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I. HYDROELASTIC WAVES

To understand wave propagation at the surface of water covered with an elastic membrane

one needs to study the coupling between the deformation of the membrane and the fluid

motion. This calculation has been detailed in previous works [1–3], and we only show here

a condensed version of it. The thin membrane obeys the Föppl-Von Kàrmàn equations
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(1)

where ζ is the wave amplitude, D = Ee3

12(1−ν2) is the flexural modulus of the membrane,

α and β are the two main directions, σα,β is the stress along xα applied to the surface

orthogonal to xβ and P is the external pressure applied. In the liquid, neglecting viscosity

and assuming that the flow in incompressible and irrotational, we can use the Bernoulli

equation
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2
+ P + ρgz = C, (2)

where φ is the velocity potential, P is the pressure and C is an arbitrary constant. Because

of continuity of stresses at the water-membrane interface, the two pressure terms in eq. 1

and eq. 2 are equal. We can also simplify both expression using ζ � e (the amplitude of

the waves is small compared to the thickness of the membrane) and ζ � λ (small slopes).

This leads to the follloxing dispersion relation :

ω2 =
Dk5/ρ+ Tk3/ρ+ gk

ekρ/ρp + coth kH
. (3)

We plot in figure S1 this dispersion relation, for thicknesses t = 100 µm, 200 µm, 500

µm and 800 µm (solid lines). For ρ ∼ ρp and at high frequency / low wavelength it can

be simplified as ω2 = Dk5/ρ, and we show this approximated dispersion relation as dashed

lines in S1.
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FIG. S1. (a) Dispersion relation for e = 100 µm, 300 µm, 500 µm and 800 µm, E = 1.6 MPa,

ρ = 965kg/m3. The thickness is increasing from right to left, and solid lines correspond to equation

3 while dashed lines is its simplified version ω2 = Dk5/ρ. The data points (+) are taken from [3].

II. SCHLIEREN IMAGING TECHNIQUE

We use state-of-the-art techniques to measure the waves that propagate at the surface of

water covered with an elastic membrane. We use a known pattern below the tank (either

a random dot pattern for [4] or a checkerboard pattern for [5]), and we take images from

the top. The pattern appears distorted due to refraction at the water-air interface (or more

accurately the polymer-air interface, but here the elastic membrane is thin enough to be

neglected for the refraction). We use an image taken when the surface is flat as a reference

(fig. S2(a)) and compare it to a deformed image (fig. S2(c)) [6]. To compute the apparent

displacement of the pattern we use the spatial Fourier spectra of the 2 images (fig. S2(b) and

(d)) and extract the quantitative map of apparent deformation of the pattern. From this,

and using ray optics theory, one can reconstruct the height profile of the wave, shown in fig.

S2(e). With our experimental setup, we could measure wave amplitudes with a resolution

of less than 1 µm. Supplementary Video 1 shows an animated version of fig. S2, with the

raw images, their corresponding spectra and the reconstructed height field.
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FIG. S2. (a) Reference image. The scale bar represents 2 cm. (b) Fourier spectrum of (a). (c)

Deformed image. (d) Fourier spectrum of (c). (e) Reconstructed height profile.

III. CRYSTAL OF SCATTERERS : PILLARS

The first experiment we carried out was to glue on the floating membrane thick cylinders

cut out in a thick polymer sheet. The thickness difference between the sheet and the pillars

induces an index contrast, which should in turn introduce partial reflection of the waves.

The cylinders are 4 mm in diameter and 1 mm high, and they are placed on the membrane

according to a square lattice with spacing 1 cm (chosen to allow for a Bragg gap within our

measuring range). We use 10 × 20 cylinders, placed on the 300 µm thick membrane. A

picture of the obtained lattice is shown in fig. S3

We send a plane wave through the crystal along one of its main direction (x, see sketch in

S3(b)), and we measure the wave field inside the crystal, using the method presented earlier.

We use frequency sweeps between 20 Hz and 150 Hz, that we subsequently filter using FFT.

