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The Faraday instability appears on liquid baths submitted to vertical
oscillations above a critical value. The pattern of standing ripples at
half the vibrating frequency that results from this parametric forcing
is usually shaped by the boundary conditions imposed by the
enclosing receptacle. Here, we show that the time modulation of
the medium involved in the Faraday instability can act as a phase-
conjugate mirror––a fact which is hidden in the extensively studied
case of the boundary-driven regime. We first demonstrate the com-
plete analogy with the equations governing its optical counterpart.
We then use water baths combining shallow and deep areas of
arbitrary shapes to spatially localize the Faraday instability. We give
experimental evidence of the ability of the Faraday instability to
generate counterpropagating phase-conjugated waves for any
propagating signal wave. The canonical geometries of a point and
plane source are implemented. We also verify that Faraday-based
phase-conjugate mirrors hold the genuine property of being shape
independent. These results show that a periodic modulation of the
effective gravity can perform time-reversal operations on mono-
chromatic propagating water waves, with a remarkable efficiency
compared with wave manipulation in other fields of physics.
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In 1831, Faraday discovered that submitting a bath to a periodic
vertical acceleration resulted in the destabilization of its surface

above an acceleration threshold (1). This parametric instability,
known as the Faraday instability, is driven by the modulation of
the effective gravity. Surface waves appear as standing waves,
modulated at half the excitation frequency. This instability has
been extensively studied, both experimentally and theoretically, in
the steady-state regime (2–4). In this regime, the wave pattern is
dominated by the geometry of the bath, the boundaries and me-
nisci acting as wave sources. The observed wave field is thus a
combination of some modes of the cavity defined by the shape of
the bath (2). The extended literature on the Faraday instability has
focused on aspects like the nonlinear hydrodynamic regimes (5, 6),
the influence of the depth or of the viscosity of the liquid (7, 8),
the excitation under several frequencies (7, 9), or the ability to
generate droplets (10, 11). However, all these studies only con-
sider the steady-state regime with standing-wave patterns, after the
transient growth of the instability, and no external wave input.
This is in stark contrast with nonlinear (NL) optics, in which

parametric forcing has been very fruitful to master optical beams.
In particular, this has enabled the design of phase-conjugate
mirrors (12–14) (PCMs). Typically, a monochromatic wave field
with an arbitrary shape enters the NL optical crystal and generates
a counterpropagating, time-reversed wave field. In the four-wave
mixing (FWM) implementation, the parametric modulation is
provided by two external pump beams (13).
On the contrary, in fluid mechanics, the Faraday instability has

always been analyzed within the framework of parametric insta-
bilities, thus ignoring its additional ability to control and manip-
ulate propagating waves. In this paper, we revisit it as a means to
perform phase conjugation on water waves, through a periodic
time modulation of the medium properties. We show that it does
act as a PCM for water waves at the Faraday frequency.

The paper is organized as follows. In the first section, we show
the formal analogy between the Faraday instability and an optical
PCM obtained by an FWM configuration in an NL optical mate-
rial. Section 2 is devoted to the description of the experimental
implementation, in which the water-wave PCM is confined to a
specific area in the bath, taking advantage of the Faraday threshold
dependence on the liquid depth. Section 3 presents and discusses
the experimental results for standard point and plane source ge-
ometries. In addition, using arbitrary mirror shapes, we show that
PCM refocusing is independent of the geometry of the mirror.

Theoretical Developments
In this section, we provide evidence for the analogy between the
Faraday instability and an optical PCM produced by NL optics. In
optics, one of the most common ways to achieve phase conjugation
is through the backward degenerate FWM configuration, first pro-
posed by Hellwarth in 1977 (12). A schematic of the configuration is
shown in Fig. 1A. When a monochromatic point source emits a wave
into the NL optical crystal, the PCM generates a counterpropagating
wave which refocuses at the source position. This clearly shows that
a PCM acts as a monochromatic time-reversal mirror. Note also that
contrary to standard mirrors, this is independent of the shape of the
crystal. It is based on the third-order susceptibility χð3Þ of an NL
optical medium. Two counterpropagating, high-intensity plane
waves, called pump waves, are sent on the NL medium. Neglecting
the vector nature of the fields, their associated electric fields are
given by E1 = Apeiðωt−kp . rÞ and E2 = Apeiðωt+kp . rÞ, respectively, where
ω is the time angular frequency, kp the wave vector, and Ap the wave
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amplitude. When a signal wave Es = Aseiðωt−ks . rÞ with the same an-
gular frequency ω and a wave vector ks is sent into the NL medium,
it generates a counterpropagating idler wave Ec = Aceiðωt−kc . rÞ with
the same angular frequency ω and a wave vector kc equal to −ks.
Under the usual assumptions that the high-intensity pump waves are
not depleted by the (weak) NL interaction and remain constant (14),
the signal and the idler modes Es=c are coupled, and can be
expressed as a set of coupled equations in the presence of the NL
polarization:

