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Abstract – Bouncing droplets on a vibrated liquid bath can interact via the surface waves they
emit and form various types of stable crystalline clusters. When increasing the forcing acceleration
over an onset value, the aggregates present a global and spontaneous vibration mode. Here, we
investigated experimentally these vibrations in hexagonal and square lattice clusters and show
that there is a long-range selection amongst the modes. We propose a physical interpretation of
the instability based on the intrinsic delay due to wave propagation and a simple model that
explains the observed features of the vibrations.

Copyright c© EPLA, 2011

Introduction. – Droplets can bounce on a vertically
vibrated liquid surface [1]. Their bouncing emits damped
surface waves that mediates an interaction between them.
If the surface on which it bounces is slanted, a given
droplet receives a non-vertical kick and thus moves in
the horizontal plane [2]. It can find an equilibrium posi-
tion only if it bounces in a location where the aver-
age slope during the contact is zero. The corresponding
wave-mediated interaction allows not only the creation
of self-propelling droplet associations [3], but also the
stabilization of regular macroscopic aggregates of droplets
[2,4,5]. In these stable arrangements, each droplet settles
in the trough formed by the first antinode of the wave
generated by its nearest neighbours. It was shown that
the bouncing can become sub-harmonic. In this case, the
waves emitted are almost sustained because of the prox-
imity to the Faraday instability [6,7]. As the droplets can
have two different phases and have a long-range periodic
interaction, it allows the formation of complex patterns,
including squares, hexagons and octagons [8]. These struc-
tures are stable on the bath for several hours.
Inside the aggregate, the droplets are massive

interacting objects evolving in a potential trap given
by the wave-mediated interaction. They thus form an
original periodic mass-spring chain. Here, we investigate

(a)E-mail: antonin.eddi@univ-paris-diderot.fr

a spontaneous instability of this periodic pattern when
the forcing acceleration, used as the control parameter, is
increased.

Experimental set-up. – We use a silicone
oil bath (density ρ= 965 kg ·m−3, surface tension
σ= 20.9 · 10−3N ·m−1 and viscosity µ= 50 · 10−3 Pa · s)
with thickness h0 = 6mm. It is subjected to a vertical
harmonic acceleration γ = γmcos(2πf0t) by a vibration
exciter (Bruel & Kjaer 4808). The driving frequency
is set to f0 = 50Hz. We select the droplet diameter
D= 900± 20µm by optical means. The forcing accel-
eration is large enough to ensure that the droplets
bounce with the Faraday frequency fF = f0/2 [2,8]. The
wavelength λF = 2π/kF = 6.95mm on the bath is given
by inserting the bouncing pulsation ωF = 2πfF in the
dispersion relation for surface waves:

ω2 =
[
gk+(σ/ρ)k3

]
tanh(kh). (1)

We also define the Faraday phase speed vFϕ = ωF /kF =
173mm · s−1. Similar results have been obtained with µ=
20 · 10−3 Pa · s, f0 = 80Hz, λF = 4.75mm, vFϕ = 190mm ·
s−1 and D= .8mm.
We build macroscopic clusters with hexagonal or square

symmetry by gathering droplets following the building
rules described elsewhere [8]. Hexagonal aggregates (see
fig. 1(a) and movie1 1.mov) bind with an equilibrium
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Fig. 1: (a) Side-view snapshot of a hexagonal lattice aggre-
gate of bouncing droplets. (b) Top-view snapshot of 49-droplets
square lattice aggregate. (b) 49-droplets square lattice aggre-
gate. (c) and (d) Schematic view of line-shaped aggregates,
standing for one-dimensional aggregates with (c) hexagonal
lattice or (d) square lattice. In both cases, L is the lattice
constant.

distance L= 11.5mm. For square aggregates, the binding
distance is smaller, i.e. L= 8.1mm. We can choose at
will the shape of the outer envelope of the cluster when
gathering the droplets. Using image processing, we can
follow the position of each droplet during the experiment
with a spatial resolution of 0.04mm. The movies are
recorded at 10 images per second.

