
This journal is©The Royal Society of Chemistry 2019 Soft Matter

Cite this:DOI: 10.1039/c8sm01946k

Peeling an elastic film from a soft viscoelastic
adhesive: experiments and scaling laws

Hugo Perrin,*a Antonin Eddi,b Stefan Karpitschka, c Jacco H. Snoeijerd and
Bruno Andreotti a

The functionality of adhesives relies on their response under the application of a load. Yet, it has

remained a challenge to quantitatively relate the macroscopic dynamics of peeling to the dissipative

processes inside the adhesive layer. Here we investigate the peeling of a reversible adhesive made of a

polymer gel, measuring the relationship between the peeling force, the peeling velocity, and the

geometry of the interface at small-scale. Experiments are compared to a theory based on the linear

viscoelastic response of the adhesive, augmented with an elastocapillary regularization approach. This

theory, fully quantitative in the limit of small surface deformations, demonstrates the emergence of a

‘‘wetting’’ angle at the contact line and exhibits scaling laws for peeling which are in good agreement

with the experimental results. Our findings provide a new strategy for design of reversible adhesives, by

quantitatively combining wetting, geometry and dissipation.

1 Introduction

Pressure sensitive adhesives, ubiquitous for domestic and
industrial applications, have the characteristic property that
they do not undergo chemical reactions during the bonding
process and their performance life. Animals with adhesive pads
are ubiquitous in nature1 and have inspired numerous designs
of artificial reversibly adhesive materials.2–5 The insights com-
bining viscoelasticity, capillarity, and multiscale hierarchical
topography6 are crucial to design innovative adhesives. Namely,
an effective adhesive material should stick under physical
contact with a substrate and must therefore respond highly
compliant, similar to a liquid. Its adhesive performance results
from the resistance to peeling it off a substrate. Strong
adhesion implies a high energy dissipation, produced in most
polymeric materials by fingering instabilities,7–10 cavitation11

and fibrillar deformation.
From a theoretical perspective, pioneering models have

considered the opposite limit of weak adhesion, for which
the debonding is interfacial, reversible, and the adhesives

remain weakly deformed.12 According to these theories,13–21

the dissipation during debonding can be related to the linear
viscoelastic properties of the adhesive.17,22 The recent review by
Creton and Ciccotti2 gives a comprehensive overview of the
development of the field. Most experiments with peeling adhe-
sive tapes23,24 or bulk fracture25 disagree quantitatively with
theoretical predictions.21,26,27 This leaves a gap in first principles
understanding, and has led to the conclusion that non-linear
viscoelastic dissipation and, most often, damage mechanisms in
the polymer network should be taken into account.2,28

In this paper we investigate the dynamics of peeling for
a reversible viscoelastic adhesive, which can be peeled off
without exhibiting irreversible plastic damage (Fig. 1). Rather
than considering the classical case of peeling a thin, strong
adhesive with a flexible backing off a rigid solid,7,23,24,29 we take
the opposite perspective: we use a thick layer of a weak adhesive
on a rigid backing and peel off a thin flexible tape of a
much stiffer material (cf. Fig. 1). This way, we disentangle
the effects of bending elasticity, viscoelastic dissipation, and
adhesion energy. Our model adhesive is made of a multi-scale
polymer gel, whose strong dissipation is controlled by linear
viscoelasticity. The key finding is that the dissipation in the
bulk is determined by the singular deformation in the vicinity
of the contact line, this singularity being regularised by
surface energy. This is in stark contrast to ‘‘classical’’ peeling
where the blunt and frequently irregular crack front cannot
localize dissipation sufficiently and the thickness of the
adhesive matters.2 To resolve all our experimental findings
in detail, we propose a theory based on which we establish
new scaling laws for peeling of such reversible adhesives,
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with multiplicative factors quantitatively determined in the limit
of small deformations.