ΔEs=c −
n2eff
c2

∂2Es=c

∂t2
=−

6ω2χð3ÞA2
p

c2
e2iωtEp

c=s, [1]

where n2eff = 1+ 6χð3Þ
��Ap

��2. The two modes Es and Ec are the
phase conjugates of each other: They are coupled by sources
proportional to their complex conjugate (right-hand side of the
equation). This is equivalent to time reversal for monochromatic
waves. The real electric field of the idler mode Ecðr, tÞ at time t
satisfies

Ecðr, tÞ= Re
h
Aceiðωt−kc . rÞ

i
∝Re

h
Ap
s e

ið−ωt+ks. rÞ
i
= Esðr, − tÞ, [2]

where Esðr, − tÞ is the real electric field associated with the signal
mode at time −t. Note that the effect of the pump waves is
equivalent to a temporal modulation of the refractive index with
the doubled frequency (14):

n2mod = n2eff + 6χð3ÞA2
pe

2iωt. [3]

Let us now show that these equations are formally analogous to the
ones which describe the propagation of water waves on a vibrated
bath with a temporal angular frequency ωexc = 2ω. In the deep-water
regime (where the liquid depth verifies h � λ), neglecting viscosity,
the equation for the free surface elevation field ζ can be written in
the spatial Fourier space in the form of a Mathieu equation (2, 15):

∂2~ζðk, tÞ
∂t2

+ω2
0ðkÞ~ζðk, tÞ=−γ0k cosð2ωtÞ~ζðk, tÞ, [4]

with k= jkj the norm of the wave vector, and ω0ðkÞ the time
angular frequency satisfying the dispersion relation of linear
gravito-capillary waves ω0ðkÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk+ ðσS=ρÞk3

p
, g being the grav-

ity acceleration, σS the surface tension, and ρ the density of the
liquid. γ0 is the amplitude of the acceleration of the bath vibrated
at the angular frequency ωexc = 2ω. In the general case, Floquet
analysis shows that the solutions of Eq. 4 are of the form eμtf2ωðtÞ,
where μ is a complex number and f2ωðtÞ is a periodic function at
the angular frequency 2ω. Only the unstable modes correspond-
ing to Re½μ�> 0 are amplified (4). In the weak excitation limit
ðγ0k � ω2Þ valid in our experiments, it can be shown that these
unstable modes must satisfy the dispersion relation of free sur-
face waves, with frequencies selected by multiples of half the
bath vibration frequency: ωðknÞ= nω, where n is an integer. Let
us assume that in such a modulated bath, a signal plane wave
ζs =Aseiðωt−ks . rÞ of frequency ω and of wave vector ks is intro-
duced. Its spatial Fourier transform is ~ζs =Aseiωtδðk− ksÞ. Due
to the modulation of the bath, other frequency components of
the wave field may emerge. However, in the weak excitation
limit, only the components of frequency ω are generated (2),
so that we can assume that the Fourier transform of the total
wave field can be written: ~ζ= ~ζs + ~ζc, where ~ζc =Ace−iωtδðk− ksÞ.
As and Ac are slowly varying envelopes compared with 1=ω in the
weak approximation limit. Eq. 4 can therefore be decomposed
into a set of coupled equations for the components at angular
frequency ω and −ω:

∂2~ζs=c
∂t2

+ ω2~ζs=c =−γ0ke±2iωt~ζ
p

c=s. [5]

These coupled equations are identical to the coupled Eq. 1 de-
scribing the PCM in optics, the change of sign of the angular
frequency being equivalent to a change of sign of the wave vec-
tor. Thus, the Faraday instability can be interpreted as a PCM for
surface waves. Note that the formal analogy with optical PCMs
predicts that the initial and the phase-conjugated waves converge
to the same amplitude at large times (14). This is why the mod-
ulation of the medium and thus the Faraday instability are asso-
ciated with standing waves in the long run. In the next section, we
give experimental evidence of this interpretation of the Faraday
instability.