Instability in one-dimensional aggregates. – We
create on the bath quasi–one-dimensional aggregates.
In this case, there are N droplets (N > 10) along one
direction and only three droplets transversally (see
fig. 1(c-d)). When slowly increasing the forcing accel-
eration γm, an onset value γV = 3.5± 0.05 g is reached
above which a spontaneous oscillation of the position
of each droplet is observed. The transient regime (see
fig. 2) to oscillation is obtained by setting γm to a
value slightly larger than γV at t= 0. We observe the
growth of a collective vibration along the aggregate.
All the droplets move at the same frequency fV with
first neighbours oscillating with opposite phases. The
oscillation mode saturates to a stationary amplitude of
typically 10% of the distance between two droplets (see
movie2.mov). Measurement of the vibration frequency
fV by FFT show very little variation with the length of
the aggregate, giving fV = 1.00± 0.05Hz for hexagonal
lattice aggregates. Note that fV � fF .
This instability corresponds to a spatial modulation

of the periodic pattern. This mode is coherent all over
the aggregate structure. As the second neighbours of a
droplet have in-phase motions, the selected mode has a
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Fig. 2: Trajectories along a line of 11 droplets in hexagonal
symmetry when the forcing acceleration γm is set to a value
slightly larger than γV at t= 0. The black segment has a length
equal to L/10. Each droplet is moving in phase opposition with
its neighbours.

spatial wave number kV = πL. This is the largest wave
number possible in a vibrating structure, corresponding to
an optical mode. Along a line of droplets, we can separate
two populations into the aggregate, which can be labelled
(+) and (−) if the droplets have in-phase or out-of-phase
oscillations with a reference droplet. This creates two sub-
lattices of droplets having the same vibrational properties.
Each vibrating sub-network has a spatial periodicity which
is twice the original network periodicity.
The growth of the oscillation mode occurs at the center

of the aggregate and the stationary amplitude is weaker
on the edges. If we decrease the forcing acceleration
γm, all the droplets return to their former position. In
contrast, when we further increase our control parameter,
the oscillations of the central droplets become so large
that one of them is able to leave its potential trap and
collapses with one of its neighbours. The destruction of
the aggregate always occurs from the center, contrary to
the habitual melting process occurring at the edges.
The observed destabilization is a secondary instabil-

ity of a non-linear periodic pattern. Theoretical studies
have shown that spatially periodic systems present various
types of instabilities towards dynamical states. Depend-
ing on the symmetry breaking involved, there are ten
generic modes [9]. A large number of these solutions have
been illustrated in various experiments such as Taylor-
Couette flows [10], Rayleigh-Benard convection [11], or
directional viscous fingering [12]. The theory predicts that
the types of instabilities are related to the symmetry
breaking involved. For example, drifting domains (attested
experimentally in [13,14]) have been associated with the
breaking of left-right symmetry. The solution that we
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Fig. 3: Schematic representation of the four sub-populations
(+,+), (+,−), (−,+) or (−,−) of droplets in (a) square
geometry and (b) hexagonal geometry.

observe experimentally is reminiscent of temporal period
doubling: the secondary instability has a wavelength which
is twice the original wavelength. This kind of oscillatory
modes has been observed in solidification [14], viscous
fingering [12] or liquid columns [13,15].

Two-dimensional aggregates. – We build regular
aggregates, with either square or hexagonal symmetry.
The onset γV of vibration depends on the geometry of
the aggregates, and is around γV = 3.5± 0.05 g for hexago-
nal symmetry clusters. Using square lattice aggregates, we
obtain a forcing threshold γV = 3.25± 0.05 g and a vibra-
tion frequency fV = 1.33± 0.05Hz.
The two-dimensional aggregates have two principal

directions, which can be represented by two vectors e1 and
e2, the angle between e1 and e2 is π/2 in square aggregates
and π/3 in the hexagonal ones (see fig. 3). Choosing the
norm of e1 and e2 equal to L, the periodicity of the
network, a droplet of the lattice is located at me1+ne2,
with (m,n)∈Z2. Using a classical description, we can
define the unit cell in the lattice as a parallelogram with
vertices in (0, 0), (e1, 0), (0, e2) and (e1, e2). The unit cell
is either a square with L side in the square aggregates, or
a rhombus in the hexagonal aggregates.
When γm >γV , the same period doubling as in the

one-dimensional case occurs along the principal directions
of the lattice. The network will now be invariant under
translations of 2e1 or 2e2. The unit cell is four times
larger than the original unit cell. Whatever the geometry,
there are four droplets inside the unit cell when the
aggregate is in vibration and we will have to distinguish
four sub-lattices to describe the vibration inside the two-
dimensional aggregates. Calling (+,+) the state of a
reference droplet, any droplet will have motions which
can be represented by (+,+), (+,−), (−,+) or (−,−),
depending on its distance from the reference droplet.
We will first consider the case of square lattices for

simplicity. In this case, because of the independence of the
two principal directions (e1 and e2 are orthogonal), the
two vibrations are not correlated. A droplet will oscillate
independently along the two principal direction of the
aggregate, at least at linear order. Figure 3(a) shows the

