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How capillarity affects the propagation of elastic waves in soft gels
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Elastic waves propagating at the interface of soft solids can be altered by the presence of external forces such as
capillarity and gravity. We measure the dispersion relation of waves at the free surface of agarose gels with great
accuracy, revealing the existence of multiple modes as well as an apparent dispersion. We disentangle the role of
capillarity and elasticity by considering the three-dimensional nature of mechanical waves, achieving quantitative
agreement between theoretical predictions and experiments. Notably, our results show that capillarity plays an
important role for wave numbers smaller than expected from balancing elastic and capillary forces. We further
confirm the efficiency of our approach by including the effect of gravity in our predictions and quantitatively
comparing it to experiments.
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I. INTRODUCTION

Mechanical waves propagating in biological tissues have
been at the center of attention since the development of
ultrasonic imaging more than 50 years ago [1]. Using soft
materials to mimic the physics of wave propagation inside the
body has enabled the development of technological innova-
tions, such as elastography, allowing for direct measurement
of the bulk elastic properties [2,3]. Soft solids have also
been used as a model for fracture dynamics [4,5] and, in
particular, for the role of friction and fault structure on rupture
dynamics during earthquakes [6,7]. Wave propagation at inter-
faces raises the question of additional forces competing with
elasticity. Indeed, solid interfaces possess a surface tension
γ that dominates bulk elasticity at the small scale, below the
elastocapillary length �ec = γ /μ, where μ is the solid shear
modulus [8–10]. Depositing liquid drops on soft substrates
allows one to probe the competition between elasticity and
capillarity, as the wetting ridge induced by the contact line
sets the drop’s statics and dynamics [11]. For very soft solids,
�ec can be as large as 1 mm. Capillary phenomena then
become macroscopically visible at free surfaces: edges are
rounded [12] and cylinders develop undulations reminiscent
of the classical Plateau-Rayleigh instability for liquids [13].
Waves existing at the interface of soft materials have been
only partially described so far. The existence of two regimes,
dominated by elasticity or capillarity, theoretically predicted
[14] and initially probed experimentally in the late 1990s
[15], has been at the center of discussion [16,17]. Recent
work focused on the transition between the two regimes, yet
with limited experimental resolution [18]. In this article, we
propose to combine accurate wave-field measurements and a
theoretical analysis in order to discriminate the influence of
capillarity on the propagation of mechanical waves at the free
surface of soft gels.

*antonin.eddi@espci.fr

II. EXPERIMENTAL SETUP

We make agarose gels by heating a solution of water and
agarose (Sigma A4550-500G) at 95 ◦C. The solution is poured
into a rectangular container (8.5 × 26 cm) and left to cool
at room temperature for 2 h. We determine the rheology
of the hydrogels for concentrations of 2 and 3 g/L, which
gives shear moduli, μ, of 95 and 380 Pa, respectively (see
Appendix A). We use the samples within 1 h after reticulation,
so that evaporation does not affect their mechanical properties
(see Appendix B). We generate plane waves at the air-gel
interface by locally imposing a vertical sinusoidal motion with
frequency f at the free surface of the sample. To do so, we
deposit a rectangular source with dimensions 80 × 8 × 2 mm,
which size does not influence the results (see Appendix C),
on the surface of the gel and actuate it with an electromagnet,
or alternatively we use a vibration exciter [Fig. 1(a)]. Several
techniques have been used in the literature to measure surface
waves including quasielastic surface light scattering [15],
specular reflection spectroscopy [19,20], and the oscillatory
response of a magnetic exciter [21]. The proposed methods
are particularly adapted for short wavelengths, whereas here
we want to measure extended wave fields with centimetric to
millimetric wavelengths. We thus choose to measure the out-
of-plane displacement field at the interface using a synthetic
Schlieren imaging technique, based on the apparent displace-
ment of a pattern caused by refraction at the surface [22]. We
record from the top at a frame rate of 350 Hz for f ranging
from 10 to 160 Hz. We use sweeps at a rate of 1.6 Hz/s, small
enough to consider the excitation as monochromatic when
analyzing small signal windows.