Experimental Setup and Procedures
Fig. 1B shows a schematic of the water-wave analogous configu-
ration using the Faraday instability. The role of the counter-
propagating vertical optical pumps is played by the vertical vibration
of the bath. Since the Faraday threshold strongly depends on the
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Fig. 1. Schematics of phase-conjugate mirrors for optics and water waves. (A)
Optical implementation of a PCM with an NL optical crystal using the four-
wave mixing configuration, with two counterpropagating pump beams
orthogonal to the signal wave emitted from a point source. A conjugated
wave is generated in the crystal by the time modulation of the refractive index
induced by the interference of the pumps. (B) Water-wave implementation of
the PCM in the same configuration. The bath is submitted to a sinusoidal
vertical acceleration to modulate the wave-propagation speed in time. The
dependence of the Faraday instability threshold on the water depth is used to
obtain the analog of the free propagation and propagation in the optical NL
crystal, using a shallow- and a deep-water bath, respectively.
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depth of the liquid (16), we use the bathymetry (underwater to-
pography) to split the bath into distinct areas mimicking the wave
propagation in free space or in the optical NL crystal. In the shallow
region, the excitation acceleration is far from the threshold, hence
the vertical vibration has only negligible effects on the wave prop-
agation: it appears similar to that of an unperturbed bath. In the
deep-water region, the vertical acceleration is set slightly above the
Faraday threshold. In this region, any propagating wave triggers
a counterpropagating wave.
The experimental setup is shown in Fig. 2A. A 25 × 25 cm2

square container (made of polylactic acid with a 3D printer) is
set on a vertically vibrating shaker (B&K Vibration Exciter type
4808, controlled by means of a waveform generator). The bath is
divided in two adjacent rectangular areas with different depths:
the shallow and deep ends are, respectively, h< = 0.5 mm and
h> = 6 mm deep. The sinusoidal vertical acceleration satisfies
γðtÞ= γ0HðtÞsinð2πfexctÞ, with the frequency fexc set to 35 Hz, and
HðtÞ the Heaviside step function. The walls of the bath are tilted
30° from the vertical direction, to limit the excitation of waves at
the excitation frequency ωexc by the menisci at the boundaries.
Care is taken that the water wets the slope on each side.
The wave source is obtained using a loudspeaker operated by a

second waveform generator. The loudspeaker produces varia-
tions of pressure in a hermetic cavity equipped with plastic
tubing. Depending on the type of geometry needed for the wave
source, the tubing can be plugged on various systems attached to
the water container: A straw, whose tip is placed above the
shallow end of the pool, at a distance of 2 cm ahead of the
boundary with the deep end, is used as a point source; a flared
hollow solid, with a series of 1-mm holes arranged in a line with a
3-mm spacing, is used as a planar source. An intense LED light
(Constellation 60) is placed approximately 1 mm above the bath.
A sheet of diffusing paper, on which a radial Gaussian filter is

printed, is positioned under the source to create a gradient in the
illumination light. A semireflecting mirror is used to redirect the
light reflected by the waves toward the camera, which records
movies at 500 frames per second.
As shown in Fig. 2B, for a given acceleration γ0 above the

Faraday instability threshold γF in the deep end, the instability
grows exponentially with a typical time τF, which depends on the
distance to the threshold. This time is evaluated through the
monitoring of σ, the variance of the intensity of the camera pixels
imaging the deep end of the pool. Initially, the surface of the
water is flat; σ is close to zero. At time t= 0 the vertical vibration
is turned on. The menisci at the boundaries of the bath act as a
source of propagating ripples at the excitation frequency, hence σ
increases to a small value. In the absence of a source signal, this
noise triggers a pattern of standing waves at the Faraday fre-
quency which starts building up in the deep end of the pool (Fig.
2B, Inset). This results in a sharp increase of σ. This instant de-
fines τF , which is typically on the order of 10 s. Once the in-
stability is fully established, the waves reach their maximum
amplitude and σ reaches a plateau.
To produce a signal wave, the loudspeaker is sent 10 periods