2 Set-up

Elastomers are reticulated polymers obtained by cross-linking
long polymer chains. The longer the chains between cross-links
(or entanglement points), the larger their relaxation timescale
and their effective viscosity. Here we use an addition-cure
adhesive that consists of a Silicone gel (Dow Corning CY52-276)
whose reticulated polymer network is formed by polymerizing
small multifunctional prepolymers. At the gel point, a fractal
polymer network forms, which is composed of branches of all
lengths between the prepolymer and the size of the sample. Once
stirred and degassed, the mixture of the two prepolymers is
poured into petri dishes to make gel layers of varying thickness
(from 2–10 mm). The stoichiometric ratio of 1 : 1 (A : B) provides
extra cross-links with respect to the gel point and leads to a finite
shear elastic modulus G C 1.2 kPa. The linear rheology is very
accurately fitted by the simple relation

m(o) = G0(o) + iG00(o) = G[1 + (ito)n] (1)

with an exponent n C 0.55. This bulk rheology obeys Kramers–
Kronig relation: both the storage and the loss moduli originate
from the same relaxation function G[1 + G(1 � n)�1(t/t)n], where
G is the gamma function. The power law dependence of the loss
modulus G00 B on reflects the architecture of the polymer
network, with a continuum distribution of relaxation times
reminiscent of that evidenced at the gelation point – above
a frequency Bt�1, the rheology remains the same as that
observed at the gelation point.30

The cross-over timescale, measured t = 0.13 s for our system,
is determined by the length of largest branches of polymers in
the network. Rheological measurements have shown that the
elastic domain of the gel extends at least to a strain of 300% at

low frequency and the linear range of the rheology extends up
to 100–200% with a slight dependence on frequency. Moreover,
the rheological response for normal displacements at the surface
of the gel is found to present a negligible dependence on
an externally applied tangential stretching of the gel sample,31

confirming the linear behavior of the gel.
In order to directly test the hypothesis of a dissipation

governed by linear viscoelasticity, a ten times stiffer gel has
also been used. It was prepared by adding 5% of Sylgard 184 to
the aforementioned gel, leading to G C 10 kPa, n C 0.44, and
t C 8.6 ms. A thin, virtually inextensible film of bending
modulus B is placed on the gel, and is subsequently peeled
off at controlled forcing. The experiment is performed by
placing the system upside-down, inclined at a variable angle
f with respect to the horizontal,32 and attaching a mass at the
end of the tape (Fig. 1). The forcing is varied by four orders of
magnitude by using different masses and also by peeling due to
the weight of the plastic sheet alone. The sheet’s bending
modulus B was varied by one order of magnitude (respectively
B C 9.7 � 10�5 J and C6.9 � 10�6 J) by using two types of
tape: a 88 mm thick biaxially oriented polypropylene film
(BOPP manufactured by Innovia) and a 34 mm thick Mylar film
(polyethylene terephthalate) coated with aluminium (PET,
manufactured by Toray). These correspond to Young’s moduli
of the order of 1 GPa, which is well separated from those of the
gels. The tapes are smooth at optical scales – submicrometer
roughness could not be measured. Despite no further annealing
was applied, the samples did not present any plastic damage nor
any spontaneous curvature. The position of the contact line,
where the sheet joins the gel, and the geometry of the ridge
formed below this contact line are recorded using a video camera
(1024 � 1024 pixels with a resolution of 20 mm per pix).

The key control parameter of the experiment is the peeling
force f per unit width, defined as the energy released by gravity
when the contact line moves by a unit distance. To quantify this
force, we focus on the case where the length R of the freely
hanging tape is sufficiently large to be quasi vertical close to its
free end. Then, peeling the tape by a length dR, the end of the
tape moves downward by dR(1 � sinf) [cf. Fig. 1(b)]. Hence, we
obtain the peeling force per unit width:

f = lg(1 � sinf), (2)

where l is the mass at the end of the tape per unit width.
In this expression we neglected the weight of the sheet, which
can been included leading to a general expression (see
Appendix A.1).

3 Geometric characteristics of the
peeling front

The present setup provides an experimental access to the
geometric features in the vicinity of the contact line.33 This is
of key importance to understand the viscoelastic dissipa-
tion during the peeling, which occurs as the deformed zone
travels along the gel. For the studied parameters, the peeling

Fig. 1 (a) Image of the peeling experiment. A tape is pulled vertically from
the adhesive gel under the influence of a weight (not in the image) hanging
at its end. (b) Schematic illustrating the gravitational energy released by
peeling a length dR. The forcing is controlled by varying the attached mass
and the inclination f. The image also defines the normal deflection e, the
lateral scale c = (B/G)1/3 on the side where the tape is still attached, and the
tape inclination at the contact line y.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
6 

