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Abstract – Hydroelastic surface waves propagate at the surface of water covered by a thin elas-
tic sheet and can be directly measured with accurate space and time resolution. We present an
experimental approach using hydroelastic waves that allows us to control waves down to the sub-
wavelength scale. We tune the wave dispersion relation by varying locally the properties of the
elastic cover and we introduce a local index contrast. This index contrast is independent of the
frequency leading to a dispersion-free Snell-Descartes law for hydroelastic waves. We then show
experimental evidence of broadband focusing, reflection and refraction of the waves. We also in-
vestigate the limits of diffraction through the example of a macroscopic analog to optical nanojets,
revealing that any sub-wavelength configuration gives access to new features for surface waves.

Copyright c© EPLA, 2018

Gravity-capillary waves have been extensively used as
model waves to tackle the issue of wave control at macro-
scopic scale. Contrary to optics and acoustics, their
temporal and spatial typical scales allow for direct and ac-
curate observation of wave propagation inside the medium.
The design and fabrication of media with given proper-
ties is generally obtained by tuning the local bathymetry,
which modifies the wave phase velocity [1]. Immersed
structures have been used to obtain Anderson localiza-
tion [2] or to create macroscopic metamaterials for wave
focusing [3–6] and cloaking [7,8]. Wave control is achieved
for waves with wavelength larger or comparable to the liq-
uid depth (shallow water approximation). In this regime,
damping becomes a major issue in laboratory experiments
as viscous friction at the bottom dissipates most of the me-
chanical wave energy. These two limitations narrow the
effective bandwidth of the devices created with gravity-
capillary waves.

Here, we propose a novel approach based on hydroe-
lastic waves, i.e. waves that propagate at the surface of
water covered with an elastic sheet. These waves were
initially introduced to describe motion in ice sheets lo-
cated in the marginal ice zone [9–12] and later to study
floating structures [13], wakes in the lubrication approxi-
mation [14] or cloaking [15]. In the limit of thin membranes

their dispersion relation writes

ω2 =
(

gk +
T

ρ
k3 +

D

ρ
k5

)
tanh kh0, (1)

where ω = 2πf is the pulsation, k = 2π/λ is the wave
number, g = 9.81m s−2 is the acceleration of gravity, T is
the mechanical tension in the elastic sheet, ρ is the fluid
density, D is the flexural modulus of the elastic sheet and
h0 the fluid depth. The flexural modulus D = Ee3

12(1−ν2) de-
pends on Young’s modulus E of the material, its Poisson
modulus ν and its thickness e. Equation (1) exhibits three
distinct regimes depending on the material properties and
the wave pulsation ω: gravity waves, tension waves and
flexural waves. So far, very few experiments at the lab-
oratory scale highlighted the flexural regime using either
thin elastic polymer sheets [16,17] or granular rafts [18].

Here, we propose to achieve the spatial control of the
propagation of hydroelastic waves by modifying the dis-
persion relation (eq. (1)) through local variations of the
sheet’s flexural modulus D. We first describe our exper-
imental set-up and verify quantitatively the prediction
from eq. (1). We introduce a local index contrast using the
local phase velocity. This index contrast is independent of
the frequency, which allows us to define a dispersion-free
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Fig. 1: (Colour online) (a) Sketch of the experimental set-
up showing the container filled with water and covered with
an elastic sheet, the wave generation device and the imag-
ing system. (b) Measured dispersion relation for 4 different
film thicknesses e = 20 μm (squares), 300 μm (circles), 500 μm
(diamonds) and 800 μm (triangles). For each thickness, the
dashed line is the theoretical dispersion relations obtained us-
ing eq. (1). The plain red line shows the theoretical gravity-
capillary dispersion relation for water waves. Inset: typical
wave field measured for a point source vibrating at 100 Hz.
The wave travels from left to right.

Snell-Descartes law for hydroelastic waves. To show the
versatility of the system we then implement more complex
structures to focus wave energy and probe wave effects due
to the finite size of the system.