III. DISPERSION RELATION

We show in Fig. 1(b) a typical height field obtained at f =
40 Hz in a gel with μ = 95 Pa and depth h = 1.1 ± 0.1 cm.
We extract the wave field at any frequency by Fourier filtering
a signal window around the corresponding f . We then use
spatial two-dimensional (2D) Fourier transforms to extract the
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FIG. 1. (a) Sketch of the experimental setup using synthetic Schlieren imaging [22]. (b) Height field obtained for f = 40 Hz in a gel with
μ = 95 Pa and h = 1.1 ± 0.1 cm. The source is on the left and the red arrow shows the direction of propagation. (c–e) Dispersion relations
measured at the gel interface; the wave number is measured along the x axis. Dashed black lines show the dispersion relation of shear waves:
ω = k

√
μ/ρ. Red and blue symbols represent the maximum of the normalized out-of-plane displacement along each mode predicted by

Eq. (1) with and without taking into account capillarity, respectively. (c) μ = 380 Pa, h = 3.4 ± 0.4 cm. (d) μ = 380 Pa, h = 1.1 ± 0.1 cm.
(e) μ = 95 Pa, h = 1.1 ± 0.1 cm.

spectra along the propagation direction, which we normalize
by their maximum amplitude. By stacking the spectra ob-
tained at each f , we can construct a dispersion relation map,
which we show in Fig. 1(c) for a gel with μ = 380 Pa and
thickness h = 3.4 ± 0.4 cm. It shows the coexistence of two
distinct behaviors. (i) For f < 120 Hz, we observe multiple
branches, which start at increasing cutoff frequencies. (ii) At
higher frequencies, the branches merge, and a single line is ob-
served. We interpret the presence of several cutoff frequencies
(at kx = 0) as a signature of the finite thickness: in a confined
sample the vertical component of the wave vector can only
take discrete values. We investigate this effect by decreasing
h to 1.1 ± 0.1 cm while keeping μ constant [Fig. 1(d)]. We
observe the strong effect of the depth: there still are several
branches, but with markedly different cutoff frequencies. The
fundamental mode appears at higher frequencies, and the
following branches begin to exist at larger f and are farther
apart. Then we probe the effect of the gel’s elastic properties
by decreasing the agarose concentration to obtain a gel with
μ = 95 Pa and h = 1.1 cm [Fig. 1(e)]. The cutoff frequencies
are now lower. We note that the local slope of each branch is
significantly smaller than that of the stiffer gels [Figs. 1(c) and
1(d)]. The plots in Figs. 1(c)–1(e) of the dispersion relation of
shear waves ω = k

√
μ/ρ (dashed black lines) [23] suggest

that this local slope is controlled by the speed of elastic shear
waves. Conversely, the slope of the single line observed at
higher frequencies is larger than that of shear waves. The
dispersion relation can be regarded as an apparent dispersion
curve whose group velocity progressively increases. The latter
effect and the increase in the local slope of the branches at
high k in the softer gel [Fig. 1(e)] both hint at the presence of
capillarity, which could stiffen the interface at large k.

IV. IN-DEPTH DISPLACEMENTS

Surface measurements suggest that the finite thickness
selects the modes at low f . We confirm this hypothesis by

measuring in-depth displacement fields. We seed the gel with
microparticles (diameter, ∼10 μm; density, 1100 kg/m3) and
illuminate the xz plane with a laser sheet [Fig. 2(a)]. We
use a low microparticle concentration, χ = 0.14%, so that
the inclusions do not modify the gel elastic properties (see
Appendix D). We measure the local displacement field at
250 fps, using a standard digital image correlation algorithm
[24], in a window with dimensions of 1.8 × 1.6 cm approx-
imately 2 cm away from the source. Figures 2(b) and 2(c)
present a quiver plot of the displacement vector superimposed
over a map of its magnitude for a gel with μ = 95 Pa and
h = 1.9 ± 0.1 cm excited at f = 40 Hz [Fig. 2(b)] and f =
120 Hz [Fig. 2(c)]. The displacement amplitude is of the
order of 10 μm, and both vertical and horizontal components
are present. At f = 40 Hz we observe displacements in the
entire sample, without a significant decay in the vertical
direction, while at f = 120 Hz the amplitude seems to de-
crease more rapidly in the vertical than in the horizontal
direction. We extract the spatial spectra corresponding to these
displacements fields [Figs. 2(d) and 2(e)]. For both frequen-
cies, the wave vectors have a nonzero component on the
vertical axis: the previous surface measurements correspond
to their horizontal projection. The norm of the wave vector
is ||k|| = 981 1/m for f = 40 Hz and ||k|| = 2768 1/m for
f = 120 Hz, two values compatible with the propagation of
shear waves in the bulk (ω = k