D
ec

em
be

r 
20

18
. D

ow
nl

oa
de

d 
by

 E
co

le
 S

up
 d

e 
Ph

ys
iq

ue
 e

t d
e 

C
hi

m
ie

 I
nd

us
tr

ie
 o

n 
1/

18
/2

01
9 

9:
47

:1
9 

A
M

. 
View Article Online

http://dx.doi.org/10.1039/c8sm01946k


This journal is©The Royal Society of Chemistry 2019 Soft Matter

front remains straight and stable: no oscillation nor stick-slip
motion like those reported by Cortet et al.34 were observed. The
peeling dynamics reaches a steady travelling state after a
transient that lasts less than a second for the largest velocities.
The geometric aspects can be inferred from Fig. 1(b). Interest-
ingly, the typical scales of deformation, e in the normal direc-
tion and c parallel to the gel layer, depend non-trivially on f. In
Fig. 2 we plot the normal displacement e as a function of
forcing f, at different inclination angles f. The response is far
from linear, with a scaling law e B f 1/2, even though typical
strains are within the linear range of the gel.

This nonlinear response of the normal displacement can be
understood in two steps. First, we analyze the part of the elastic
gel that is in contact with the tape. The gel layer is soft and
thick, and characterized by its (static) shear modulus G.
A surface deflection of amplitude e and horizontal scale c
induces a normal stress s B Ge/c. By contrast, the elasticity
of the thin, stiff tape is characterized by its bending modulus B,
and gives a typical normal stress s B Be/c4. The balance of
stress thus does not select the normal deflection e, but provides
access to a lateral length scale c given by:

‘ ¼ B

G

� �1=3

: (3)

This elasto-bending length c is the wavelength of wrinkles that
appear when compressing a soft foundation that is covered by a
hard, thin skin.35,36 In the present case of a peeling experiment,

where the elastic film is under tension, c represents the decay
length over which the angle of the tape aligns to the gel layer
(Fig. 1b) (C1.8 mm for the flexible tape and C4.3 mm for the
stiff one). To check this prediction, we have directly measured
the length cexp over which the tape relaxes to its asymptotic
angle. The measurements, reported in Fig. 3 shows that it
presents subdominant variations when the force is varied over
more than three orders of magnitude. Moreover, it is as
expected on the order of the elasto-bending length c.

As the length cexp is only rigorously defined in the limit of
small deformations where an exponential relaxation towards a
flat surface nicely fits the data, we have also measured the
inclination of the tape at the contact line y with respect to the
horizontal, for different peeling forces (see Fig. 1b for the
definition of y). A very simple view of the deformation would
be to approximate the tape as a triangle, with normal extension
e and lateral extension on the side of the gel given by c. This
would give a geometric relation tan y � tanf = (e/c)(1 + tan y
tanf). However, this approximation has the drawback that
it does not capture the large deformation asymptotic: when
e - +N, y - p/2 since the tape is aligned with gravity already
at the location of the contact line. Therefore we propose the fit:

tan y� tanf ¼ e

a‘
; (4)

as it correctly gives the divergence of the normal deformation e
when y - p/2 and is consistent with the triangular model for
f = 0. Fig. 4 presents the angle y as a function of the deforma-
tion e/c for the different sets of experiments – type of tape,
configuration (with or without a mass) and global inclination f.
The inset shows the case where the gel is horizontal (f = 0). The
data are very well described by the fit (4) for all f, shown as a
solid lines. The prefactor a was found of order unity for all cases
(see caption), and shows that c as defined by (3) indeed sets the
lateral scale – with a weak dependence on the inclination angle
f. The result obtained for f = 0 is shown in the inset of Fig. 4
and is accurately described by tan y B e/c, for different f and B,
confirming that (3) correctly predicts the lateral scale c.

To explain the nonlinear behaviour of the normal displace-
ment e, we now turn to the freely hanging part of the sheet that

Fig. 2 Relation between the gel deformation e, rescaled by the elasto-
bending length c = (B/G)1/3, and the peeling force f rescaled by c and by the
gel elastic modulus G. The colors correspond to different inclination
angles f from red to blue (�451, 01, 451) and the symbols to the type of
experiment, as shown in Fig. 6. The marker’s size codes for gel thickness.
The data collapses according to (6) shown as the solid line (prefactor C
0.26). The circled cross symbol corresponds to a series of data obtained
with a 7.5 mm thick layer of the most rigid gel, and with the flexible backing
in the horizontal case fC 01. Inset: The shape of the sheet is parametrised
by y, the shape of the gel by h.

