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Spiral patterns are found to be a generic feature in close-packed elastic structures. We describe model
experiments of compaction of quasi-1D sheets into quasi-2D containers that allow simultaneous
quantitative measurements of mechanical forces and observation of folded configurations. Our theoretical
approach shows how the interplay between elasticity and geometry leads to a succession of bifurcations
responsible for the emergence of such patterns. Both experimental forces and shapes are also reproduced
without any adjustable parameters.
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Illustrations of tightly packed flexible structures abound
in nature from plant leaves in buds [1], insect wings in
cocoons [2], DNA in viral capsids [3], chromatin in cell
nuclei [4] to crumpled sheets [5–14] and rods [15–17].
This situation is often a consequence of the structures’ own
growth within a container or of a decrease in the available
volume. In most cases the geometrical arrangement of the
folding plays a central role in ensuring a safe deployment
[1,4]. Besides, the elastic properties of these confined
systems are further constrained by self-avoidance as well
as by the dimensionality of both structures and containers.
The interplay of these mechanisms usually yields a variety
of possible self-organized patterns [1–17]. Their complex-
ity led to approaches separating elastic forces [5,7–11,17]
and geometrical configurations [6,16,18,19]. So far, in
experiments on crumpled thin sheets [6,11,12] and rods
[16], it has remained elusive to simultaneously determine
mechanical forces and the corresponding configurations.
Here, we make these measurements possible with an inter-
mediate approach: the quasi-two-dimensional confinement
of thin sheets. Ideally, this would correspond to the folding
of an elastic rod when it is confined isotropically in a disk
of decreasing radius, or equivalently when an elastic rod
grows within a disk of fixed radius. We identify spirals as
the building block of the apparently complex patterns
observed and study in detail the generation of an isolated
spiral. In parallel, our theoretical approach accounts for
both elasticity and self-avoidance and agrees quantitatively
with experiments.

Our first experimental setup, designed in a conical ge-
ometry, is inspired by the one used to study single devel-
opable cones [8,9]. A circular sheet of typical radius 40 cm
and thickness h � 0:1 mm is pulled through a circular
rigid hole of radius R of the order of 1 cm [Fig. 1(a)].
The distance Z between the pulling point and the plane of
the hole serves as a control parameter. As it is much easier
to bend the sheet than to stretch it, the sheet first assumes
the shape of a developable cone, except near the tip where
the pulling force is applied. This setup allows a quasi-one-
dimensional, isotropic confinement as: (i) a cut across the

sheet in the plane of the hole yields a rodlike one-
dimensional structure of length L � 2�Z, which grows
within a disk of radius R as Z is increased—the shape of
the cross section actually prescribes the shape of the whole
sheet due to the approximately self-similar conical shape.

FIG. 1 (color online). Experimental setups and patterns. We
used Mylar sheets of thickness h � 0:1 mm and bending modu-
lus B � 6:610�4 N m. (a) Setup for conical packing. A sheet of
radius 40 cm is pulled through a hole of radius 1 cm. (b) Typical
pattern at high confinement (p � 15%). Examples of Y points
(bifurcations), C curves, and S curves are shown. (c) Typical
pattern at lower confinement (p � 3%). A double-layered S
curve inside a set of C curves forming a smaller effective
container. (d) Setup for cylindrical packing. Sheets of height
H � 14 cm are glued into a cylinder and introduced into a
Plexiglass container of inner radius R � 2:6 cm and height
38 cm. The sheet is pushed at small velocity (0:5 mm s�1)
with an aluminum disc of radius 5 cm, and the pushing force
F is recorded in a steady state (results in Fig. 3).
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(ii) It is ensured that there is no preferred direction in the
disk.

The strength of the confinement can be measured using
the ratio of a cross-sectional area to that of the hole p �
Lh=S with S � �R2. When most of sheet has been pulled
through the hole, the packing fraction p can be as large as
20%. Figure 1(b) shows a deceivingly complex shape
typically observed for high confinements. However, a care-
ful glance allows one to abstract out some much simpler
well-defined patterns: (i) Y points where a stack of layers
bifurcates tangentially into two groups; (ii) curves con-
necting Y points, which can themselves be classified into
two types: C curves and S curves (with and without in-
flexion points, respectively).

Generically, S curves appear to link concave C curves
acting as a flexible shell smaller than the outer rigid disk.
These observations suggest that in order to understand
close packing, one should focus on the generation of these
elementary patterns. It is possible to isolate them during
the early stages of the packing process and Fig. 1(c) shows
an S curve, assuming a yin-yang-like shape, enclosed in a
container formed of stacks of three C curves. While the
pressure exerted on the container could be related to the
pulling force F, friction on the container and configura-
tional changes are mixed up, which results in a rather
circumvoluted interpretation of F.