Experimental set-up. – We use a glass tank (80 cm×
40 cm × 20 cm) filled to a depth h0 = 16.5 cm of water.
We cover its surface with a 75 cm × 35 cm wide elastic
sheet of thickness e = 20–800μm made of an optically
transparent silicone rubber sheet with Young’s modulus
E = 1.47 ± 0.09MPa, density ρs = 970 kg/m3 and Pois-
son’s ratio ν = 0.5. This elastic film floats freely at the
surface of water so that the mechanical tension T inside re-
duces to the water surface tension T = σ = 50mN/m. The
waves are generated with a vibration exciter powered with
an amplifier controlled with a waveform generator. We
work with frequencies ranging from 2 to 200Hz and with
amplitudes ζ � λ to ensure the waves are in the linear
regime. In addition, to guarantee that we are in the thin

membrane limit we check that ρseω
2 � {Dk4, Tk2, ρg},

so that eq. (1) is valid.
To analyze quantitatively the wave field we use the free-

surface synthetic Schlieren optical technique [19] based on
the apparent displacement of a random dot pattern due
to the local slope of the interface. The pattern is located
underneath the tank and we observe it from the top using
a CCD camera located at H � 2m from the fluid sur-
face (fig. 1(a)). The sampling frequency of the camera is
set to obtain stroboscopic images of the wave propagation
with at least 12 images per period. The area we observe
with our camera is about 20 cm×20 cm wide (2048×2048
pixels). A Digital Image Correlation (DIC) algorithm
(PIVlab [20,21]) is used to compute the displacement
field between each recorded image and the reference im-
age. After reconstruction, we obtain 2D elevation fields
(255× 255 points) and we are able to measure amplitudes
down to ζ = 1μm. An example of the obtained circu-
lar height field generated by a point source is shown in
fig. 1(b) (inset).

Dispersion relation. – We first probe the validity of
the theoretical dispersion relation predicted by eq. (1).
We measure the wave field for circular waves at various
frequencies in the range f = 2–200Hz obtained with a
point source vibrating on elastic films with thicknesses
e = 20–800μm. For each field, we perform 2D spatial
Fourier transforms to determine the wave number k asso-
ciated to each frequency. We plot in fig. 1(b) the forcing
frequency f against the measured wavelength λ on a log-
log scale. Our measurements show that the wavelength
decreases with the forcing frequency f , typically rang-
ing from λ = 20 cm to λ = 0.5 cm. For low frequencies
(f < 5Hz) we observe a slope of −1/2 revealing that the
gravity term ω2 � gk in eq. (1) is dominant. For larger
frequencies, two regimes can be observed. For thin elas-
tic sheets (e = 20μm) we observe a slope of −3/2 which
corresponds to the tension term T/ρ k3 = σ/ρ k3. This
experimental dispersion relation is in perfect agreement
with theory. The transition between the gravity and the
tension regime occurs for λ = 2π

√
T/ρg = 1.4 10−2 m.

This part of the dispersion relation corresponds to stan-
dard water waves, confirming that tension in the film is
solely due to the liquid surface tension. For thicker films
the behavior is markedly different. The measured slope
is −5/2 showing that the flexural term D/ρ k5 is leading.
This is confirmed by the theoretical dispersion relation
that is in excellent agreement with our experimental data.
This flexural regime is reached when k ≥ 4

√
ρg/D and

k ≥
√

T/D. In the following we will only consider waves
in the flexural regime, i.e. hydroelastic waves.

Effective index and broadband refraction. – In
this regime the dispersion relation (eq. (1)) in the deep
water approximation can be simplified as

ω2 � D

ρ
k5. (2)
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Fig. 2: (Colour online) (a) Wave field showing refraction at the interface between two media, with e1 = 300 μm (left) and
e2 = 800 μm (right). The wave travels from the left to the right. The scale bar represents 5 cm. (b) Sinus of the measured
refracted angle θt as a function of the sinus of the incident angle θi for 3 different frequencies. The dashed line corresponds to
Snell’s law prediction with n1/n2 = 1.81. Inset: schematic drawing of the experiment, showing the wave vectors and the angles
of the incident wave θi and of the transmitted wave θt. (c) Wave field showing the total reflection at the interface between the
two media previously described. The wave travels from the left to the right. The scale bar represents 5 cm. (d) Blue circles:
normalized profile of the intensity of the evanescent wave taken along the dashed line shown in (c). Red line: exponential fit.