of a sinusoid at the Faraday frequency f = 17.5 Hz, over a du-
ration TS. Fig. 2C shows a top view of the bath during the
emission of a signal wave from a point source. Fig. 2D shows the
space–time plot of the wave emission by the point source, taken
along the x axis (red line in Fig. 2C). The signature of the
outward-propagating nature of the waves is readily observed in
the wave-front orientation. It takes a time Δtp for the waves to
reach the deep end and cross it. Fig. 2 C and D was produced in
the absence of a vertical excitation of the bath.
A typical experiment combines the vertical vibration with the

production of a signal wave. It is crucial in these experiments that
the Faraday instability be triggered in the deep end by the signal

A B

C D

Fig. 2. Setup and experimental procedures. (A) Schematics of the experimental setup. (B) Temporal evolution of the amplitude of the acceleration γ0 (black,
left axis) and of the normalized SD σ of the intensity of the pixels in images of the deep end of the pool (blue, right axis). The origin of time is taken when the
vibration is turned on. This gives the characteristic exponential growth time for the Faraday instability τF before saturation. (Inset) Snapshot of the growing
Faraday instability. (C) Top view of the diverging waves on a still bath produced by the point source inducing a pressure oscillation at the Faraday frequency
f = 17.5 Hz. (D) Associated space–time plot along the line represented in C in red (x axis). Δtp is the time taken by the emitted wave to reach the wall after
crossing the deep end of the bath and TS is the emission duration.
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wave and not by the fluctuations of the bath or by the boundary-
induced ripples. Thus, the time sequences are set so that
Ts +Δtp � τF. This is possible since τF is typically on the order of
10 s, while Ts +Δtp is less than 1 s.
Despite the precautions taken to physically attenuate them,

the boundaries of the bath emit small ripples throughout our
experiments. Although they neither interfere with nor prevent
the observation of the waves generated by the PCM, these rip-
ples were removed numerically to improve the aesthetic ap-
pearance of the movies. Since all of the experimental devices
were fully synchronized, enabling a very high level of re-
producibility, each experiment was run twice under the exact
same conditions. A first movie was recorded with the vertical
vibration of the bath alone, then a second one followed, fea-
turing both the vertical vibration and the signal wave. To obtain a
better image of the signal wave and of its associated counter-
propagating wave, the first movie was subtracted from the sec-
ond one. This operation removes the boundary-induced ripples,
which superpose exactly on the two movies. All of the following
experimental movies were produced using this method.

Experimental Results and Discussion
We first study the response of the water-wave PCM to the
signal wave from a point source in the configuration presented
in Fig. 2 (Movie S1). Fig. 3A shows a snapshot of the wave field
during the emission at t≈ 0.43 s. The signal wave is propagating
outward and enters the deep end of the bath. This image ap-
pears similar to that of Fig. 2C, which is taken in the absence of
a vertical excitation, because the PCM does not yet generate a
phase-conjugated wave. In Fig. 3B, at t≈ 1.44 s, the source has
stopped emitting and the PCM is emitting a phase-conjugated
wave in the shallow end, that refocuses at the position of the
source and diverges again on the other side of it. The signal
wave has triggered the Faraday instability in the deep end and
has imposed its shape as a boundary condition. In the absence
of this perturbation, the surface of the deep end of the bath
would remain flat since t< τF. In the deep end, the Faraday
instability is visible with standing waves at half the excitation
frequency, with a shape that is given by the signal wave field
and not by the boundaries of the basin. However, the boundary-
induced ripples eventually take over, imposing the wave-field
pattern in the deep end, as in standard stationary Faraday ex-
periments. The shape of the propagating wave produced in the
shallow end is thus lost. Fig. 3C shows the space–time plot along
the horizontal x axis of Fig. 3 A and B. It clearly shows that after
the initial step, in which the wave source produces an outward-
propagating field, a counterpropagating wave is produced in the
deep end, resulting in the presence of symmetric wave fronts.
These phase-conjugated waves are sustained even after the source
has stopped emitting.
We now focus on the response of the PCM to various exci-