√
μ/ρ). Yet the two spectra

are markedly different. For f = 40 Hz, we observe two peaks
that correspond to the presence of an incident (kz < 0) and a
reflected (kz > 0) wave created by the reflection at the bottom
of the tank. We evidence this result by plotting in Fig. 2(f) the
wave fields obtained by taking the inverse Fourier transform
of each peak. At a higher frequency ( f = 120 Hz), the spatial
spectrum shows only one peak [Fig. 2(d)]. The wave travel-
ing downwards is damped before it reaches z = −h, so that
propagation occurs mostly at the surface. These experiments
confirm that the multiple modes observed at low frequencies
result from the vertical confinement and they suggest that, at
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FIG. 2. (a) Sketch of the digital image correlation experimental
setup used to measure in-depth displacement fields. (b, c) Displace-
ment field inside a gel with μ = 95 Pa and h = 2.3 ± 0.3 cm for f =
40 Hz (b) and f = 120 Hz (c). (d, e) Spatial spectra corresponding
to the fields in (b) and (c). The two peaks in (d) correspond to the
presence of an incident wave and its reflection at the bottom of the
tank. (f) Wave fields obtained by taking the inverse Fourier transform
of each peak in (b).

high frequencies, dissipation prevents the incident wave from
propagating all the way down to the bottom of the sample.

V. MODELING

We now model wave propagation in soft materials. To
account for our experimental observations, we address the
case of vertically confined samples. We extend a previ-
ous analysis [16], which treated the case of a semi-infinite
solid subjected to elastic and capillary forces, to a finite-
thickness sample and add the contribution of gravity. We
consider plane waves propagating along the x direction in
an infinite 2D plate of thickness h and density ρ with elas-
tic properties characterized by the Lamé coefficients λ and
μ. We separate the displacement field u in a longitudinal
curl-free contribution ul and in a transverse divergence-free
contribution ut . The longitudinal part can be described by a

scalar potential � and the transverse part by a vector potential
H:

u = ul + ut = ∇� + ∇ × H.

Both � and Hy verify a wave equation [23],

∇2� − 1

c2
l

∂2φ

∂t2
= 0, ∇2Hy − 1

c2
t

∂2Hy

∂t2
= 0,

where ct =
√

μ

ρ
and cl =

√
λ+2μ

ρ
are, respectively, the shear

and longitudinal wave speeds. We seek solutions of the form
� = f (z)ei(kx−ωt ) and Hy = ih(z)ei(kx−ωt ), where we use k as
kx and impose the following boundary conditions. (i) At the
bottom of the sample, the gel is bounded to the container, so
that

ux(z = −h) = uz(z = −h) = 0.

(ii) At the free surface, assuming small deformations to lin-
earize the boundary conditions at z = 0 and taking advantage
of the incompressibility of the hydrogels (cl → ∞), which
allows the absorption of bulk gravity into the hydrostatic
pressure, we impose

σxz(z = 0) = 0, σzz(z = 0) = γ
∂2uz

∂x2
− ρguz.