The phase velocity vϕ = ω
k =

√
D/ρ k3/2 then only

depends on the film properties and the wave number k.
From this phase velocity we can define a relative effective
refractive index n(D, k) ∝ 1

vϕ
. n is spatially tunable by

varying locally the value of the flexural coefficient D. This
can be achieved by changing locally Young’s modulus E or
the film thickness e. For two domains covered with elastic
films with different thicknesses e1 and e2 and same Young’s
modulus E, the ratio of their refractive indices n1 and n2

writes

n1

n2
=

vϕ2

vϕ1
=

k2

k1
=

(
D2

D1

)1/5

=
(

e2

e1

)3/5

. (3)

Thicker regions (respectively, thinner) thus correspond to
smaller (respectively, higher) refractive indices. In the hy-
droelastic regime the index ratio is given by the local val-
ues of the film thickness e and does not depend on k nor ω.

We perform experiments to test eq. (3) through the
Snell-Descartes law using the refraction of a plane wave at
an interface between two media. The interface is obtained
using two thicknesses (e1 = 300μm and e2 = 800μm, re-
spectively) (fig. 2(a)), and the frequency f ranges from
50–200Hz. The incident (respectively, transmitted) waves
have a wave vector 	ki (respectively, 	kt) that forms an angle
θi (respectively, θt) with the interface normal (fig. 2(b)).
We measure these angles by means of spatial Fourier trans-
forms for varying incidence angle, ranging from 0◦ to 40◦.
We plot in fig. 2(b) sin θt against sin θi for three differ-
ent frequencies. The result is linear which means that
hydroelastic waves obey the Snell-Descartes law of refrac-
tion: n1 sin θi = n2 sin θt. This result based on translation
invariance holds whatever the frequency. The expected
slope given by the refractive index ratio n1

n2
� 1.81 is in

excellent agreement with our experimental data.
We also study the situation where the angle of incidence

is larger than the critical angle, here arcsin(1/1.8) � 33.7◦.
Such a wave field is presented in fig. 2(c) where θi � 40◦.

As expected, the wave undergoes a Total Internal Re-
flection (TIR) with the presence of an evanescent wave
in medium 2. No energy is transmitted through the in-
terface but this evanescent wave can be observed: the
height of the wave decreases rapidly away from the in-
terface. We can directly measure the amplitude of these
waves on our fields, and we represent the profile obtained
in the inset of fig. 2(d). The amplitude of these waves
decreases exponentially, with a typical penetration length
δ � (2.1 ± 0.5) 10−1 × λt. This penetration length is in
good agreement with the expected value of δth = 1/κ =
2.6 10−1 × λt obtained with κ = ω/c

√
(n1 sin θi)2 − n2

2.

Lenses, focalisation. – Fine sub-wavelength wave
control can be achieved easily by designing engineered
shapes to focus and guide waves. Here, as an example, we
design 2D lenses by cutting out symmetric circular arcs
in the silicon polymer. The obtained shapes (fig. 3) are
defined by their radius of curvature RC . We then deposit
them on the first membrane to locally increase the thick-
ness. Note that this shape should create a convergent lens
as thicker regions have a lower refractive index n2 < n1.
We excite the system using a point source located on the
left of the lens. Figure 3(a) presents a typical wave field
for a lens with RC = 2.5 cm excited with f = 75Hz and
shows a focal spot on the right side of the lens (see also the
supplementary videos Movie1.mov and Movie2.mov given
as Supplementary Material (SM)). Using the location of
this focal spot and that of the source we define the focal
length Lf as 1/Lf = 1/s + 1/s′, where s (respectively, s′)
is the distance between the lens and the source (respec-
tively, the image). Figure 3(b) shows the measured Lf as
a function of RC for 5 different frequencies ranging from
50Hz to 150Hz. We observe that Lf increases linearly
with RC while being independent of f as the refractive
index ratio only depends on the film thickness ratio in the
flexural regime. Here the typical size L of the lens com-
pares with λ and the paraxial approximation is clearly not
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Fig. 3: (Colour online) (a) Wave field for a lens with a radius of
curvature of 2.5 cm. Circular waves traveling at f = 75 Hz from
the left to the right. The plain red line denotes the shape of the
lens, the dashed line denotes its focal plane. (b) Measurement
of Lf as a function of RC for various lenses and 5 different
frequencies: 50 Hz (squares), 75 Hz (diamonds), 100 Hz (up tri-
angles), 125 Hz (down triangles) and 150 Hz (circles). The error
on the measure is lower than 1% and is much smaller than the
marker size. Plain line denotes the theoretical focal length for
a thin lens (see text). (c) Profile of the intensity field along the
focal plane for a lens with radius 13.7 cm and for f = 50 Hz.