tation frequencies. The wave profiles of the source are identical
to the one described above, except for their frequency. The
amplitude of the phase-conjugated wave is measured for each
frequency through the light reflected on the surface reaching the
camera, at the position of the source. Unfortunately, this mea-
surement is not quantitative: The amplitude of the refocusing
phase-conjugated waves can only be inferred qualitatively from
the change in the reflection amplitude. The spectral response of
the PCM is thus normalized by its maximum amplitude value
obtained at the Faraday frequency. Fig. 3D shows the normalized
spectral response of the PCM for three different bath accelera-
tions, γ0=γF ≈ 1, 1.35, and 1.6. The shapes of the spectra are very
similar with a sharp peak at the Faraday frequency, and the full
width of the peak is approximately Δf ≈ 4 Hz. This spectral re-
sponse is independent of the excitation amplitude γ0 of the
vertical excitation of the bath. The sharp decrease of the PCM

response when the source frequency deviates from the Faraday
frequency is due to the phase mismatch between the incident
wave and the phase-conjugated wave, due to a large dispersion in
water. For Δf ≈ 4 Hz, the coherence length is equal to ∼5 Far-
aday wavelengths, which is already smaller than the width of the
deep end (17). Although the phase-conjugated wave amplitude is
not obtained qualitatively, the reflected light variations increase
significantly with the acceleration amplitude: by a factor of 1.5
and 2.75 when the acceleration amplitude increases by 1.35 and
1.6, respectively. This is the signature of a strong increase in the
efficiency of the PCM with increasing pumping. The theoretical
dependence given by the model in Eq. 5 gives a linear depen-
dence with the excitation amplitude.
Another classical configuration which exemplifies the differ-

ence between a standard mirror and a PCM is the case of an
incident plane wave. Contrary to a standard mirror, for which the
incident wave is reflected symmetrically to the normal of the
mirror plane, a PCM produces waves which are phase-conjugated
and counterpropagating. Fig. 4 A and B shows two snapshots of a
plane wave impinging toward a water-wave PCM and the resulting
reflected phase-conjugated emission from the PCM (Movie S2).

A C

B

D

Fig. 3. Reflection of the signal wave emitted by a point source by a water-
wave PCM based on the Faraday instability. The source and the bathym-
etry configurations are the ones presented in Fig. 2. The PCM is the deep
end of the bath. Snapshots of the wave field: (A) during the source
emission (t ∼ 0.43 s), when the signal wave field enters the PCM, and (B)
after the emission is turned off (t ∼ 1.44 s), when the phase-conjugated
wave refocuses at the source initial position (Movie S1). (C) Space–time
plot associated to the image sequence along the solid red line in A and B.
(D) Normalized spectral response of the water-wave PCM for various ac-
celeration amplitudes γ0.
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The time profile of the source is the same as that of Fig. 2D. Fig.
3A shows the wave field during the emission at time t≈ 0.35 s and
Fig. 3B when the source has stopped emitting, at t≈ 1.1 s. The
triggered Faraday instability is clearly visible in the deep end as
well as the counterpropagating phase-conjugated wave emitted in
the shallow end.
The ability of PCMs to generate phase-conjugated waves is

independent of their shape because there are no phase-
matching conditions involved. Unlike standard mirrors, they
can assume any shape. We have tested this unique property in
an experiment in which the mirror is shaped like France, as
shown in Fig. 4 C–F. The shallow end of the bath is located within
the borders of the country. It is surrounded by a deeper bath
acting as a PCM for water waves when excited parametrically. Fig.
4 C and E show the circular outward-propagating waves emitted
by point sources, placed respectively at the location of Paris and
Lyon (t≈ 0.3 s). Fig. 4 D and F shows the phase-conjugated waves
produced by the PCM surrounding France after the emission has
stopped (t≈ 1.13 s). The waves refocus at the position of Paris and
Lyon, respectively, and diverge again, producing standing waves
centered at the initial source locations (see Movies S3 and S4,
respectively).