Thanks to Ref. [17], we know that conical and cylindri-
cal geometries are described by the same equations except
for some slightly different developability constraints.
Besides, for large confinements, a slender cone is obvi-
ously equivalent to a cylinder. Therefore, we devised a
second experimental setup designed in a cylindrical ge-
ometry. A sheet of height H and width L is glued into a
cylinder of radius Z � L=2�. With its configuration pre-
pared according to the topologies observed in the conical
geometry, the sheet is introduced inside a smaller cylindri-
cal container of radius R and let to relax to an equilibrium
shape by tapping in order to minimize the effect of friction
at the lineic self-contacts. Then the folded sheet is pushed
along the inside of the container [Fig. 1(d)]. The pushing
force F is recorded when a steady state is reached. Because
F is proportional to the mean pressure P exerted on the
container through Coulomb’s law: F � �2�RHP, this
new setup achieves the goal of simultaneous observation
of configurations and measurement of pressures. The dy-
namic friction coefficient � � 0:37 between the sheet and
the container was measured independently.

The classical theory of bending due to Bernoulli and
Euler stands as a cornerstone in elasticity theory. Within
this framework, the mechanical properties and the shape of
rods and cylindrical sheets can be determined by solving
the equation of Euler’s Elastica:
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�
a2 �
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2
�2

�
�
�
� k; (1)

where � is the curvature of the rod at arclength s, B is the
bending modulus, a is an undetermined constant of inte-
gration, and k represents the external normal forces.
However, the obvious physical constraint of self-avoidance
gives rise to many complications in the prescription of
suitable boundary conditions. Also, since the position
and nature of these contacts is not known a priori, the
formulation results in a nonlinear free-boundary problem.
The boundary conditions necessary to close this formula-
tion are determined at all n Y points that may be present in
the rod and can be separated into two kinds: (i) local
mechanical equilibrium. Because of torque and tangential
forces equilibrium, the curvature � is continuous all along
the rod and the constants ai fi � 1; . . . ; ng satisfy simple
algebraic relations. The exact form of these compatibility
equations depends on the nature of the Y point considered
(localized or extended contact between curves) but always
stems from tangential forces equilibrium. On the other
hand, normal forces are proportional to local changes in
curvature and provide a set of relations between the values
of the curvature derivative �0 just before and after Y points.
In this case one also needs to include other normal forces
that may come from self-contacts or from the container
itself. (ii) Geometrical self-avoidance. Regions of the rod
that are initially far away from each other may end up in
close vicinity during the packing process. In order to
account for the impossibility of self-intersections in such
regions, we require that whenever two (or more) points
become in contact, they are bound together sharing a
common position whose global location is otherwise free
to move. Also, extended regions of contact are described
by a new C or S curve whose thickness is adjusted accord-
ing to the number of layers of which this region is made up.

The numerical resolution involves a shooting and branch
tracking method. We start with a set of 5n shooting pa-
rameters: f�i; �i; �0i; ai; ‘igi�1;...;n, where � stands for the
angle of the tangent to the rod with a constant direction
(d�=ds � �) and ‘i is the length between two consecutive
Y points. Some of these parameters can be derived directly
from the boundary conditions specified above, otherwise
initial guesses are made for the remaining ones. The dif-
ference between their values and the desired boundary
values at the other end of the integration interval is set up
as a function which zeros are found with a Newton method.
Eventually, this procedure yields the configurations of the
sheet from which the corresponding mean pressures on the
container can be extracted.

Now we describe the successive phases leading to the
generation of spirals during the packing process. We com-
pare the experiments and the numerics as the ratio between
the excess perimeter of the cylindrical sheet and the pe-
rimeter of the container � � �Z� R�=R � �L� 2�R�=
2�R is increased. For low confinements, a symmetrical
fold [Fig. 2(a) and 2(b)] grows inwards until its extremities
become diametrically opposed. A first bifurcation occurs at
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� � 0:23 and the contact between the sheet and the con-
tainer reduces to two diametrically opposed points (inset 2
of Fig. 3). Then at � � 0:25, a first self-contact appears
between the inward fold and the C curve. As � is increased,
this contact point is driven back toward the disk and finally
reaches it, thereby creating rather peculiar configurations
displaying 3 localized contacts with their container, which
exist in the range 0:31< �< 0:39 (inset 4 of Fig. 3). This
additional support leads to an increase in the external
pressure although the gap between the two C curves and
the disk is too thin to be observed experimentally.
Eventually these C curves come back in contact with the
container leaving only two symmetrical S curves con-
nected through a contact point with the disk, for 0:39<
�< 0:62 [Fig. 2(a) and 2(b)]. A second self-contact ap-

pears at � � 0:62 [Fig. 2(a) and 2(b)]. Above � � 0:71, the
lower contact point flattens out into an extended zone of
self-contact (inset 7 of Fig. 3). While configurations with
an axis of symmetry disappear at � � 1:04, asymmetric
configurations may appear above � � 0:85 [Fig. 2(c) and
2(d)]: a lower bump of one S curve suddenly dives into the
convex part of the second S curve forcing the lower self-
contact to slide away from its symmetrical position. The
transition between the two types of configurations is thus
hysteretic. At this point, we observe experimentally that
the inner S curve begins to rotate surrounding itself by
spiral layers of C curves [Fig. 1(c)]. While the size of the
outer loop (formed by the remaining S curve) decreases, a
yin-yang-like shape embedded in an effective spiral con-
tainer promptly develops [Fig. 2(e)]. When multiple turns
have been completed, the outermost layer of theC curves is
almost a circle and the pattern is formed of an S curve
surrounded by a spiral of pitch equal to the thickness of the
sheet h. The shape of the S curve can easily be determined
numerically and is shown in Fig. 2(f). The pressures com-
puted numerically are in good agreement with the experi-
mental values (Fig. 3).