Only the boundary condition at the interface sets this problem
apart from the purely elastic one: capillarity and gravity are
taken into account by relating the Laplace and hydrostatic
pressure, respectively, to the normal stress. Using the four
boundary conditions and substituting � and Hy, we obtain the
dispersion relation for the gravitoelastocapillary waves (see
Appendix E). This relation can be written in dimensionless
form by introducing the variables k̃ = kh and ω̃ = ωh/ct :

k̃2 sinh α̃ sin β̃((k̃2 − β̃2)2 + 4α̃2β̃2)

− α̃β̃ cosh α̃ cos β̃(4k̃4 + (k̃2 − β̃2)2)

+ 4α̃β̃ k̃2(k̃2 − β̃2) −
(

� + G

k̃2

)
α̃k̃2(k̃2 + β̃2)

× (k̃2 cosh α̃ sin β̃ + α̃β̃ sinh α̃ cos β̃ ) = 0, (1)

where α̃2 = −k̃2 and β̃2 = ω̃2 − k̃2. We identify two di-
mensionless parameters, � = γ /μh and G = ρgh/μ, which
compare the elastocapillary length �ec = γ /μ and the elas-
togravity length �eg = μ/ρg to the thickness h. Using a secant
method algorithm, we determine the zeros in Eq. (1) (assum-
ing that the surface tension of the gels is similar to that of
water, i.e., γ = 70 mN/m). In Figs. 3(a)–3(c), we overlay the
obtained curves (red lines) on experimental maps where the
thickness of the sample was precisely controlled [so that μ

is the only adjustable parameter in Eq. (1)]. The model is
in good agreement with the measured data: it captures the
existence of multiple branches and their cutoff frequencies
and local slopes when varying both μ and h. The values
μth used to fit the predicted relations to the experimental
data are always larger than the expected μ. We qualitatively
ascribe this discrepancy to the evaporation of the hot agarose
solution during preparation [25]. Yet we do not explain the
apparent dispersion: the signal is localized on a finite part of
the predicted branches. We gain more insight by deriving the
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FIG. 3. (a–c) Overlay of the dispersion maps measured on samples with different μ and h values and the dispersion curves obtained
by computing the zeros in Eq. (1) (μth being the only adjustable parameter). Dashed lines show the dispersion relation of shear waves:
ω = k

√
μ/ρ. (a) μ = 380 Pa, h = 2.90 ± 0.05 cm, μth = 400 Pa (b) μ = 380 Pa, h = 0.98 ± 0.05 cm, μth = 380 Pa, and (c) μ = 95 Pa, h =

0.99 ± 0.05 mm, μth = 110 Pa. (d, e) Normalized vertical displacement |uz|/||u|| as a function of k for μth = 120 Pa and hth = 1.3 cm with
(d; red lines) and without (e; blue lines) taking capillarity into account.

displacement field associated with each mode: for any (ω, k)
verifying Eq. (1), we can compute the displacement field at
the interface up to a multiplicative constant (see Appendix E).
We plot in Fig. 3(d) the norm of the vertical displacement
normalized by the magnitude of the displacement vector at
the interface, |uz|/||u||z=0, as a function of k (red lines) for
μth = 120 Pa and hth = 1.3 cm. The normal displacement at
z = 0 varies in a similar fashion for each mode: it increases
sharply until it reaches a maximum for k = km (red diamonds)
and then decreases at a slower rate. As synthetic Schlieren
imaging only detects out-of-plane motion, we expect to mea-
sure waves only when k > km and that the signal intensity
decays along each mode as k increases. The red symbols in
Figs. 1(c)–1(e) represent the couples (ωm, km) obtained from
the model for each sample. Our prediction now captures the
apparent dispersion; the red diamonds act as lower bounds
for the presence of signal for each mode. The blurring of the
modes into a single line can be qualitatively explained by the
significant effect of dissipation at high frequencies, an effect
that deserves a separate study.

VI. ELASTOCAPILLARY EFFECT

Although the shape of the apparent dispersion suggests
that it is caused by surface tension, balancing the capillary-
induced stress, of order γ k, with the elastic stress predicts
that capillarity dominates when k > 2π/�ec = 8.5 × 103 m−1

(for μ = 95 Pa), much larger than the wave numbers probed
experimentally. We report in Fig. 3(e) the normalized vertical
displacement at the interface for the same parameters as in
Fig. 3(d) without taking into account the surface tension to
evidence its role. The variations of the out-of-plane displace-
ment are different when k > km, where we now observe a
plateau. The nature of the displacement fields is modified,
reducing the relative weight of the out-of-plane contribution.