It is interesting to relate water-wave PCMs using the Faraday
instability to the recently introduced general concept of the in-
stantaneous time mirror (ITM) (18). A water-wave ITM consists
of submitting a liquid bath to a single sudden change of effective
gravity. It results in the production of a broad-band, counter-
propagating, time-reversed wave for any propagating wave ini-
tially present on the surface. This transient parametric excitation
corresponds to a change in the wave-propagation speed on the
entire surface of the bath. The water-wave PCM using the Far-
aday instability corresponds to a periodic modulation of the
wave-propagation speed at the excitation frequency. Thus, PCMs
can be analyzed as the monochromatic counterparts of ITMs.
PCMs based on the Faraday instability offer a unique way to

see in real time the dynamics of the phase-conjugated generation
directly inside the PCM material. This generation appears very ef-
ficient compared with other PCMs, like in optics for instance. It is
the result of a temporal modulation of the speed velocity at the
Faraday frequency. In the case of water waves, the wave-speed
modulation can reach values on the order of the speed without
modulation c0. With acceleration amplitudes satisfying γ0 � ω2

exc=k,
the wave speed satisfies cðtÞ≈ c0 + ðγ0=2ωexcÞcosðωexctÞ. Hence, in
this experiment the wave-speed modulation is substantial. This is in
sharp contrast with the typical values for optical PCMs, for which
the wave modulation is very small, even for very large amplitudes of
the pump beams (pulsed beams must be used to increase the effi-
ciency of these types of PCMs). Indeed, typical values of the third-
order susceptibility are in the range χð3Þ ≈ 10−24 m2/V2.
The phase-conjugated mode is generated immediately as the

source wave enters the deep end of the bath. Each spatial wave front
generates periodically at the Faraday frequency a copropagating
wave, which adds up coherently with the incident wave, and a
counterpropagating wave, which refocuses on the source. As the
wave propagates into the deep end, the produced waves add up
constructively from each propagating wave front, increasing the
forward-propagating mode and the phase-conjugated mode. Fol-
lowing Eq. 5, the amplitude of the phase-conjugated mode increases
with the acceleration modulation. The right-hand side of the equa-
tion represents the sources which produce this mode. There is no
discontinuity in the phenomenon due to the Faraday instability
threshold. However, above the Faraday threshold, ripples produced
by the boundaries of the deep end of the bath will eventually get
amplified. The characteristic time involved, τF, is long since the
sources which produce it are initially null (right-hand side of
Eq. 5). The growth rate is the result of the competition between
the modulation of the vertical acceleration and the damping
rate (which in turn is fixed by viscosity and boundary condi-
tions). Self-oscillations can also be reached in optical FWM
configurations but usually for crystal thicknesses much larger
than the light wavelength (13, 19).
The efficiency of Faraday-based PCMs opens up the possibility

of creating thin subwavelength PCMs, that could be used for
time-reversed flat lenses (20), whose implementation is still very
challenging with other types of waves (21, 22).
This paper revisits the Faraday instability as a way to control

the propagation of water waves. This parametric instability is
based on a modulation of the effective gravity, which induces a
wave-velocity modulation. Equivalently, several others parametric
instabilities using modulated electric or magnetic fields could be
performed on fluids to induce similar modulations of the wave
velocity (23–25). They could thus be revisited as well, being
interpreted as PCMs to control wave propagation. These para-
metric controls appear much more versatile than the gravity
modulation of the Faraday instability, in particular regarding the
ability to perform differentiated control in different areas of the
medium. In addition, the bathymetry technique used in this paper
to confine the PCM to a particular area of the bath has the
drawback of increasing the damping in the shallow region. This

A B

C D

E F

Fig. 4. Snapshots of various water-wave PCM configurations. (A and B)
Snapshots of a plane wave impinging on a PCM (t ∼ 0.35 s) and the reflected
phase-conjugated counterpropagating wave generated by the PCM (t ∼ 1.1 s),
respectively (Movie S2). The bathymetry configuration is the one pre-
sented in Fig. 2. The PCM is the deep end of the bath. (C–F) Snapshots of a
point-source emission placed at the position of Paris (C and D) and Lyon (E
and F) surrounded by a water-wave PCM having the shape of France (see
Movies S3 and S4, respectively). The PCM associated with the deep end of
the bath is situated outside France, while the shallow end, inside France,
corresponds to free wave propagation. The sources are similar to the one
presented in Fig. 2. (C and E) are taken during source emission (t ∼ 0.3 s) and
(D) and (F) are taken when the source has stopped emitting, while the PCM
is generating the phase-conjugated wave (t ∼ 1.13 s).
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limits the wave-propagation length, and can be avoided with these
other parametric controls, enabling exciting experiments with a
longer propagation length, like the control of focusing and prop-
agation in complex media (26).
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