In three dimensions, the uniform close packing of a rod
yields an optimal helix with a pitch and a radius propor-
tional to the thickness of the rod [18,19]. In two dimen-
sions, we propose that the optimal packing of a rod yields a
spiral of pitch equal to the thickness of the rod h, one of the
rod extremities being at the center of the spiral. This tiling
is optimal because the only unoccupied region is the core
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FIG. 3. Mean pressure as a function of confinement for cylin-
drical packing. The pressure is given in units of B=R3. Diamonds
correspond to experimental measurements and lines to theoreti-
cal results. The dashed line corresponds to metastable asymmet-
ric configurations reflecting the hysteretic character of the
transition; the cross signals a termination of the asymmetric
branch. Vertical dashed lines correspond to separations between
different types of numerical configurations shown as insets
numbered from 1 to 9. Single contacts with the container are
labeled with force vectors; lineic contacts with the container are
delimited by disks.

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Configurations for cylindrical packing. Experiments
(left) and numerics (right) are almost indistiguishable. (a),
(b) Symmetric configurations with no self-contact (� � 0:016,
short dashed line), one self-contact point (� � 0:31, continuous
line), and two self-contact points (� � 0:66, long dashed line).
(c), (d) First asymmetric configuration for � � 0:85. The S curve
and the surrounding C curves form a yin-yang-like pattern.
(e) Yin-yang pattern at high confinement � � 9:4. The thick C
curves are formed of 10 layers. (f) Numerical shape of the S
curve in the yin-yang pattern for very large confinements. In this
case, the C curves form a rigid circular effective container.
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of the spiral, which area is of the order of h2. Indeed, this
geometrical construction naturally arises in our experi-
ments on cylindrical sheets. However, a yin-yang pattern
[Fig. 2(e)] is found in the core because a cross section of
the sheet does not have any extremity inside the core;
moreover, the radius of the core is in general much larger
than h because of the high elastic cost of bending the sheet
on such a small scale.

Now we turn to the estimation of the pressure needed to
maintain such a structure within a surface of area S � �R2

in terms of the packing ratio p � Lh=S. The area of the
core is approximately the difference between S and the
area occupied by the sheet Lh. Therefore, the radius of the
core is given by Rc �

�������������������������
�S� Lh�=�

p
. Its bending energy is

proportional to B=Rc:

 ES curve � �

����
�
p

B���
S
p

1�������������
1� p
p ; (2)

where � � 17:44 is the nondimensioned energy of the S
curve as found numerically [Fig. 2(f)]. Besides, the radius
of curvature of the spiral increases by an amount of h each
time a new layer surrounds the inner core:
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�
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in terms of the polar angle �. Integrating the square of the
curvature �, we obtain the elastic energy of the spiral:

 Espiral �
�B
2h

ln
1

1� p
: (4)

From this, one can compute the total bending energy (per
unit height) E � Espiral � ES curve and thus the mechanical
pressure P � �@E=@S,

 P �
�B
2hS

p
1� p

� �

����
�
p

B

2S3=2

1

�1� p�3=2
: (5)

This expression matches a simple scaling P� BL=S2 at
low packing ratio (p � Lh=S� 1) to a nontrivial diver-
gence when p� 1 because of the high energetic cost of the
core. This equation successfully reproduces the experi-
mental measurements for spiral configurations with pack-
ing ratios p as large as 15% (such as in Fig. 2(e)].

In this Letter we showed how spirals are generated from
a sequence of bifurcations. In an ideal system we would
expect only one spiral. However, in real situations, friction
between layers of C curves kicks in for higher confine-
ments and tends to freeze the C curves into an effective
thicker and more rigid sheet. This creates effective contain-
ers within which the same sequence is repeated, generating
new spiraling patterns. While the underlying individual
pockets still grow in a spiral fashion, an apparently com-

plex pattern emerges from this cascade of bifurcations
[Fig. 1(b)]. Although we investigated a simplified geome-
try for packing, our results have a wider scope because they
are based on the key ingredients of elasticity and self-
avoidance. Indeed, for the more complex packing of 2D
elastic sheets in 3D containers, a cut through a crumpled
ball of paper yields 1D curves, the topology of which could
correspond to an assembly of spirals. This is the subject of
work in progress.
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