This allows us to isolate for each forcing frequency the spatial 2D spectrum of the wave.

As the crystal is only probed in the x direction we keep the wavenumbers in the direction

in the spectra, and stack them as a function of the frequency, to obtain the band structure

represented in figure S3(d). As expected, it corresponds to the dispersion relation of hydroe-

lastic waves in the homogeneous material (outside the crystal), folded with the symmetry

of the crystal, i.e. on kx = ±n2π/a, where n is an integer [7]. To highlight this, we add

the theoretical dispersion relation calculated for an homogeneous material, plus its trans-
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FIG. S3. (a) Square crystal made of cylinders of polymer at the surface of a membrane. The

cylinders are 4 mm in diameter and 1 cm apart. The scale bar represents 5 cm. (b) Sketch of the

experiement. (c) Average amplitude measured in the crystal as a function of the forcing frequency.

(d) Dispersion relation measured along the x direction. Information is represented in grayscale and

in a log scale. Red dashed curve : theoretical dispersion relation, folded with the symmetry of the

crystal kx = ±2π/a.

lated version centered on the wavenumber kx = ±2π/a (dashed red line in S3(d)). These

symmetrised curves describe our results very well, and we note that two bands intersect at

the edge of the First Brillouin zone (kx = π/a). Of course, bands do not interesect in a real

crystal, and we should observe a bandgap. There is no clear bandgap in this experiment,

even when we plot the averaged wave amplitude as a function of the frequency (fig. S3(c)).

Indeed, we should see a drop in amplitude around 28 Hz, which corresponds to the edge of

the Brillouin zone, i.e. the intersection between two curves. This first Bragg bandgap is

very narrow, with a very weak amplitude drop. This means that the pillars we use interact

very little with the incident wave, and don’t scatter much energy. The holes presented in the

body text are better scatterers (as well as having resonances), which is why those crystals

exhibit bigger Bragg bandgaps (see for instance figure 3c in the body text).
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FIG. S4. (a)

IV. MODES OF CIRCULAR CAVITY

The family of solutions to the wave equation ∂2u
∂t2

= v2ϕ∆u (where u is the amplitude of

the wave, i.e. here it is the surface height) in a circular domain are the Bessel functions.

Here we approximate the boundary condition to that of Dirichlet, so that u = 0 at the

edge of the cavity r = R. In practice, the soft membrane deforms as the wave propagates,

and the contact line is pinned at different height at the edge of the membrane ; both these

effects modify the actual boundary condition. We discard the Bessel function of the second

kind part of the solution as it diverges in r = 0. Denoting αmn the n-th root of the Bessel

function of the first kind Jm, the oscillating solution reads :

u(r, θ, t) = A2Jm

(αmn
R

r
)
. (A1 cosmθ +B1 sinmθ) .Aei

vϕαmnt

R . (4)

This is a superposition of the eigenmodes mn of a Bessel function (the first three are

shown in 4) that oscillates at a frequency ω =
vϕαmn
R

, where vϕ is the phase velocity of the

gravity capillary waves. The first 9 values of αmn are shown in the table below.

m = 0 m = 1 m = 2

n = 1 α01 = 2.40 α11 = 3.83 α21 = 5.14

n = 2 α02 = 5.52 α12 = 7.02 α22 = 8.42

n = 3 α03 = 8.65 α13 = 10.17 α23 = 11.62

TABLE S1. Values of the first 9 roots αmn of Jm

To determine the oscillating frequency in our case, we use the dispersion relation of

gravity-capillary waves ω2 = σ
ρ
k3 + gk with the approximated value σ ∼ 50 mN/m. The

three lowest frequencies for cavities of diameter 3 mm, 4 mm and 10 mm are shown in table

S2.
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Mode 01 Mode 11 Mode 21

∅ = 3 mm 75 Hz 147 Hz 227 Hz

∅ = 4 mm 50 Hz 97 Hz 149 Hz

∅ = 10 mm 16 Hz 28 Hz 40 Hz

TABLE S2. First three eigenfrequencies for three cavity diameters, calculated for a free surface,

ie. using the gravity-capillary waves dispersion relation.