Fig. 3 Measured lateral decay length cexp on the side of the tape divided
by the elasto-bending length c for different forces. The symbols are the
same as on the other figures.
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is not in contact with the gel. The shape is that of a classical
elastica, forced by the mass at the end of the tape. Here we
parametrise the shape of the tape by y(S) relating its local angle
to the curvilinear coordinate S (Fig. 2, inset). Introducing the
tangential unit vector

-

t = (cos y,sin y), the elastica equation can
be integrated to

1

2
By0ðSÞ2 þ l~g � ~tðSÞ �~tðRÞ

� �
¼ 0; (5)

where we used that the end of the tape at S = R is free from
torque. At the contact line we can estimate the bending
term from the characteristic horizontal and vertical scales:
By02 B Be2/c4. The forcing term in (5) can be written as
lg(1 � sinf) = f, which becomes exact when the hanging part
of the sheet is long. Combined with (3), this gives the nonlinear
scaling for the normal displacement e:

Be2

‘4
� e2G

‘
� f : (6)

This relation is successfully tested in Fig. 2, where we find a
collapse over 4 decades, for different inclinations f, for two
different bending moduli B, for two different gel elastic moduli
G, for different gel thicknesses and for different adhesion
conditions. Note that e/c provides the order of magnitude of
the strain, which shows that most of our experiments are
performed in the linear visco-elastic regime.

4 Reversibility, work of adhesion and
contact angle

The reversibility of the peeling process is illustrated by a series
of experiments without an additional mass at the end of the
tape. When the hanging part of the sheet is sufficiently long,

peeling can in fact be induced by the weight of the sheet.
However, there is a threshold length below which the surface
energy due to adhesion is stronger than gravity, so that the
sheet spontaneously reattaches to the gel when its end is
released. The resulting peeling velocities v are presented in
Fig. 5a, where positive v correspond to peeling and negative v to
reattachment. At the threshold point where v = 0, the system is
at equilibrium: there is an exact balance between the forcing f
and the (conservative) work of adhesion G – note that this
equilibrium configuration is unstable in the sense that if the
tape peels off, the peeling force increases, so that the tape
continues to peel off. The value for the softer gel and the
metallized sheet is G = 52 � 3 mN m�1 and for the softer gel
and the Mylar sheet is G = 19 � 3 mN m�1. For the ten times
more rigid gel and the metallized sheet G = 10 � 5 mN m�1.
Hence, this experiment allows us to accurately determine the
non-dissipative contribution to the adhesion process. Note
that reversibility is, here, not intended in the thermodynamic
sense (there is a visco-elastic dissipation) but in the structural
sense: the adhesive does not present irreversible damages after
peeling.

The work of adhesion can be directly related to the shape of
the gel on the side that is detached from the sheet. Fig. 5b
shows that the free surface of the gel is highly curved before
contacting the sheet. Just like in a crack à la Griffith37 or in the
JKR adhesion problem,38 the normal deflection follows a
square root shape h B x1/2, where x is the horizontal distance
measured from the contact line38 (see Appendix A.2). This
square root singularity is the solution of the mixed problem,
where a contacting region changes to a stress-free interface.

Fig. 4 Angle y at the contact line as a function of the deformation e,
rescaled by the elastic length c. The data correspond to different types of
tape and configurations. The colors correspond to the global inclination
angle f. The solid lines show the best fit by the form tan y = tanf + e/(ac).
For red points f = �451 and a = 0.51, for green points f = 01 and a = 0.6,
for blue points f = 451 and a = 0.18. Inset: Slope tan y of the sheet at the
contact line for f = 01. The solid line indicates tan y B e/c.

Fig. 5 (a) Relation between the peeling velocity |v| and the peeling force f
on semi-logarithmic axes, for the case where no mass is added to the
sheet. Negative velocities, for which the tape reattaches, are on the left, for
forces below G. Data correspond to the metallized film and the softer gel.
(b) Side view of the gel in the equilibrium condition f = G, showing Young’s
contact angle yY C 65 � 51.
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It must not be confused with the logarithmic deformation of a
surface submitted to a localized force, which appears here (or
in the JKR problem) as the far field solution far away from the
contact line.35 The multiplicative factor in front of the square
root solution is usually selected by matching to the outer
problem. Remarkably, however, the gel is clearly seen to make
a well-defined contact angle yY when touching the sheet
(Fig. 5b). This strongly resembles the wetting of liquids, for
which the work of adhesion can be expressed as

G = g(1 + cos yY), (7)

where g is the surface energy of the liquid–vapor interface and
yY is Young’s contact angle. The gel could indeed obey similar
wetting laws39–41 below the elastocapillary length

L ¼ g
G
; (8)

where in this case g is the surface energy of the gel. This length,
approximately 30 mm for the softer gel and ten times lower for
the more rigid, indicates the scale where surface energy domi-
nates over bulk elasticity, and below which we expect ‘‘wetting’’
behavior.

