 (see be-
low). There is a very good agreement between the experimental 
results and the theoretical model.	 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: (Colour on-line) Measured Floquet exponents Im 𝜔  of 
the amplified and overdamped modes using the interface be-
tween two time crystals for a cavity set at the Faraday reso-
nance. Principle (right): the system is prepared in an initial state 
with acceleration 𝑎1E  (blue cross in the dispersion curves of the 
k-gap - black solid line). At the time interface, it undergoes a 
sudden change from 𝑎1E  to 𝑎1

c changing Im 𝜔  (dashed red 
lines). Depending on the presence of a 𝜋-phase shift two tran-
sitions can be measured. The system jumps to either the solid 
black dot (no 𝜋-shift) or the hollow black dot (𝜋-shift). Know-
ing the initial growth rate, we compute the values for each sit-
uation. The red lines (left) are theoretical computation from the 
damped Mathieu equation using the experimental values for the 
effective viscosity obtained at 𝑎1

c = 0. 
 
The 𝜋-shift defect enables waves associated to the amplified 
Floquet exponent to jump to the overdamped mode, i.e. the up-
per positive part of Im(𝜔) which is otherwise hidden by the 
Faraday instability. In the following, we take advantage of this 
transition and more generally of the interface between two time 
crystals to explore the Floquet exponents in the k-gap. The cav-
ity is tuned so that one of its resonant mode coincides with the 
Faraday wavenumber (middle of the k-gap). The first and se-
cond time crystals have different accelerations 𝑎1E  and 𝑎1

c re-
spectively and the time interface may or may not contain a 𝜋-
shift defect. Figure 4 (right) shows how the exponents of the 
complex dispersion relation Im 𝜔  are measured. The initial 
state is given by the waves amplified by the Floquet exponent 
of the first time crystal (blue cross of the black solid lines). The 
second time crystal is associated to a different opening of the 
k-gap, in the example 𝑎1

c < 𝑎1E  which results in a smaller open-
ing (dashed red lines). After the time interface, the measured 
transition corresponds to different a final state depending on the 
presence of a 𝜋-shift defect (empty black circle) or not (full 

black circle). Figure 4 (left) shows the Floquet exponents meas-
ured for 𝑎1E = 1.78 m2.s-1 as a function of	𝑎1

c/𝑎1E : the upper and 
lower branches correspond respectively to time interfaces with 
a 𝜋-shift and without. Each branch is well fitted by a line which 
intersect at 𝑎1

c = 0. This allows one to measure with a high pre-
cision the effective damping rate of the bath. We obtain in the 
present case 𝜈`aa = 8.3 ∙ 10gh m2.s-1. This damping value is 
higher than the usual bulk viscosity owing to additional damp-
ing of the side walls of the cavity. This value can be used to 
compute the theoretical predictions from the damped Mathieu 
equation (see Fig. 3d and 4) showing a very good agreement 
with the experimental results without fitting parameters. 
 
Discussion. – It is interesting to discuss the analogy between 
the temporal 𝜋-shift defects in time crystals and their spatial 
counterparts. Neglecting a possible saturation effect, both cases 
lead to waves decaying exponentially away from the interface 
and both show that the energy is confined to the defect. How-
ever, the origin of these localized excitations is different. In the 
case of spatial edge modes, the interface sets the boundary con-
ditions which fully defines the existence of a localized topolog-
ical edge mode. For time defects, however, causality implies 
that the growing wave mode excited prior to the time interface 
does not result from the interface itself. This latter is not a 
boundary condition involved in the existence of the waves for 
the previous times. The wave is a solution of the first time crys-
tal only, associated to the Faraday instability in the present 
case. As a consequence, its amplitude at the time of the inter-
face depends only on the size and excitation amplitude of the 
first crystal with a possible saturation due to non-linear effects. 
Such a growing mode is never observed in spatial crystals be-
cause of energy conservation. Energy band gaps are always for-
bidden gaps since the decaying solution is the only permitted 
one. There is no such energy considerations in time crystal and 
the growing mode can be observed. Consequently what could 
appear as a localized time edge mode should rather be consid-
ered as a permutation from a growing to a decaying crystal bulk 
mode in the k-gap, induced by the 𝜋-shift defect. However, 
such time defects provide us with a unique way to probe these 
bulk modes and probe the entire curve of Floquet exponents, 
including the usually hidden overdamped modes.  
 
The vertical parametric excitation of a bath can be interpreted 
as a (degenerate) parametric amplifier of surface waves. When 
the Faraday instability threshold is reached, the amplifier goes 
into self-oscillation and the waves produced can be considered 
as modes of the degenerate parametric oscillator. This type of 
oscillators, which is also found in optics [33,34] and mechan-
ics[35], produces so-called squeezed states which are charac-
terized by the presence of unequal fluctuations following the 
two components in quadrature. Thus, since temporal defects 
enable probing the gains and attenuations of the two quadrature 
modes, they could also potentially be used to characterize the 
fluctuations occurring on each quadrature components of the 
squeezed states and be generalized to other types of systems. 
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