V. CALCULATION OF BAND STRUCTURES

The theoretical approach developped here is extensively inspired from previous work in

acoustics [8–11], which adapted concepts of Fano resonance and optical multiple scattering

theory to classical waves.

We model the response of a point resonator with eigenfrequency f0 = ω0/2π with the

Lorentzian function [10, 12]

A(ω) =
2jω/c

1 + 2jQ(1 − ω/ω0)
, (5)

where c is the wave velocity, here that of hydroelastic waves calculated with the equation

3, and Q is the quality factor of the resonator, that corresponds to its bandwidth (the higher

the coupling between the resonator and the incident wave is, the lower the quality factor is).

As expected from a resonance, this function A(ω) corresponds to a peak in the amplitude

of the wave at f = f0 and a phase jump of π. Note that this is an approximation as our

resonators have a finite size.

To describe the interaction between a single point resonator and an incident wave, one

can adapt the theory of Fano resonance to classical waves. This theory is relevant here as we

are studying the interaction between two waves, one being highly localised and with discrete

energy levels (i.e. the resonance), and the other being non-localised (i.e. the incident wave).

The basic principle of the type of resonance is shown in figure S5(a) : the incident wave

(in black) and the wave emitted by the resonator (in blue) interfere to give the transmitted

wave (in green). This transmitted wave T is the sum between the incident wave and the

emitted wave t, the amplitude and phase of the latter is shown in figure S5(b) : we recover
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FIG. S5. (a) Sketch (b) Response t (c) Transmitted T

FIG. S6. Sketch showing the n-th unit cell of length a and the reflexion and transmission coefficients

An, Bn, An+1 and Bn+1

the Lorentz-like response for the amplitude and the π phase jump. The amplitude of the

resulting transmitted wave T is shown in figure S5(c) : at the resonance, most of the incident

energy is localised on the resonator.

We approximate the frequency response of the hole as the sum of individual resonators,

assuming that its resonance frequencies are sufficiently apart. It yields

t(ω) = tω0(ω) + tω1(ω) + tω2(ω) + ..., (6)

where ω0,1,2,... are the successive resonance frequencies.
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Now that we have a way to model the resonator, we can study the behavior of an organised

lattice of them. We model the response of a 1D infinite lattice of resonators using the

transfer matrix formalism. The distance between the resonators is the lattice constant a,

and we define the unit cell of length a, centered on each resonator. This arrangement is

schematically shown in figure S6. Our goal here is to express the transfer matrix M that

links An, Bn, An+1 and Bn+1 (shown in fig. S6) according to

An+1

Bn+1

 = M

An
Bn

 .

The matrix M can be calculated from the resonator response in transmission T and in

reflection R, and from the wave properties, namely the wave velocity c. Taking into account

the phase shift ω
c
a due to the propagation on a distance a and energy conservation, we find

that the transfer matrix M writes

M =


1
T∗e

j ω
c
a −R∗

T∗

−R
T

1
T
ej

ω
c
a

 ,

where ’*’ denotes the complex conjugate. In a periodic material, the solution to the wave

equation are Bloch waves, which means that M must satisfy det(M − ejkaI) = 0. This leads

to the following dispersion relation :

cos ka = Re

(
1

T
e−j

ω
c
a

)
. (7)

We readily see that both resonance and periodicity effects are taken into account, and

we can use the expression for T we establish earlier to calculate this dispersion relation

numerically. Using this equation, we can predict the band structure of a resonant crystal,

knowing the lattice constant a and the characteristics of the resonators.

Note that here we need to include dispersion, which we do by using the hydroelastic wave

velocity c = ω
k

calculated with eq.(3). In addition, we can’t predict the exact resonance

frequencies and bandwidths of the cavities, and our measurements only give qualitative
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agreement with our observations, so that ω0 and Q have to be adjustable parameters in our

model. We considered the 3 lattices presented in figure ??, for which we used the values for

ω0 and for Q detailed in the caption of figure 4.