Despite subtleties of capillarity of elastic interfaces,42–45 this
wetting interpretation is indeed consistent with our direct
measurement of the gel’s contact angle. For the softer gel,
we measured yY = 65 � 51 with the metallized sheet, and a
higher contact angle yY = 125 � 51 with the less adhesive Mylar
sheet. Using the measured G and the previously reported value
for the surface tension of the gel–vapor interface, g = 39 mN
m�1,46 the aforementioned relation predicts contact angles of
respectively yY = 701 and yY = 1201, consistent with direct optical
estimates.

5 Energy release and dissipation

We now turn to the most important characteristic of the
adhesive, namely the relation between the peeling force and
the peeling velocity. The unscaled experimental data is shown
in the inset of Fig. 6, where we present the mass l versus the
velocity v. For each dataset with given tape and inclination f,
we find a power law with an exponent 0.53 � 0.04 for the softer
gel and an exponent 0.37 � 0.15 for the ten times more rigid
gel. Below we demonstrate that this directly reflects the expo-
nent n of the rheology, as given by (1). Another observation is
that the peeling velocity is independent of the gel thickness
(represented by the size of the symbols), from which we deduce
that dissipation is localized in the vicinity of the peeling front.

To interpret the relation between forcing and peeling
velocity, we make use of an energy balance. Since inertial effects
are negligible, the viscoelastic dissipation in the bulk of the
deformed gel must equal the changes in surface energy (due to
the work of adhesion) and the forcing by the weight. We thus
need to determine the dissipation inside the bulk of the gel
layer due to the rheology (1). A closed form expression for the
dissipation can be obtained in the limit of small deformations,

assuming that the gel profile (cf. inset Fig. 2) is a traveling wave
h(x � vt). The resulting balance reads (see Appendix A.3):

f � G ¼
ð
dq

2p
qG00ðqvÞ
kðqÞ ĥðqÞ

��� ���2: (9)

The integral on the right hand side represents the dissipation,
where ĥ(q) is the Fourier transform of the gel deformation and
k(q) is the spatial Green’s function relating deformation to the
normal stress. The finite thickness H of the gel layer enters in
k(q) for qH t 1. In our case deformation is limited to ct H and
we may use the half-space approximation k(q) B (2|q|)�1; in
agreement with the experimentally observed independence of
thickness. Naturally, o = qv sets the characteristic frequency for
the dissipation, as can be seen from the argument of G00 in (9).
Furthermore, the independent calibration (1) allows us to write
G00 B (qvt)nG.

The final step is to insert the deformation profile ĥ(q) in (9).
Importantly, when using the crack-shape h B (cx)1/2, for which
ĥ B c1/2/|q|3/2, the dissipation integral in (9) diverges at large q
and gives infinite dissipation at small scales (see Appendix A.2).
However, the appearance of a wetting condition at scales below
BL provides a cutoff: dissipation becomes integrable when
the interface exhibits a finite angle, with details depending on
yY. Using q B L�1 as the regularisation scale, (9) becomes:

f � G ¼ b
tv
L

� �n
G‘: (10)

Fig. 6 confirms that all data are well-described by (10) with b a
multiplicative factor encoding the boundary condition effect

Fig. 6 Relation between the peeling force f and the peeling velocity v,
scaled according to (10). The colors correspond to different inclination
angles f, from red to blue (�451, 01, 451) and the symbols to the type of
experiment, as shown in the table in inset. The symbol size codes for gel
thickness. The inset represents the data without rescaling. The circled
cross symbol corresponds to the 7.5 mm thick layer of the most rigid gel
and the flexible backing, for f C 01, with a mass.
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and higher order large deformation effects. The precise value of
b primarily depends on the geometry of the gel at the peeling
front: it is found to be B10 times larger for yY C 651 than for
yY C 1251. This illustrates the importance of the contact angle,
also for dynamics, since a larger peeling ridge leads to stronger
dissipation. b exhibits a subdominant non-monotonic depen-
dence on f that can be traced back to a weak variation of the
lateral relaxation scale (see the value of a in Fig. 4) (Table 1).