(b)

(a)

Fig. 4: (a) Snapshot showing the oscillations along the
two possible direction of vibration in the square geometry.
(b) Snapshot showing one of the possible oscillation modes in
hexagonal geometry.

distribution of the different droplets in the aggregate.
We obtain four sub-lattices having in-phase or counter-
phase behaviours. For example, the motions of (+,+) and
(+,−) droplets will be in phase along the e1-axis, but
out of phase along the e2-axis. In movie3.mov, we can
clearly distinguish these four sub-populations of droplets
and verify their phase properties with respect to the other
sub-lattices. The square geometry creates in-line vibration
that are represented in fig. 4(a). The wavelength λV along
each direction of the observed mode is the same as in the
unidimensional case, with λV = 2L.
The case of hexagonal aggregates is more complex.

Using the same principles as in the square case, we
can define the state of any droplet by comparison with
a reference droplet labeled (+,+). The motion of any
droplet can thus be represented by (+,+), (+,−), (−,+)
or (−,−), depending on its distance from the reference
droplet (see fig. 3(b)). We also notice that there is one
droplet of each sub-population inside the elementary cell.
Nevertheless, because of the existence of a third symmetry
axis, the vibrations along the e1 and e2 axes are coupled
at linear order. This geometrical constraint implies a
selection between the modes. Figure 4(b) presents one of
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the possible modes, the same as that observed with liquid
columns in two dimensions [15]). In this case, the selected
mode has a wavelength λV =

√
3L.

Phenomenological model. – A theoretical descrip-
tion of these experimental observations should be able to
drescribe the breaking of symmetry and the periodicity of
the droplet lattice. What are the properties of the inter-
action between droplets? Each time a droplet bounces on
the surface, it emits a surface wave. The superposition
of these waves creates a periodic pattern on the surface.
When a droplet falls on a distorted surface, it feels its
local slope α and receives an impulsion with a horizon-
tal component. The equilibrium positions are thus located
at the antinodes of the wave pattern. Displaced from its
equilibrium position, the droplet tends to return to it. The
applied force during a collision is proportional to the local
slope α. α depends on the amplitude of the wave Aw as
α∼Aw/λF . By changing γm we induce a variation of the
amplitude Aw and thus a change in the shape of the poten-
tial trap for the droplet. In a mass-spring model, the spring
constant associated with this potential will depend on the
forcing acceleration.
We also need to take into account propagation effects.

Each droplet feels the waves emitted by its neighbours at
previous bounces: the waves need a time

τ =
L

vFϕ
(2)

to propagate from their source to the next droplet.
Assuming that the droplets are uniquely bound to their
first neighbours, we can write a mass-spring chain model
with these features.
For simplicity, we will consider only the one-dimensional

case. Calling xn the displacement of the n-th droplet from
its equilibrium position, and m the mass of one droplet,
we can write an equation of motion for the n-th droplet:

m
d2xn
dt2

= −µdxn
dt
+ Ãf [xn(t)−xn−1(t− τ)]

+ Ãf [xn+1(t− τ)−xn(t)] (3)

with µ a damping coefficient, Ã the amplitude of the
wave and f the interaction force between two neighbours,
depending only on the positions of the droplets. The
damping coefficient µ stands for viscous effects, but
also for the radiation losses of the n-th droplet. We
can linearize this expression for small displacements,
assuming that the interaction is proportional to the
distance between the droplets. Equation (3) simplifies to

m
d2xn
dt2

=−µdxn
dt
+A[xn−1(t−τ)−2xn(t)+xn+1(t−τ)].

(4)

As τ ∼ 1/fF = 40ms is very small compared to the period
of vibration of the pattern 1/fV ∼ 1 s, we can expand
the interaction term. We thus assume, in agreement with

experimental observations, that the motion is slow with
respect to the bouncing at fF . We can write:

xn(t− τ)� xn(t)− τ dxn
dt
. (5)

Thus, we have

m
d2xn
dt2

= −µdxn
dt
−Aτ

(
dxn+1
dt

+
dxn−1
dt

)

+A(xn−1− 2xn+xn+1). (6)

We can now perform a linear stability analysis. We inject
in this amplitude equation solutions with temporal and
spatial periodicities xn =Xe

iωV teinθ, θ corresponding to
a spatial phase, and we look for the instability threshold.
This leads to

mω2V = 4A sin
2 (θ/2), (7)