Physically, an extra energetic contribution due to capillarity
tends to favor in-plane displacements even for k < 2π/�ec.
We also note that the values of (ωm, km) are shifted so that
we no longer recover the apparent dispersion in Figs. 1(c)–
1(e) (blue circles): they align on a line with slope

√
2ct ,

corresponding to Lamé modes (see Appendix F). This shows
that the apparent dispersion is caused by capillarity for wave
numbers lower than 2π/�ec. Since � ranges from 0.001 to
0.08 in the experiments in Fig. 1 and Fig. 3, the shape of
the predicted modes is hardly modified by capillarity. To
probe the effect of capillarity on the dispersion curves, we
investigate wave propagation in a very shallow sample (� ∼
1/h). We report in Fig. 4(a) the dispersion relation of a gel
with μ = 95 Pa and h = 0.23 ± 0.05 cm for which � = 0.4.
The red lines represent the prediction of Eq. (1) with (solid
line) and without (dashed line) capillary effects. The predic-
tion lies closer to the experimental result when capillarity is
included, which confirms its direct influence. It is noteworthy
that the two effects discusssed above are specific to finite-
thickness configurations and are markedly different from the
elastic-to-capillary transition discussed in [15] and [18].

VII. ELASTOGRAVITY EFFECT

Finally, we check the influence of gravity on the dispersion
relation. We characterize a sample whose interface normal
points upwards or downwards. In the first case, gravity acts as
a restoring force on the free interface, whereas in the second
it tends to deform it and can even make it unstable [26,27].
Figures 3(c) and 4(b) present the dispersion relations obtained
for a sample with μ = 95 Pa and h = 0.99 ± 0.05 cm when
the interface points up or down, respectively. For such a
sample |G| = 1.02, so that we expect gravitational forces to
matter but remain below the instability threshold. The model
accurately predicts the influence of gravity as shown by the
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FIG. 4. (a) Dispersion map obtained for μ = 95 Pa and h =
0.23 ± 0.05 cm. The solid red (dashed red) line represents the
prediction of Eq. (1) (μth = 120 Pa, hth = 0.26 cm) with (without)
including capillarity. (b) Dispersion map for μ = 95 Pa and h =
0.99 ± 0.05 cm when the interface points downwards. The solid red
(dashed cyan) line corresponds to the prediction of Eq. (1) (μth =
110 Pa) with the interface pointing up (down). Dashed black lines
show the dispersion relation of shear waves: ω = k

√
μ/ρ.

overlay of the solid red line (dashed cyan line) corresponding
to the prediction of Eq. (1) (μth = 110 Pa) with the free
surface pointing up (down). This shows that by tuning G
below the value of the instability threshold, we can control
the dispersion of the fundamental mode.

VIII. DISCUSSION

In this article, we use state-of-the-art measurement tech-
niques to probe the propagation of surface waves in agarose
gels with great accuracy, revealing the importance of finite
thickness, which leads to the occurrence of multiple modes at
low frequencies as well as the existence of an apparent disper-
sion. We quantitatively predict the dispersion relation using
an elastic model including capillary forces. In particular, we
capture the role of capillarity even at wave numbers lower than
expected from scaling arguments in finite-thickness configu-
rations through an intricate balance between in-plane and out-
of-plane interfacial displacements and in very thin samples.
We confirm the validity of our approach by including gravity
in the model and successfully testing it against experimental
data. The influence of gravity opens new perspectives: G can
be tuned to create materials in which the phase and group
velocity have opposite signs, a sought-after property allowing
perfect lensing [28]. Furthermore, G also depends on the
depth, enabling us to tune the medium properties down to
subwavelength scales to create elastic metamaterials [29].
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function of the pulsation ω.