VI. APPARENT REFRACTION IN A CRYSTAL

We probe the refraction of a plane wave at the interface between an homogeneous medium

and a lattice made of holes of diameter 4 mm and with a lattice constant a = 1 cm for a

non-zero incidence angle [fig. S7(a)]. Using a spatial Fourier transform, we extract the

isofrequency spectrum corresponding to wave propagation in the lattice [figure S7(b)].

We observe several peaks with different wavenumbers kx and ky. We superimpose to this

spatial spectrum circles whose radius matches the hydroelastic wavenumber at the forcing

frequency. Those circles (shown in white in fig. ??(b)) are centered on the points of the

reciprocal lattice located in the first and second Brillouin zone. We denote with blue arrows

the two closest peaks, one points to the left and the other to the right, but both correspond

to a positive group velocity. They correspond to waves with a positive group velocity (energy

is radiated away from the source) that match Snell’s criteria on the interface (conservation

of the parallel component of the wavevector). To illustrate Snell’s law in this situation, we

draw in figure S7(d) (resp. (e)) the spatial spectra corresponding to a homogeneous material

(resp. square lattice). The wavenumber in the y direction has to be equal on both sides,

which means the y component of the wave vector is the same in both cases, as illustrated

by the dashed line in figures

S7(d)-(e). Waves can only propagate away from the source, so only waves corresponding

to the right part of each circle can exist. This still leaves two possible wave vectors in the

First Brillouin Zone, one pointing right and one pointing left, as illustrated in figure S7(e).

We can isolate each peak by filtering, and reconstruct the corresponding wave fields that

we show in fig. S8(a-b). The peak with kx, ky > 0 corresponds to trivial positive refraction,

while the peak with kx < 0, ky > 0 presents an apparent negative refraction. Movies showing

how these 2 wave fields propagate are presented in Supplementary Information (Video 3).

Note that this filtering allows to distinguish these two waves but that they cannot exist

independently inside the crystal: because of the crystal’s symmetry, they must co-exist.
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FIG. S7. (a) Sketch of the experiment showing the crystal of perforations and the incident

plane wave. (b) Measured wave field (here filtered at the forcing frequency 60 Hz using a Fourier

transform). (c) 2D spatial spectrum of the wave field inside the crystal. Information is represented

in grayscale (darker means more signal) and in log scale. We add (in white) the circles corresponding

to the theoretical dispersion relation, and we show with blue arrows the brightest peaks within the

first Brillouin zone. (d) Isofrequency contour in a homoegeneous material. The green wave vector

corresponds to the incident wave. (e) Isofrequency contour in a square lattice. Wave vectors that

obey Snell’s law are the intersection between the circles and the dashed line. We denote the two

that are in the First Brillouin zone with blue arrows.
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FIG. S8. Wave fields filtered and normalised to artificially isolate the two transmitted waves.

The reconstructed wavefield (a) corresponds to the wave vector pointing right in fig. S7(c) while

(b) corresponds to the one pointing left. The scale bar corresponds to 5 cm. See Supplementary

Video 3.

VII. SUPPLEMENTARY VIDEOS

FIG. S9. View from Supplementary video 5 (Multimedia view).
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FIG. S10. View from Supplementary video 6 (Multimedia view).

FIG. S11. View from Supplementary video 7 (Multimedia view).
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[11] Nadege Kaina, Mathias Fink, and Geoffroy Lerosey. Composite media mixing bragg and local

resonances for highly attenuating and broad bandgaps. Scientific reports, 3:3240, 2013.

[12] Pedro de Vries, David V. van Coevorden, and Ad Lagendijk. Point scatterers for classical

waves. Rev. Mod. Phys., 70:447–466, Apr 1998.

14


	Artificial resonant crystals for hydroelastic waves ————– Supplementary Information
	Hydroelastic waves
	Schlieren imaging technique
	Crystal of scatterers : pillars
	Modes of circular cavity
	Calculation of band structures
	Apparent refraction in a crystal
	Supplementary Videos
	References