6 Discussion

While first theories of peeling of pressure sensitive adhesives
have described purely static equilibrium situations,12,47 it was
soon realised that the peel force was velocity dependent and
associated to the rheology of the adhesive.48–51 The problem of
growing cracks in bulk viscoelastic media is closely related, and
Schapery26 predicted a power law dependence of the growth
rate of the crack on the applied gross strain, where the
exponent is given by the exponent of the creep compliance
function. Also closely related is the geometry of a rigid cylinder
rolling on a viscoelastic material, for which a strain energy
release rate Bv0.55 has been found.52,53 Maugis and Barquins54

showed that peeling of urethane strips off a glass surface yields
a power law relation between peeling speed and applied force
as well. They attributed this behavior to the rheology of the
adhesive since the empiric dissipation relation obeyed the
same time–temperature superposition behavior as the loss
modulus. They also noticed that, if viscoelastic losses are
localized at the crack tip, dissipation was supposed to be
geometry independent.

However, to the best of our knowledge, a quantitative theory
capable of predicting the peel force for a highly localized
dissipation was still missing in literature. Historically, this is
most likely due to the fact that typical properties of engineered
adhesive tapes lead to characteristic length scales which do not
admit such strong localisation: such tapes typically comprise a
thin layer of a soft and highly adherent material, so that the
stress localisation BG/G B O (1 mm) is spread much wider
than the typical layer thickness BO (10 mm).2,28 Instead,
a cohesive zone forms, composed of fibrils and cavitation
bubbles, and the strain energy release rate becomes geometry
dependent and typically increases with layer thickness.55

Those cases clearly require a different type of model, taking
the nonlinear rheological properties of the adhesive into
account.2,7,10

The growing interest in reversible adhesives that can be
peeled without bulk cavitation or plastic deformations, as inspired

e.g. by biology,1,56 suggests revisiting the limit of weakly adherent
materials and peeling geometries with localised stress and
dissipation. However, the crack singularity of adhesion leads
in this case not just to a concentration of the stress to the
peeling front, but also to a diverging dissipation in the con-
tinuum description. This prevents quantitative predictions
unless a physical regularisation mechanism is identified. While
the power laws that we find in our experiments are similar to
those reported previously,53,54 we could disentangle the various
contributions to the peel force by peeling an inextensible
flexible tape with different surface energies off a thick elastic
layer.57 Most importantly we have identified solid surface
tension and the corresponding ‘‘wetting type’’ boundary
condition as the leading order regularisation mechanism for
dissipation in reversible peeling.

In conclusion, we have shown that reversible adhesives
can indeed obey simple scaling laws for deformation and
dissipation, whose origin can be traced back to linear visco-
elasticity and, importantly, solid capillarity. Analysing the near-
crack-tip geometry, we have shown that the regularisation of
elastic singularities by the wetting condition allows one to get
quantitative estimates of the viscoelastic dissipation. The
theoretical framework proposed here bridges the gap between
adhesive peeling and moving contact lines of fluids, opening
the possibility of fully quantitative theories. It opens the
promising perspective of designing adhesives by coherently
tuning their visco-elastic properties, their surface functionali-
sation, and their meso- and macroscopic architecture.
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Appendix A: derivation of the model
equations

In this Appendix section, we derive the model used along the
article as a framework of interpretation of experimental results.
We provide at each step the general, rigorous equations, and
their expansion at the lowest order in deformation and contact
line velocity.

A.1 Peeling force and boundary condition at the contact line

Here we will derive the expression of the peeling force f, for the
experiments with or without and additional mass attached at
the end of the tape. The length R of the tape is arbitrary. The
driving force of the peeling motion is then due to the weight of
the tape, the additional mass, and the bending moment of the
tape. To derive the governing equations for the shape of the free
part of the tape, we use curvilinear coordinate S and the
corresponding tangent vector

-

t(S) = cos y(S)-ex + sin y(S)-ey along
the contour of the tape; y(S) denotes the angle between the
tangent vector and the horizontal. We define that the contact
line position corresponds to the curvilinear coordinate S = 0,
and the end of the tape is located at S = R (Fig. 7). The torque

Table 1 Table of the parameter b defined by the force balance (10)
according to the various experimental configurations: type of tape and
inclination f

b f C 01 f C �451 f C 451

yY = 651 � 51 3.3 1.2–1.4 2.2
yY = 1251 � 51 0.43 0.07
yY = 1601 � 151 0.25
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balance on the piece of tape going from S to R reads:

By0ðSÞ~ez þ rS~g�
ðR
S

ðR� S0Þ~tðS0ÞdS0 þ l~g�
ðR
S

~tðS0ÞdS0 ¼ 0

(11)

The first term, which involves the bending modulus B of the
tape, is the elastic torque. The second term is the gravity torque
due to the weight of the tape itself. rS is the mass density of the
tape per unit area and

-
g = g(sinf-

ex + cosf-
ey) is the gravitational

vector. The last term is the gravity torque due to the additional
mass at the end of the tape, l, per unit width of the tape.