APPENDIX A: RHEOLOGY MEASUREMENTS

We determine the rheology of the gels using a rheometer
(Anton-Paar MCR501) in a plate-plate configuration. We
measure the shear modulus μ(ω) = G′ + iG′′ for pulsations
ranging from 0.05 to 100 rad/s at a fixed strain of 0.1% and
report the results in Fig. 5. In the probed range, both G′ and G′′
are constant and G′ is typically one order of magnitude larger
than G′′.

APPENDIX B: ROLE OF EVAPORATION

Drying, and more generally aging, is a major concern in
hydrogels. We use our gels just after reticulation is complete
and the gel has reached room temperature. A measurement
typically takes less than 1 h and gels are discarded after
they are measured. We are thus confident that there is no
macroscopic skin at the gel surface, but there might be a small
gradient of properties due to the slow drying occurring after
the gel preparation. As an independent check, we measured
the dispersion relation of a gel sample: within 1 h of reticu-
lation [Fig. 6(a)], 1 h after the first measurement [Fig. 6(b)],
and 3 h after the first measurement [Fig. 6(c)]. We observe
no significant change between the dispersion relations in
Figs. 6(a) and 6(b) [except for an input signal error between 35
and 55 Hz in Fig. 6(a)]. Yet we note, in Fig. 6(c), an increase
in the local slope of the branches, an observation compatible
with an increase in the gel shear modulus, which can be
attributed to evaporation. Although evaporation occurs in our
system, it is not a limiting parameter in our experiments.

APPENDIX C: FINITE SOURCE SIZE

The finite size of the actuator could have an influence on
the results. Indeed, the measured wave fields depend on both
the response of the material and the ability of the source to
generate waves at a given frequency. We probed the effect of
source size by using two PMMA strips of different widths.
Figures 6(d) and 6(e) show the dispersion relations for a gel
with μ = 380 Pa and h = 9.8 mm obtained by using actuators
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FIG. 6. Dispersion relation measured from a gel with μ = 380 Pa and h = 0.98 ± 0.05 cm (a) within 1 h of reticulation and (b) 1 h after
and (c) 3 h after the first measurement. Red curves are obtained from Eq. (1) in the text with μth = 380 Pa. (d, e) Overlay of the dispersion
maps for a gel with μ = 380 Pa and h = 9.8 mm and dispersion curves predicted from Eq. (1) in the text (μth = 420 Pa) for actuators with
widths of 4.5 mm (d) and 14 mm (e).

with widths of 4.5 and 14 mm. The two dispersion relations
are almost identical, showing that our results are independent
of the size of the actuator in the range of parameters that we
consider.

APPENDIX D: EFFECT OF INCLUSIONS

The presence of microparticles can modify the material
properties of the gels. We extracted the particle concentration
from digital image correlation images by binarizing the image
to find the area corresponding to bright pixels. Knowing
the thickness of the sheet (	 200 μm) and the size of the
particles (	 10 μm), we obtain the particle concentration
χ = 0.14%. We deduce the density of the gel with inclusions,
ρeff = (1 − χ )ρ + χρp = 1000 kg/m3. Then we determine
the effect of the inclusions on the gel shear modulus using
Eshelby theory [30]. We assume that the inclusions are rigid,
as the shear modulus of the particles is much larger than
that of the gel. The effective shear modulus, μeff , in the case
of dilute spherical inclusions is given by μeff = μ(1 − Bχ ),
where B = −15(1 − ν)/(2(4 − 5ν)), with ν the Poisson ratio.
For the results shown in Fig. 2 (μ = 95 Pa, ν = 0.5), we get
μeff = 95.3 Pa. The presence of the inclusions has a negligible
effect on the density and shear modulus of the gel. We do not
expect the results to be modified and neglect their influence.

APPENDIX E: MODELING: DERIVATION OF THE
DISPERSION RELATION AND OF THE

DISPLACEMENT FIELD

We consider plane waves propagating along the x direction
in an infinite 2D plate of thickness h and density ρ whose
elastic properties are characterized by the Lamé coefficients
λ and μ. We use Helmholtz theorem to separate the displace-
ment field u in a longitudinal curl-free contribution ul and in
a transverse divergence-free contribution ut . The longitudinal
part can be described by a scalar potential � and the transverse
part by a vector potential H:

u = ul + ut = ∇� + ∇ × H.