satisfied. This makes ray optics a poor candidate to model
our results. However, its prediction Lf = RC

2(1−n2
n1

)
agrees

surprisingly well with our experimental data (fig. 3(b)).
We now characterize the profile of the wave field at the

focus. Figure 3(c) presents the lateral normalized intensity
profile of the focal spot obtained for a lens with a curva-
ture radius of RC = 13.7 cm at f = 50Hz. The profile ex-
hibits a central peak with a Full Width at Half-Maximum
(FWHM) of 0.63λ, and 2 side lobes. The presence of these
secondary peaks is the signature of diffraction: as both the
typical width of the focal spot and the typical size of the
lens L compare with λ, wave propagation should be de-
scribed at the wavelength scale.

Sub-wavelength focusing. – To further show the
versatility of the hydroelastic wave to control waves at
the sub-wavelength scale, we use a geometry known in
optics as “nanojet”. Nanojets were first introduced in
optics using small cylindrical (or spherical) structures
(L ∼ 10λ) with a strong index contrast [22–24]. These
structures are traditionally manufactured or simulated us-
ing a dielectric sphere that has a higher refractive in-
dex than the surrounding medium, like glass, water or
latex. The focal spot is created by the combination of

Fig. 4: (Colour online) (a) Intensity profile for a plane wave
propagating at 150 Hz through a thin disk of diameter d, here
denoted with the dark dashed line. The film is 300 μm thick
inside the circle, and 800 μm thick elsewhere. We take an in-
tensity profile along the red vertical dashed line. (b) Intensity
profile taken along the red dashed line plotted in (a).

evanescent and propagating waves in the shadow side of
the sphere.

We transpose this object to 2D hydroelastic waves by
creating a thinner circular area with diameter d in the
elastic sheet (fig. 4(a)). As for classical microspheres in
optics, the refractive index n2 in this region is higher than
n1 in the outside medium. Figure 4(a) shows the measured
intensity field inside and outside the disk for an incident
wave with f = 150Hz and d = 32mm (see also the SM).
The wave propagates from the left to the right, and the
thinner region is denoted with the dark dashed circle. We
observe that the circular patch distorts the incoming plane
wave and that a strong focal spot emerges out of the cir-
cular area. We show in fig. 4(b) the lateral intensity pro-
file of this focal spot that presents a very narrow peak
as well as small side lobes on both sides. The FWHM of
this focal spot is 0.33λ, which is smaller than the classical
diffraction limit at 0.5λ, confirming that sub-wavelength
focusing can be achieved using this simple design at the
wavelength scale.

Conclusion. – We have achieved control of hydroelas-
tic waves propagation in a model experiment. We first con-
firmed that the waves can be accurately described by the
dispersion relation (eq. (1)) at the laboratory scale, and
that the elastic sheet’s properties have a crucial incidence
on the wave propagation in the flexural waves regime. In-
deed, the flexion modulus D can be tuned spatially by
locally modifying the elastic film’s thickness. We build a
local index contrast that only depends on the film’s flexion
modulus D and is therefore dispersion free despite the dis-
persive nature of the waves. Using this we first show that
the Fermat principle applies for hydroelastic waves, as re-
fraction of an incident plane wave on a straigth interface
obeys the Snell-Descartes law independently of the inci-
dent wave frequency. With this feature we implement
lenses with tunable focalisation properties. Nevertheless,
the index variations occur on a typical scale that compares
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with the hydroelastic wavelength leading to subtle wave
effects. This is particularly revealed by the construction
of a macroscopic equivalent of nanojets. These simple cir-
cular structures allow to overcome the diffraction limit
leading to a focal spot as small as λ/3.

We believe our macroscopic experiment can be used as a
model experiment to study the physics of waves with new
features so far unachieved. Direct observation of the waves
combined with the ability to tune the medium’s proper-
ties down to sub-wavelength scale opens promising per-
spectives to probe wave propagation in structured [25–28]
or random media [29–31]. In particular this system allows
for a precise spatio-temporal control of wave sources as
well as a precise monitoring of dynamical effects. Inspired
by a recent work on the time-reversal of gravito-capillary
waves [32], we now aim to implement macroscopic dynam-
ical spatial structures [33–35].
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