We define the peeling force f as the energy released by
gravity and bending; here we ignore – for now – the surface
tensions of tape and gel. We therefore write the free energy Fd

of the free part of the tape and calculate its variations with
respect to shape and contact line motion. The bending energy
and gravitational energy of the detached part of the sheet are
expressed as:

Fd ¼
ðR
0

dS
1

2
By0ðSÞ2

þ 1

2
rSR

2g sinf�
ðR
0

dSrS~g �
ðS
0

~tðS0ÞdS0

þ lRg sinf� l~g �
ðR
0

dS~tðSÞ

(12)

The first line of the right hand side is the bending energy, the
second line describes the gravitational energy due to the weight
of the tape itself and the third line is the gravitational energy of
the additional mass at the end of the tape. Note that both
gravitational terms result from two contributions each: not only
the total hanging contour length R of the tape changes (second
term), but also the contact line position moves simultaneously
(first term). Here we ignore that the gel deformation also
slightly depends on R, which causes an additional motion of

the contact line relative to the laboratory frame. Now, the total
variation of the free energy with respect to a change of length R
gives the peel force f:

f ¼ � @Fd

@R

¼ � gðrSRþ lÞ sinfþ l~g �~tðRÞ þ rS~g �
ðR
0

dS~tðSÞ
(13)

To obtain f from the experiment, all terms on the right are
evaluated directly from the images. We have checked experi-
mentally that the variation of the angle y at the contact line
with respect to R leads to a negligible contribution to f.

A.2 Equations coupling the tape to the gel mechanical response

In order to derive the equations governing the shape of the gel
surface, we proceed to a double expansion: we consider the
rheology as being linear, which is well satisfied by the gel used
here, even under stretching; furthermore, we linearize the
equations at small deformations of the gel surface, in order
to be able to use the Green’s function formalism. Although this
linearity requirement is badly obeyed in many of our experi-
ments, we argue here that the laws found using this approxi-
mation may still be valid, within a multiplicative constant that
cannot be calculated quantitatively. The scaling behaviour
of our experimental results show that this is indeed the case.
We furthermore neglect gravity in the description of the gel.

We first introduce the elastic stress s at the surface of the gel.
On the free surface side of the gel, the shear stress vanishes, and
the normal stress is balanced by the solid Laplace pressure USh00.
The solid surface tension US is considered constant, for simpli-
city (US = g = LG). On the tape side, the strain e along the surface
vanishes on the tape side. This implies that, at linear order, the
shear stress vanishes, but not the normal stress. The latter is set
by the bending of the tape, Bh0000. Thus,

s ¼
USh00 for xo 0

�Bh0000 for x4 0

(
(14)

There are four boundary conditions at the contact line: the
selection of Young’s angle (eqn (7)), the selection of the tape
angle y(0), and the second and third derivatives inherited from
the free part of the tape.

Next we relate the normal traction s to the normal displace-
ment and to the viscoelastic rheology m(o) = G0(o) + iG00(o).
When taking the Fourier transform in both space (x - q) and
time (t - o), the kernel relating the deformation to the normal
stress can be written as the ratio m(o)/k(q),46,58 where k(q) is the
spatial Green’s function corresponding to the linear response.
Here we implicitly made use that for an incompressible thick
layer, the normal stress is decoupled from the tangential
displacement.59 We consider travelling wave solutions which
depend on the single variable x � vt. The Fourier transforms of
the elastic stress ŝ and the gel profile ĥ are then related by:

ŝðqÞ ¼ mðqvÞ
kðqÞ ĥðqÞ (15)

Fig. 7 Theoretical schematics. (a) For the derivation of the peeling force f
we only consider the hanging tape (shaded on the scheme) for which the
contour coordinate S 4 0. (b) For the derivation of gel-tape equilibrium
shape we consider the attached part of the tape and the elastocapillary
mechanics of the gel. The shaded part of the attached tape represents the
system considered for the derivation from 0 to S o 0.
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The effect of velocity and surface tension are therefore only to
affect the space Green’s function. At small velocity v, the
rheology can be expanded at the lowest order, leading to the
static shape relation. In this case and for a thick layer (c { gel
thickness), the profile slope and the stress are related to each
other by a Hilbert transform:

sðxÞ ¼ �2G
p

ð1
�1

h0ðx0Þ
x0 � x

dx0 (16)

Considering previous work for liquid droplets on the same
gel,46 the range of velocities for which this is valid extends up to
2 � 10�3 m s�1. The above set of equations is complemented
by the asymptotic condition h0 B x�1 for |x| c c, which
corresponds to load that is localized on |x| { c.