Both � and Hy verify a wave equation [23],

∇2� − 1

c2
l

∂2φ

∂t2
= 0, ∇2Hy − 1

c2
t

∂2Hy

∂t2
= 0,

where ct =
√

μ

ρ
and cl =

√
λ+2μ

ρ
are, respectively, the shear

and longitudinal wave speeds. We look for solutions of the
form � = f (z)ei(kx−ωt ) and Hy = ih(z)ei(kx−ωt ), where we
write k in place of kx. By substitution in the wave equations,
we obtain

∂2 f

∂z2
+ α2 f = 0,

∂2h

∂z2
+ β2h = 0,

where α2 = ω2

c2
l

− k2 and β2 = ω2

c2
t

− k2. We deduce the form

of the solution of f and h and write the expressions for ux

and uz:

ux = i[k(A sin αz + B cos αz)

+β(C cos βz − D sin βz)]ei(kx−ωt ),

uz = [α(A cos αz − B sin αz)

+ k(C sin βz + D cos βz)]ei(kx−ωt ).

From the displacements, we obtain the stresses σxz and σzz:

σxz = ρc2
t

(
∂ux

∂z
+ ∂uz

∂x

)
,

σzz = ρc2
l

∂uz

∂z
+ ρ

(
c2

l − 2c2
t

)∂ux

∂x
.

We have now determined all quantities to express the bound-
ary conditions. At the bottom of the sample, we assume that
the gel is bound to the container:

ux(z = −h) = uz(z = −h) = 0.

At the free surface, assuming small deformations to linearize
the boundary conditions at z = 0 and taking advantage of the
incompressibility of the hydrogels (cl → ∞), which allows us
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to compensate gravity by a pressure field, we impose

σxz(z = 0) = 0, σzz(z = 0) = γ
∂2uz

∂x2
− ρguz.

The four boundary conditions yield four equations, involving
the constants A, B, C, and D, which can be recast in matrix
form:

⎡
⎢⎣

−k sin αh k cos αh β cos βh β sin βh
α cos αh α sin αh −k sin βh k cos βh

2kα 0 0 k2 − β2

k2α(γ + ρg/k2) ρc2
t (k2 − β2) 2ρc2

t kβ k3(γ + ρg/k2)

⎤
⎥⎦ ·

⎡
⎢⎣

A
B
C
D

⎤
⎥⎦ = 0.

Waves propagate when there are nontrivial solutions to the above system; the dispersion relation is obtained by taking the
determinant of the matrix. This relation can be written in dimensionless form by introducing the variables k̃ = kh and ω̃ = ωh/ct ,
allowing one to obtain Eq. (1). For any couple (ω, k) that verifies the dispersion relation, we obtain the values of three of the
constants A, B, C, and D, allowing us to determine the displacement field up to a constant. We give the values of A, B, and C as
a function of D:

C = −D
k2 − β2 + αβeiβh(e−iαh − eiαh) − k2eiβh(e−iαh + eiαh)

k2 − β2 − αβe−iβh(e−iαh − eiαh) − k2e−iβh(e−iαh + eiαh)
,

A = − 1

ik(e−iαh + eiαh)

(
C

(
k2 − β2

2α
eiαh − βe−iβh

)
+ D

(
k2 − β2

2α
eiαh + βeiβh

))
, B = A + i

(β2 − k2)(C + D)

2αk
.

APPENDIX F: LAMÉ MODES

Lamé modes are a special solution of the Rayleigh-Lamb equation obtained when ω = √
2kct . They correspond to the

propagation of pure bulk shear waves at a 45◦ angle with the plate axis and to the maximum of normal displacement at the surface
of the plate [31]. One can show by substituting the expression of Lamé modes in Eq. (1) that it reduces to the Rayleigh-Lamb
equation for symmetric modes of a plate of thickness 2h in the absence of capillarity and gravity. Thus, the maxima of the normal
displacement at the free surface of the gels align on a line with slope

√
2ct when we do not take surface tension into account.
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