µ+2Aτ cos θ= 0. (8)

Minimizing A with respect to θ in order to get the most
unstable mode, we get cos θ=−1 which corresponds to
θ= π. Its wave number kV =

π
L
is such that two successive

droplets have opposite-phase motions. Equation (8) states
that the instability threshold depends on the propagation
time τ between a droplet and its neighbours. If a droplet
moves, its neighbours will feel it after a time delay τ due
to the finite velocity of the waves. This delay, provides
irreversibility to the system and thus the time-symmetry
breaking necessary for the growth of the instability. The
threshold is A= µ/(2τ), which, substituted into eq. (7)
yields

fV ∝
√
1

τ
∝
√
1

L
. (9)

This theoretical prediction is in agreement with the
experimental observations: the distance L between the
droplets is not the same in the square or hexagonal
geometries L= 8.1mm and L= 11.5mm, respectively, and
the selected oscillation frequency fV (fV = 1.33Hz and
fV = 1Hz, respectively) decreases accordingly when L is
increased.

Finite-size effects. – We have seen (see fig. 2) that
the vibration amplitude is always smallest near the edges.
We now investigate finite size effects by varying the length
of the aggregate. We define ε= 1− 2| n

N+1 − 12 | the non-
dimensional distance of the n-th droplet to the edge in an
aggregate which is N droplets long and XM the maximal
amplitude in the aggregate. For aggregates (with square
or hexagonal geometry) of length 2<N < 10, we look at
the normalized amplitude Xn/XM as a function of ε (see
fig. 5). The amplitude is always largest at the center and
decreases continuously getting closer to the edge.
This effect can be included in the model using the

fact that a droplet located at the edge interacts with a
single neighbour. Adding this condition in the equations is
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Fig. 5: Variation of the normalized amplitude of vibration
Xn/XM as a function of the non-dimensional distance to the
edge ε for aggregates with length 2<N < 10. The dashed line
corresponds to the theoretical prediction.

equivalent to write that, for a N -droplets–long aggregate,
there exist two supplementary droplets (indexed by 0
and N +1) that are at rest outside the aggregate. We
deduce from the previous model that the amplitude
of the motion of the n-th droplet is proportional to
sin(επ/2). The resulting curve, added to fig. 5 matches
the experimental data for the hexagonal and the square
lattices. For aggregates with N > 10, the agreement with
this theoretical prediction becomes poorer, because of
saturation effects at the center of the aggregate due to
non-linear terms.

Discussion. – Is it possible to extend this model to
two-dimensional aggregates? For square ones, the equa-
tions of vibration along the two principal directions appear
to be independent because e1 and e2 are orthogonal.
The apparent phase selection between the two vibrations
should be interpreted by adding a non-linear coupling
in the amplitude equations. In the hexagonal geometry,
the existence of a third symmetry axis implies a selec-
tion of the vibration mode at linear order. A complete
study of the allowed two-dimensional modes in the hexag-
onal symmetry has been performed by Pirat et al. [16],
pointing out the existence of only 20 different possibili-
ties. In the experiments reported here, we always observe
a combination of some of them. A complete analysis of the
two-dimensional case should take into account not only
the coupling between the principal directions, but also the
existence of edges. This study is beyond the scope of this
experimental article, and should be reserved for a further
communication.
The coherent vibration inside regular droplet aggregates

is reminiscent of phonons in crystalline lattices. Here,
we have a mass-spring chain oscillating with a coherent
mode, but only a single value in the vibration spectrum
is excited. This is different from the phonon excitation in
crystalline lattices by temperature: in that case, the whole
spectrum is excited and vibrational energy is distributed
according to the energy of each mode. In our experiment,

the observed mode is that with the highest energy. This
mode selection is related to the nature of the excitation.
The motion of each droplet is induced by the surface waves
emitted by its neighbours at previous bounces. The propa-
gation time between the droplets provides irreversibility in
the system and thus the time-symmetry breaking needed
for the growth of the instability. The system then selects
a single wavelength along a line of droplets.
The melting of the aggregates occurring from the center,

contrary to the classical melting process occurring at the
edges, is a consequence of this specific selection process.
The oscillations are not due to a thermal excitation
distributed randomly all over the aggregate, but from a
coherent excitation by the surface waves. As the wave
amplitude is maximal at the center, the central droplets
are the first which are able to leave their potential trap
leading to a core destruction of the aggregate
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