Fig. 8 shows the typical surface profiles obtained by numerical
resolution of the visco-elastic model in the limit of small velocities.
Far from the contact line, the shape becomes logarithmic, as
expected from the response to a localized force.35 At intermediate
distances to the contact line, the normal deflection follows the
square root shape h B (cx)1/2, as is expected in such a mixed
problem where a compliant contact zone connects to a stress-free
surface.37,38 The lengthscale scale c appearing in front of the square
root singularity is selected by matching to the outer solution.60

However, due to solid capillarity, the square root singularity is
regularized close to the contact line, leading to a well-defined
Young’s contact angle. The square root shape is retained as an
intermediate asymptote.

A.3 The dissipation integral

Here we compute the rate energy dissipation P inside the gel
during peeling, which is used to derive eqn (9) in the main
manuscript. We define the displacement field inside the gel ui

and the stress tensor sij. With this, we compute the energy
dissipation per unit time (per unit width of the gel) from the
usual integral58

P ¼
ð
d2xsij

@ _ui
@xj

¼
ð
d2x

@

@xj
sij _ui
	 


� _uj
@sij
@xj

� �

¼
þ
dssijnj _ui:

(17)

These contain standard manipulations, where we used
mechanical equilibrium qsij/qxj = 0 and brought the area
integral to the boundary with normal vector nj. The boundary
integral represents the work done by normal and tangential
tractions. Since the bottom of the gel is fixed to a rigid support
( :ui = 0) the only contribution comes from the free surface. In
addition, only the normal traction performs work: the inexten-
sibility of the sheet imposes vanishing tangential displacement,
while the tangential stress vanishes on the side that is peeled
from the sheet. In the limit of small deformation, the normal
displacement can be identified with the gel’s profile h(x,t), so
that (17) reduces to

P ¼
ð1
�1

dxsðx; tÞ _hðx; tÞ; (18)

where we denote the normal stress s = sijninj.
Inserting in (18), the dissipation becomes:

P ¼
ð
dx

ð
dq

2p
mðqvÞ
kðqÞ hcðqÞe

iqðx�vtÞ

 �

�
ð
dq0

2p
ðiq0vÞhcðq0Þeiq

0ðx�vtÞ

 � (19)

We can introduce the variable x̃ = x � vt and perform the x
integral using ð

d~x ei qþq
0ð Þ~x ¼ 2pd qþ q0ð Þ: (20)

This gives a dissipation

P ¼
ð
dq

2p
mðqvÞ
kðqÞ hcðqÞ

ð
dq0

2p
ðiq0vÞhcðq0Þ2pdðqþ q0Þ (21)

¼ �v
ð
dq

2p
mðqvÞ
kðqÞ hcðqÞðiqÞhcð�qÞ (22)

¼ �v
ð
dq

2p
mðqvÞ
kðqÞ ðiqÞ hcðqÞj j2: (23)

This expression is real, owing to the symmetry properties
k(q) = k(�q) and m(�o) = m(o)*, which implies G0(o) = G0(�o)
and G00(o) = �G00(o). Hence, as expected, only G00 contributes
to the dissipation. Finally, we can define the dissipative force P
= fdv. This gives the expression used in eqn (9)

fd ¼
ð1
�1

dq

2p
qG00ðqvÞ
kðqÞ hcðqÞj j2: (24)

Fig. 8 Predictions of the linear visco-elastic model (eqn (14)–(16)) at
vanishing velocity v. Typical equilibrium profiles of the slope h0 on the
free side of the contact line as a function of the coordinate x rescaled by c
for three different contact angles. At small x t L, h0 saturates to the value
selected by the balance of surface tensions. For L t x t c, an inter-
mediate asymptote h0B x�1/2 emerges. Therefore, h B x1/2, reminiscent of
the crack opening problem. Finally, at large x \ c, one recovers an outer
asymptote h0 B x�1 or equivalently h B log x, which is the elastic response
to a localised line load. Inset: Complete solution h(x) showing the relaxa-
tion over a scale c on the tape side and the intermediate asymptotics
featuring a square root behaviour on the free side.
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